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Abstract 

Deep learning shows great promise for medical image analysis but often lacks explain-
ability, hindering its adoption in healthcare. Attribution techniques that explain model 
reasoning can potentially increase trust in deep learning among clinical stakehold-
ers. In the literature, much of the research on attribution in medical imaging focuses 
on visual inspection rather than statistical quantitative analysis.

In this paper, we proposed an image-based saliency framework to enhance 
the explainability of deep learning models in medical image analysis. We use adap-
tive path-based gradient integration, gradient-free techniques, and class activation 
mapping along with its derivatives to attribute predictions from brain tumor MRI 
and COVID-19 chest X-ray datasets made by recent deep convolutional neural network 
models.

The proposed framework integrates qualitative and statistical quantitative assessments, 
employing Accuracy Information Curves (AICs) and Softmax Information Curves (SICs) 
to measure the effectiveness of saliency methods in retaining critical image informa-
tion and their correlation with model predictions. Visual inspections indicate that meth-
ods such as ScoreCAM, XRAI, GradCAM, and GradCAM++ consistently produce focused 
and clinically interpretable attribution maps. These methods highlighted possible 
biomarkers, exposed model biases, and offered insights into the links between input 
features and predictions, demonstrating their ability to elucidate model reasoning 
on these datasets. Empirical evaluations reveal that ScoreCAM and XRAI are particularly 
effective in retaining relevant image regions, as reflected in their higher AUC values. 
However, SICs highlight variability, with instances of random saliency masks outper-
forming established methods, emphasizing the need for combining visual and empiri-
cal metrics for a comprehensive evaluation.

The results underscore the importance of selecting appropriate saliency methods 
for specific medical imaging tasks and suggest that combining qualitative and quan-
titative approaches can enhance the transparency, trustworthiness, and clinical 
adoption of deep learning models in healthcare. This study advances model explain-
ability to increase trust in deep learning among healthcare stakeholders by revealing 
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the rationale behind predictions. Future research should refine empirical metrics 
for stability and reliability, include more diverse imaging modalities, and focus 
on improving model explainability to support clinical decision-making.

Background
The field of medical image analysis has seen significant advancements in explain-
ability methods for deep learning (DL) models, driven by the imperative for trust-
worthy artificial intelligence systems in healthcare  [1]. Traditional medical imaging 
modalities like Computed Tomography (CT), Magnetic Resonance Imaging (MRI), 
Functional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography 
(PET), Mammography, Ultrasound, and X-ray play a crucial role in disease detection 
and diagnosis, often relying on the expertise of radiologists and physicians [2]. How-
ever, the healthcare field faces a growing demand for skilled professionals, leading 
to potential fatigue and highlighting the need for computer-aided diagnostic (CAD) 
tools. The rapid advancements in DL architectures and compute have fueled signifi-
cant progress in automated medical image analysis [3–7]. The maturation of DL offers 
a promising solution, accelerating the adoption of computer-assisted systems to sup-
port experts and reduce reliance on manual analysis. DL holds particular promise 
for democratizing healthcare globally by alleviating the cost burden associated with 
scarce expertise [8]. However, successful clinical adoption hinges on establishing trust 
in the robustness and explainability of these models [9]. Despite their inherent com-
plexity, DL models can be illuminated to understand their inference mechanisms, that 
is, how they process medical images to generate predictions. An adjacent line of work, 
explainability, focuses on understanding the inner workings of the models, while 
explainability focuses on explaining the decisions made by these models. Explaina-
ble models enable a human-in-the-loop approach, enhancing diagnostic performance 
through collaboration between domain experts and artificial intelligence.

Various techniques have been proposed, each with distinct advantages and limita-
tions. Concept learning, for example, facilitates multi-stage prediction by leverag-
ing high-level concepts. Studies such as  [10–12] illustrate the potential of concept 
learning in disease categorization. However, these methods often require extensive 
annotation to define concepts accurately and risk information leakage if concepts do 
not align well with the disease pathology. Case-Based Models (CBMs) learn class-
specific, disentangled representations and feature mappings, achieving final clas-
sification through similarity measurements between input images and stored base 
templates [13–15]. While CBMs are robust to noise and compression artifacts, their 
training is complex, particularly for the large and diverse datasets typical of medi-
cal imaging. Counterfactual explanation methods generate pseudo-realistic perturba-
tions of input images to produce opposite predictions, aiming to identify influential 
features for the model’s original prediction. However, generating realistic perturba-
tions for medical images, which often contain subtle anatomical details, is challenging 
and can lead to misleading explanations [16–23]. Unrealistic perturbations compro-
mise the trustworthiness of these explanations. Another approach involves visualizing 
internal network representations of learned features in CNN kernels [24]. Interpret-
ing these feature maps in the context of medical image analysis is difficult due to the 
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abstract nature of the features learned by DL models [25, 26]. This abstraction chal-
lenges human experts in deriving clinically meaningful insights.

Attribution maps are visual representations that highlight regions of an image most 
relevant to the predictions made by a DL model. Serving as potent post-hoc explainabil-
ity tools, these maps provide crucial insights into how models make decisions based on 
input images. Several studies have demonstrated the application of attribution maps in 
medical imaging tasks. For instance, Bohle et al. [27] utilized layer-wise relevance prop-
agation to elucidate deep neural network decisions in MRI-based Alzheimer’s disease 
classification. Camalan et  al.  [28] employed a deep CNN-based Grad-CAM approach 
for classifying oral lesions in clinical photographs. Similarly, Kermany et al. [29] applied 
Grad-CAM for oral dysplasia classification. Shi et al. presented an explainable attention-
based model for COVID-19 automatic diagnosis, showcasing the integration of attention 
mechanisms to improve explainability in radiographic imaging  [30]. Another study by 
Shi et al. introduced an attention transfer deep neural network for COVID-19 automatic 
diagnosis, further enhancing the explainability and performance of diagnostic mod-
els [31]. Recently, Nhlapho et al. [32] presented an overview of select image-based attri-
bution methods for brain tumor detection, though their approach lacked ground-truth 
segmentation masks and did not quantitatively evaluate the chosen saliency methods.

Building on these efforts, our research leverages both gradient-based and gradient-free 
image-based saliency methods. However, the deployment of attribution maps alone is 
insufficient for establishing comprehensive model explainability. A rigorous evaluation 
framework is essential. We propose a comprehensive evaluation framework that extends 
beyond qualitative assessment. This framework includes metrics specifically designed 
to evaluate image-based saliency methods. By incorporating performance information 
curves (PICs) such as Accuracy Information Curves (AICs) and Softmax Information 
Curves (SICs), we objectively assess the correlation between saliency map intensity and 
model predictions. This robust evaluation aims to enhance the transparency and trust-
worthiness of DL models in clinical settings. Given this context, this paper centers on 
How effective are state-of-the-art (SoTA) image-based saliency methods in aiding the 
explainability of DL models for medical image analysis tasks? By investigating this ques-
tion, we aim to contribute to the broader effort of enhancing the trustworthiness, trans-
parency, and reliability of DL applications in healthcare.

To this end, we leverage the proposed framework to systematically analyze model pre-
dictions on brain tumor MRI  [33] and COVID-19 chest X-ray  [34] datasets. Resulting 
attribution maps highlight the salient features within the input images that most signifi-
cantly influence the model’s predictions. By evaluating these techniques both qualita-
tively and quantitatively across different SoTA DL architectures and the aforementioned 
medical imaging modalities, we aim to assess their effectiveness in promoting explain-
ability. Our assessment is focused on several key aspects:

•	 Clarity of Insights: Do these saliency methods provide clear non-spurious and 
explainable insights into the relationship between medical image features and model 
predictions? We achieve this assessment by comparing the highlighted features in the 
attribution maps with the known anatomical structures and disease signatures rel-
evant to the specific medical imaging task (e.g., brain tumor location in MRI).
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•	 Biomarker Identification: Can these techniques aid in identifying potential biomarkers 
for disease detection or classification? We investigate whether the saliency methods 
consistently highlight specific image features that correlate with known or emerging dis-
ease biomarkers. This analysis can provide valuable insights into potential new avenues 
for clinical research.

•	 Model Bias Detection: Do saliency methods help uncover potential biases within the DL 
used for medical image analysis? We explore whether the saliency maps reveal a consist-
ent focus on irrelevant features or artifacts that might not be clinically meaningful. This 
analysis can help identify potential biases in the training data or model architecture that 
may require mitigation strategies.

•	 Quantitative Effectiveness: How quantitatively effective are these methods in captur-
ing the relationship between image features and model predictions? We explore this by 
employing PICs such as AICs and SICs. These metrics assess the correlation between 
the saliency map intensity and the model’s accuracy or class probabilities.

Contributions

We proposed a comprehensive framework to evaluate SoTA image-based saliency methods 
applied to Deep Convolutional Neural Networks (CNNs) for medical image classification 
tasks. Our study included MRI and X-ray modalities, focusing on tasks such as brain tumor 
classification and COVID-19 detection within these respective imaging techniques. For a 
novel quantitative evaluation, beyond the visual inspection of saliency maps, we used AICs 
and SICs to measure the effectiveness of the saliency methods. AICs measure the relation-
ship between the model’s predicted accuracy and the intensity of the saliency map. A strong 
correlation between high-intensity areas on the saliency map and high model accuracy 
indicates that the method effectively emphasizes relevant image features. Meanwhile, SICs 
examine the link between the saliency map and the model’s class probabilities (softmax out-
puts). An effective saliency method should highlight areas that guide the model toward the 
correct classification, corresponding to the disease’s localized region in the image.

To our knowledge, this study is the first empirical investigation that uses AICs and SICs 
to assess saliency methods in medical image analysis using DL. This offers a solid and 
objective framework for determining the efficacy of saliency methods in elucidating the 
decision-making mechanisms of DL models for classification and detection tasks in medi-
cal imaging.

Paper outline

The paper is organized as follows. Materials and methods section describes the materials 
and methods employed in this paper. Results section presents experimental results on two 
datasets. Conclusion section concludes and proposes future directions.

Materials and methods
This section introduces the deep CNN models used for conducting experiments. We 
also detail the training process for these models and present our proposed framework, 
which provides an in-depth explanation of image-based saliency methods and their 
direct applications to DL-based models in medical image analysis.
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Datasets

We use two medical image data modalities to test the attribution framework. The choice 
of the two modalities depends on the availability of data. Other types of modalities are 
also applicable to the attribution framework. We leave this for future work.

The brain tumors MRI dataset [33] is used. MRI data typically comprises a 3D tensor. 
However, the dataset provided in [33] is transformed from 3D tensors into 2D slices. 
Specifically, it includes contrast-enhanced MRI (CE-MRI) T1-weighted images, amount-
ing to 3064 slices obtained from 233 patients. It includes 708 Meningiomas, 1426 Glio-
mas, and 930 Pituitary tumors. In each slice, the tumor boundary is manually delineated 
and verified by radiologists. We have plotted 16 random samples from the three classes 
with tumor borders depicted in red as shown in Fig. 1. These 2D slices of T1-weighted 
images train standard deep CNNs for a 3-class classification task into Glioma, Men-
ingioma, and Pituitary tumors. The input to each model is a R225×225×1 tensor that is 
a resized version of the original R512×512 image slices primarily due to computational 
concerns. Unlike the brain cancer MRI dataset which comes with segmentation masks 
from experts in the field, the COVID-19 X-ray dataset  [34] used in this work has no 
ground truth segmentation masks. This was chosen as an edge-case analysis because a 
vast majority of datasets do not have segmentation masks. This dataset was curated from 

Fig. 1  MRI Scans of Various Brain Tumors with Annotated Tumor Regions. This figure shows MRI images of 
different brain tumor types, with the tumor region boundaries highlighted in red. The tumor types include 
pituitary tumors, gliomas, and meningiomas. Each image presents a different view (axial, sagittal, or coronal) 
of the brain, illustrating the diversity in tumor appearance and location



Page 6 of 33Brima and Atemkeng ﻿BioData Mining           (2024) 17:18 

multiple international COVID-19 X-ray testing facilities during several periods. The 
dataset is made up of an unbalanced percentage of the four classes in which we have 48.2 
% normal X-ray images, 28.4 % cases with lung opacity, 17.1 % of COVID-19 patients 
and 6.4% of patients with viral pneumonia of the 19,820 total images in the dataset. This 
unbalanced nature of the dataset comes with its classification challenges, which has 
prompted several researchers to implement DL methods to classify the dataset. Out of 
the four classes, for consistency with the other datasets used in this work, we choose to 
classify three classes (i.e., Normal, Lung Opacity, and COVID-19). For an in-depth dis-
cussion of works that deal with this dataset, we refer to [35]. Figure 2 shows 16 selected 
random samples. Table 1 summarizes those three datasets.

Deep learning architectures

We use 9 standard CNN architectures: Visual Geometric Group (VGG16 and 
VGG19 [7]), Deep Residual Network (ResNet50, ResNet50V2) [4], Densely Connected 
Convolutional Networks (DenseNet)  [36], DL with Depthwise Separable Convolutions 
(Xception)  [5], Going deeper with convolutions (Inception)  [37], a hybrid deep Incep-
tion and ResNet and EfficientNet: Rethinking model scaling for convolutional neu-
ral networks  [38] for classifying COVID-19 X-ray images and brain tumors from the 
T1-weighted MRI slices. The choice of these deep models is explained by the fact that 
they are modern techniques that are widely used in solving vision tasks and by extension 
medical image feature extraction for prediction.

Image‑based saliency methods and proposed framework

To facilitate the explainability of model inference mechanisms, which is crucial for 
building trust in clinical applications of DL-based CAD systems, we have investigated 
a variety of saliency methods. These saliency methods are integrated into the proposed 
framework, depicted in Fig. 3. According to [39], effective attribution methods must sat-
isfy the fundamental axioms of Sensitivity and Implementation Invariance. All selected 
saliency methods in this study adhere to these axioms.

The saliency methods evaluated include both gradient-based and gradient-free tech-
niques. Adaptive path-based integrated gradients (APMs), which are gradient-based, are 
useful in reducing noise in attribution maps, which is critical for medical imaging diag-
nostics. Gradient-free techniques do not rely on model gradients, making them suitable 
for non-differentiable models or scenarios where gradients are noisy. Class Activation 
Mapping (CAM) and its derivatives are effective in highlighting high-level activations 

Table 1  The 2 datasets comprising different modalities used to carry out experiments in this study

Source Classes Number of 
samples

Total Modality Segmented

Brain Tumor dataset [33] Meningioma 708 3064 MRI ✓
Glioma 1,426

Pituitary tumor 930

COVID-19 database [34] COVID-19 3,616 19,820 X-ray ✗
Normal 10,192

Lung Opacity 6,012
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for visual localization, providing clear insights into decision-making processes. Each 
method’s distinct characteristics justify their inclusion and comparison in this study, 
aimed at enhancing diagnostic and patient outcomes in medical imaging.

The specific saliency methods employed in this study include several prominent tech-
niques. Vanilla Gradient  [40] computes the gradient of the output with respect to the 
input image, highlighting the most influential pixels for the target class prediction. Inte-
grated Gradients (IG)[39], which are gradient-based, attribute the model’s prediction 
to its input features by integrating the gradients along the path from a baseline to the 
input image. SmoothGrad IG  [41] enhances IG by averaging the gradients of multiple 
noisy copies of the input image, thus reducing visual noise in the saliency maps. Guided 
Integrated Gradient (GIG)  [42] refines IG further by guiding the gradients to produce 
less noisy and more interpretable saliency maps. eXplanation with Ranked Area Inte-
grals (XRAI)  [43] generates region-based attributions by ranking areas based on their 
contribution to the prediction, providing a more holistic view of important regions. 
GradCAM [21] uses the gradients of the target class flowing into the final convolutional 
layer to produce a coarse localization map of important regions in the image. Grad-
CAM++ [44] improves upon GradCAM by providing better localization by considering 
the importance of each neuron in the last convolutional layer. ScoreCAM [45], unlike 

Fig. 2  Sample chest X-ray images from the dataset used in this study, labeled with their respective 
conditions. The conditions include Normal, Lung opacity, and Covid. The dataset was curated from multiple 
international COVID-19 X-ray testing centers during several periods. The diversity in conditions showcases the 
varying features that the models need to identify for accurate classification
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gradient-based methods, uses the model’s confidence scores to weigh the importance of 
each activation map, potentially leading to more accurate and less noisy explanations.

These methods are integrated into the proposed framework to analyze the attribu-
tion of salient features in medical images. As shown in Fig. 3, a dataset of m samples is 
input into a standard CNN classification model. The model, represented as h(·) , learns 
the non-linear mapping of features to output labels. The trained model is then utilized 
together with an attribution operator Ah , which could be any of the saliency methods, 
to attribute salient features x̂ of the input image. This operator Ah is versatile and can be 
applied to any problem where explainability is essential for building trust in the model’s 
inference mechanism.

Quantitative and empirical assessment of saliency methods

In this work, we adapted and applied empirical methods from Kapishnikov et  al. 
(2021)  [42] for evaluating saliency frameworks in the field of medical image analysis, 
making slight adjustments to the image entropy calculation. Our adaptation maintained 
the core approach of using saliency methods to attribute importance to regions within 
medical images while tailoring them to meet the specific demands of medical imaging.

Our method for estimating image entropy involves computing the Shannon entropy of 
the image histogram. We begin by deriving the histogram of the original image with 256 

Fig. 3  An illustration of model development and explainability pipeline for a path-based saliency method. A 
dataset of m samples say T1-weighted contrast-enhanced image slices, for example, is the input to a standard 
CNN classification model depicted in the figure as h(·) that learns the non-linear mapping of the features 
to the output labels. h(·) is utilized with an attribution operator Ah to attribute salient features x̂ of the input 
image. Ah is an operator that can be used with varied different architectures. This proposed framework is 
general and can be applied to any problem instances where explainability is vital
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bins and density normalization, followed by using the entropy computation as shown in 
Equation 1. In contrast, their method estimates image entropy by determining the file 
size of the image after lossless compression and calculating the buffer length as a proxy 
for entropy. While both approaches aim to gauge the information content of an image, 
ours relies on pixel intensity distribution, while theirs assesses file size post-compression.

where, H(X) represents the entropy of the image X, pi is the probability of occurrence of 
each intensity level i in the image histogram, and n is the total number of intensity levels 
(256 in our case).

Our approach provides a direct measure of the information content inherent in the 
pixel intensity distribution, capturing the relative importance of different intensity lev-
els and offering a comprehensive understanding of the image’s complexity. In contrast, 
using file size post-compression as a proxy for entropy may not fully capture the nuances 
of the image’s content. By focusing on pixel intensity distribution, our approach offers a 
more intrinsic and nuanced measure of image information content, particularly crucial 
for tasks such as medical image analysis or pattern recognition.

This evaluation framework entails initiating the process with a completely blurred ver-
sion of the medical image and incrementally reintroducing pixels identified as significant 
by the saliency method. We then measure the resulting image’s entropy and conduct 
classification tasks to correlate the model’s performance, such as accuracy, with the cal-
culated entropy or information level for each medical image, resulting in Performance 
Information Curves (PICs). Thus, two variants of PICs were introduced – Accuracy 
Information Curve (AIC) and Softmax Information Curve (SIC) – to provide a more 
nuanced evaluation of the saliency methods’ effectiveness.

Experimental setup

We conducted all experiments on Nvidia Quadro RTX 8000 hardware, leveraging its 
robust computational capabilities to handle the extensive DL training processes. For the 
implementation, we used the Keras API with the TensorFlow backend, enabling efficient 
and flexible development of the CNNs.

Results
In this section, we present a comprehensive analysis of our experimental findings, struc-
tured around three key questions: (i) How good are these models on standard classi-
fication performance metrics? (ii) How visually explainable are studied image-based 
saliency-based methods? (iii) How empirically comparable are image-based saliency 
methods?

How good are these models on standard classification performance metrics?

We evaluated the performance of the 9 DL model architectures on classification tasks 
using standard metrics such as F1 score and confusion matrices as depicted in Figs. 4 

(1)H(X) = −

n

i=1

pi log2(pi),
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and 5. Appendix 1 shows the optimal hyperparameters for training the DL models. The 
results provide insights into the effectiveness of each model in terms of classification 
accuracy and error distribution.

The performance of various DL models on brain tumor MRI classification is illus-
trated in Fig. 4. Figure 4 (top-panel) The bar plot presents the F1 scores of various 
DL model architectures evaluated on the brain MRI image testset classification task. 
The F1 scores for these models range from 0.76 to 0.95. The InceptionResNetV2 
model achieves the highest F1 score of 0.95, indicating superior performance in 
accurately classifying brain tumors. EfficientNetB0, on the other hand, scores the 
lowest with an F1 score of 0.76, showing a relatively lower performance compared 
to the other models. Figure  4 (bottom-panel) shows the confusion matrix for the 
top-performing model, InceptionResNetV2, which displays the number of correctly 
and incorrectly classified cases for different types of brain tumors. The matrix shows 
that out of the 72 cases of Meningioma, 69 cases are correctly predicted, 1 case is 
misclassified as Glioma, and 2 cases are misclassified as Pituitary tumor. Out of the 
143 cases of Glioma, 133 cases are correctly predicted, 10 cases are misclassified as 
Meningioma, and no case is misclassified as a Pituitary tumor. Out of the 92 Pitui-
tary tumor cases, 91 cases are correctly predicted, 1 case is misclassified as Glioma, 
and no cases misclassified as Meningioma. This detailed breakdown demonstrates 
the model’s effectiveness in correctly identifying the majority of cases while high-
lighting specific areas where misclassifications occur, particularly in distinguishing 
between Meningioma and Glioma.

Figure 5 shows the performance comparison of different model architectures for 
COVID-19 X-ray image classification. The models were evaluated based on their 
ability to classify images into Normal, Lung Opacity, and COVID-19 categories. 
Figure 5 (top-panel) shows the F1 scores of various DL model architectures evalu-
ated for COVID-19 classification. The F1 scores range from 0.87 to 0.89. The models 
perform consistently well, with minimal variation in F1 scores. Figure  5 (bottom-
panel) shows the confusion matrix for the Xception model and provides a detailed 
view of its classification performance for chest X-ray images. The matrix shows 
that out of the 208 Lung opacity cases, 247 cases are correctly predicted, 1 case is 
misclassified as COVID-19, and 60 cases are misclassified as Normal. Out of the 19 
COVID-19 cases, 7 cases are correctly predicted, 5 cases are misclassified as Lung 
opacity, and 7 cases are misclassified as Normal. Out of the 651 Normal cases, 621 
cases are correctly predicted, no case is misclassified as COVID-19, and 30 cases are 
misclassified as Lung opacity. This confusion matrix highlights the Xception model’s 
strengths and weaknesses in COVID-19 classification. While it correctly identifies 
a large number of cases, there are notable misclassifications, particularly with Lung 
opacity being misclassified as Normal in 60 instances.

The results from the F1 scores and confusion matrices demonstrate the effectiveness 
of various DL architectures in medical image classification tasks. InceptionResNetV2 
consistently outperforms other models in brain tumor classification, achieving 
the highest F1 score and demonstrating excellent accuracy. The detailed confusion 
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matrix for InceptionResNetV2 reveals minimal misclassifications, underscoring its 
reliability. The performance of models on the COVID-19 X-ray dataset shows high 
F1 scores across different architectures, with models like Xception also performing 

Fig. 4  The F1 scores (top-panel) for each model are compared to assess their accuracy and robustness in 
classifying brain tumors into three categories: Meningioma, Glioma, and Pituitary tumor. The bottom-panel 
shows the confusion matrix for the top-performing model, InceptionResNetV2
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Fig. 5  The F1 scores (top panel) for each model are compared to assess their accuracy and robustness in 
classifying chest X-ray images into three categories: Normal, Lung Opacity, and COVID-19. The bottom panel 
shows the confusion matrix for the top-performing model, Xception
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exceptionally well. The confusion matrix for Xception indicates strong classification 
capabilities, although some misclassifications are present, particularly in distinguish-
ing between Lung opacity and Normal. These results underscore the importance of 
selecting appropriate model architectures for specific medical image classification 
tasks. The high F1 scores and detailed confusion matrices provide valuable insights 
into each model’s strengths and areas for improvement. However, the focus of this 
study is not to beat SoTA performance but to provide a basis for investigating the 
chosen saliency methods. Therefore, the top-performing models, InceptionResNetV2 
for brain tumor classification and Xception for COVID-19 classification will serve 
as the basis for further analysis Sections in  How visually explainable are image-
based saliency methods? and How empirically comparable are image-based saliency 
methods? sections.

How visually explainable are image‑based saliency methods?

Figure  6 presents the visualization of feature attributions for brain tumor classifica-
tion using our proposed framework and various explainability methods applied to the 
Inception-ResNetV2 model. The attribution maps provide insights into the regions of 
the input images that significantly influence the model’s predictions for three types of 
brain tumors: Glioma, Meningioma, and Pituitary Tumor. The top row represents the 
input image with ground-truth tumor boundaries, and the other rows are attribution 
maps produced by each method.

From visual inspection, Fast XRAI 30% and ScoreCAM outperform other methods. 
For Glioma, ScoreCAM effectively focuses on the tumor regions, providing clear and 
accurate attributions. For Meningioma, ScoreCAM highlights some tumor regions, 
although the heatmap shows three regions instead of the actual two. Other methods, 
such as Vanilla Gradient and SmoothGrad, produce coarse and noisy saliency maps. 
GradCAM and GradCAM++ generate more focused heatmaps but are still less precise 
than ScoreCAM. Path-integration methods, like Integrated Gradients, are more suscep-
tible to highlighting image edges rather than the tumor regions, reducing their clinical 
explainability.

Figure  7 illustrates our proposed framework and application of various explain-
ability methods on chest X-ray images for differentiating between Normal, Lung 
Opacity, and COVID-19 cases using the Xception model. The figure includes input 
X-ray images in the first row, followed by the attribution maps generated by dif-
ferent explainability methods. GradCAM, GradCAM++, and ScoreCAM tend to 

Fig. 6  Visualization of feature attributions for brain tumor classification using various explainability methods 
for the best-performing model, Inception-ResNetV2. This figure displays the feature attribution maps 
generated by different explainability techniques for the model on three types of brain tumors: Glioma, 
Meningioma, and Pituitary Tumor. The columns represent the input image with ground-truth tumor 
boundaries followed by the attribution maps produced by each method. From visual inspection, Fast XRAI 
30% and ScoreCAM outperform other methods. For Glioma, ScoreCAM effectively focuses on the tumor 
regions. For Meningioma, ScoreCAM highlights some tumor regions, though the heatmap shows three 
regions instead of the actual two. Most other methods, except GradCAM++ for Glioma, generate coarse 
and noisy saliency maps, particularly Vanilla Gradient and SmoothGrad. Path-integration methods tend to be 
more susceptible to image edges compared to GradCAM, GradCAM++, and ScoreCAM methods

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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produce more focused and clinically explainable heatmaps, accurately highlighting 
relevant regions such as lung abnormalities. Other methods, like Vanilla Gradient 
and SmoothGrad, show more dispersed activations, making it challenging to inter-
pret the model’s focus. XRAI and Fast XRAI provide region-based explanations that 
are intermediate, balancing between detailed local features and broader regions of 
interest.

The comparison of these saliency methods on the two datasets reveals the strengths 
and limitations of each technique in providing visual explanations. The presence of 
ground-truth biomarkers in the brain tumor dataset allows for a more nuanced assess-
ment of the methods’ accuracy, whereas the COVID-19 dataset lacks such markers, rely-
ing on visual plausibility for evaluation. Overall, the findings suggest that methods like 
ScoreCAM, XRAI, GradCAM, and GradCAM++ offer more precise and clinically use-
ful explanations, which are crucial for enhancing the transparency and trustworthiness 
of DL models in medical applications.

How empirically comparable are image‑based saliency methods?

While visual explanations provide valuable qualitative insights, it is crucial to quanti-
tatively evaluate the effectiveness of different saliency methods. In this section, we 
empirically compare these methods using PICs, specifically AICs and SICs. These met-
rics allow us to objectively assess the correlation between the saliency map intensity and 
the model’s predictions, providing a comprehensive understanding of each method’s 
performance.

In Fig. 8, we present the aggregated AICs for over 1200 data points for various saliency 
methods applied to brain tumor MRI classification. The AUC values indicate the effec-
tiveness of each method in retaining critical image information necessary for accurate 
classification. We observe that ScoreCAM achieves the highest AUC of 0.084, followed 
by XRAI at 0.033. This suggests that these methods are more effective in highlight-
ing relevant regions for the model’s predictions. In contrast, methods like Guided IG, 
Vanilla IG, SmoothGrad IG, GradCAM, and GradCAM++ show minimal to zero AUC 
values, indicating limited effectiveness. These empirical results align with our visual 
inspection findings, where ScoreCAM and XRAI also provided clearer and more accu-
rate attributions.

Figure 9 illustrates the aggregated SICs for over 1300 samples of a brain tumor MRI 
dataset. The SIC evaluates how well the saliency methods identify regions that con-
tribute to the model’s class probabilities. Surprisingly, the Random saliency mask 

(See figure on next page.)
Fig. 7  Comparison of various explainability methods applied to chest X-ray images for distinguishing 
between Normal, Lung Opacity, and COVID-19 cases. The figure includes the input X-ray images in the 
first column, followed by visualization results from different explainability methods across the subsequent 
columns. For each condition (Normal, Lung Opacity, and COVID-19), the visualization techniques highlight 
different regions of the X-ray images that contribute to the model’s decision-making process. GradCAM, 
GradCAM++, and ScoreCAM methods tend to produce more focused and clinically interpretable 
heatmaps, while other methods show more dispersed activations. XRAI and Fast XRAI provide region-based 
explanations that are intermediate. Unlike the brain tumor dataset, this dataset does not have ground-truth 
biomarkers
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Fig. 7  (See legend on previous page.)
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shows the highest AUC of 0.705, followed by ScoreCAM (0.579), XRAI (0.574), and 
Guided IG (0.536). This anomaly indicates that the Random saliency mask may retain 
some critical regions by chance, emphasizing the need for careful interpretation of 
this metric. While Guided IG and ScoreCAM perform well, their AUC values suggest 
that these methods provide moderately effective attributions. These findings partly 
contrast with our visual evaluations and AICs, where ScoreCAM was a top per-
former, highlighting the importance of combining visual and empirical assessments 
for a holistic understanding.

In Fig. 10, we evaluate the performance of various saliency methods on chest X-ray 
classification tasks using the Aggregated AIC. XRAI shows a noticeable deviation 
from the baseline with an AUC of 0.055, indicating some effectiveness in identifying 
relevant regions. Other methods, including ScoreCAM, Guided IG, and Vanilla IG, 
closely follow the random with AUC values of 0.000, suggesting limited effective-
ness in this context. This observation is consistent with our visual inspection, where 
methods like ScoreCAM and XRAI provided intermediate-level explanations com-
pared to others.

Fig. 8  Aggregated AICs for evaluating the effectiveness of different saliency methods in attributing 
importance to regions of Brain Tumor MRI images for classification. The plot shows the prediction score 
as a function of the fraction of the image retained after reintroducing pixels identified as important by 
each saliency method. The area under the curve (AUC) values are provided for each method, indicating 
their performance in retaining critical image information necessary for accurate classification. ScoreCAM 
demonstrates the highest AUC of 0.084, suggesting it retains the most relevant image regions effectively, 
followed by XRAI with an AUC of 0.033. Other methods, including Guided IG, Vanilla IG, SmoothGrad IG, 
GradCAM, and GradCAM++, show minimal to zero AUC values, indicating limited effectiveness in this 
evaluation



Page 18 of 33Brima and Atemkeng ﻿BioData Mining           (2024) 17:18 

Figure 11 shows the aggregated SICs for chest X-ray classification. Guided IG achieves 
the highest AUC of 0.735, outperforming the random mask (0.683), Vanilla IG (0.711), 
and SmoothGrad IG (0.639). This suggests that Guided IG is particularly effective in 
highlighting regions that influence the model’s class probabilities. The performance of 
XRAI, GradCAM, GradCAM++, and ScoreCAM is moderate, with lower AUC values 
(0.610, 0.594, 0.493, and 0.491 respectively), indicating less effective saliency attribution 
compared to Guided IG. These empirical results, similar to those for the brain tumor 
dataset, do not align with our visual analysis and AICs, where methods like XRAI, Grad-
CAM, GradCAM++, and ScoreCAM provided more focused and explainable heat-
maps. Thus, this metric should be cautiously used for evaluating saliency methods in 
given datasets.

In summary, the empirical evaluation using AICs closely aligns with the visual results. 
However, SICs highlight the variability in performance among different saliency meth-
ods, with instances of a random mask outperforming established saliency methods. 
While our visual inspections revealed clear strengths for methods like ScoreCAM and 

Fig. 9  Aggregated SICs for evaluating the effectiveness of different saliency methods in attributing 
importance to regions of Brain Tumor MRI images. The plot shows the prediction score as a function of 
the fraction of the image retained after reintroducing pixels identified as significant by each saliency 
method. The AUC values are provided for each method, indicating their performance in retaining critical 
image information necessary for accurate classification. Random saliency mask, surprisingly, exhibits the 
highest AUC of 0.705, followed by ScoreCAM (AUC=0.579), XRAI (AUC=0.574), and Guided IG (AUC=0.536). 
GradCAM, GradCAM++, Vanilla IG, and SmoothGrad IG show lower AUC values, indicating less effectiveness. 
This analysis highlights the variability in performance among different saliency methods when applied to 
medical image analysis, with the Random saliency mask unexpectedly showing the highest effectiveness 
under this specific evaluation criterion, which indicates the instability of this metric
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GradCAM++, the empirical metrics provide a nuanced understanding of each method’s 
effectiveness in retaining and highlighting relevant image regions. By combining visual 
and empirical analyses, we ensure a robust evaluation of saliency methods, enhancing 
their applicability in clinical settings.

Further analysis results are included in Appendix 2. We present a saliency analysis of 
the second and third-best models for each dataset. Additionally, AICs and SICs based on 
the entropy method from Kapishnikov et al. (2021) are provided in Appendix 2 “Buffer-
size-based AICs and SICs evaluations” section. We also explore varied blurred versions 
of the top-performing saliency methods and their scores in Appendix 2 “Computed sali-
ency scores for top performing models for each image-based saliency method” section.

Conclusion
In this study, we proposed a saliency-based attribution framework and assessed vari-
ous state-of-the-art saliency methods for enhancing the explainability of DL models 
in medical image analysis, focusing on brain tumor classification using MRI scans and 

Fig. 10  Aggregated AICs evaluating the performance of various saliency attribution methods on the chest 
X-ray image classification problem. The x-axis represents the fraction of the original image retained based 
on the saliency maps generated by each method. The y-axis shows the corresponding prediction score or 
accuracy. The curve for XRAI (AUC=0.055) deviates slightly from the baselines, indicating a minimal ability 
to identify relevant image regions for the classification task. Other methods, including ScoreCAM, Guided IG, 
GradCAM, and Vanilla IG, show negligible scores with an AUC of 0.000. This plot highlights the limited efficacy 
of these saliency techniques in attributing importance to salient regions within medical images for model 
explainability in this specific evaluation
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COVID-19 detection using chest X-ray images. Both qualitative and quantitative evalua-
tions provided insights into these methods’ utility in clinical settings.

Qualitative assessments showed that ScoreCAM, XRAI, GradCAM, and Grad-
CAM++ consistently produced focused and clinically interpretable attribution 
maps. These methods highlighted relevant regions that aligned with known ana-
tomical structures and disease markers, thereby enhancing model transparency and 
trustworthiness.

This study is the first to use AICs and SICs to quantitatively evaluate these sali-
ency methods for medical image analysis. The AICs confirmed that ScoreCAM and 
XRAI effectively retained critical image information, while SICs revealed variability, 
with random saliency masks sometimes outperforming established methods. This 
underscores the need for combining qualitative and quantitative metrics for a com-
prehensive evaluation. Our results highlight the importance of selecting appropriate 
saliency methods for specific tasks. While visual explanations are valuable, empirical 

Fig. 11  Aggregated SICs comparing the performance of various saliency methods on the chest X-ray image 
classification task. The x-axis represents the fraction of the image retained based on the saliency maps, 
and the y-axis denotes the corresponding prediction score. The guided integrated gradients (Guided IG) 
method achieves the highest AUC of 0.735, outperforming the random mask (AUC=0.683), vanilla integrated 
gradients (Vanilla IG, AUC=0.711), SmoothGrad integrated gradients (SmoothGrad IG, AUC=0.639), and other 
saliency methods like XRAI (AUC=0.610), GradCAM (AUC=0.594), GradCAM++ (AUC=0.493), and ScoreCAM 
(AUC=0.491)
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metrics offer a nuanced understanding of each method’s effectiveness. Combining 
these approaches ensures robust assessments, fostering greater trust and adoption of 
DL models in clinical settings.

Future research should refine empirical metrics for stability and reliability across 
different models and datasets, include more diverse imaging modalities, and focus on 
enhancing model explainability to support clinical decision-making.

Appendix 1
Models’ configuration

Table 2 shows the optimal hyperparameters for training the DL models discussed in this 
paper.

Appendix 2
Exaplanability results

Table 2  Training hyperparameters

Hyperparameter Setting

Learning rate 1e-3

Batch size 64

Number of epochs 20 for Brain Tumor MRI and 40 for 
COVID-19 datasets

Training set 0.8

Validation set 0.1

Test set 0.1

Input shape R
225×225×1

Momentum 9.39e-1

Decay 3e-4

Optimizer Stochastic Gradient Descent with 
Momentum (SDGM)
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Visual explainability for top 2nd and 3rd models for each dataset

Fig. 12  Comparative assessment of saliency techniques applied to brain MRI data using the DenseNet121 
model, the second-best performing model on this dataset. Among these, ScoreCAM and GradCAM++ appear to 
provide the more focused highlighting of the tumor regions across all types of tumors, suggesting that they are 
more effective in localizing and interpreting the model’s important feature areas for accurate prediction
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Fig. 13  The figure presents a comparison of various saliency techniques applied to brain MRI data using a 
ResNetV2 model. We noticed that Fast XRAI at 30% feature masking was able to highlight relevant tumor regions 
across the three disease classes. Other methods produced more coarse-grained saliency masks as depicted in 
the plot
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Fig. 14  This figure illustrates a comparative evaluation of various techniques applied to chest X-ray images 
using an InceptionResNetV2 model, which is identified as the second-best performing model on this chest X-ray 
dataset. Here, we noticed that most methods other than XRAI, Fast XRAI 30%, and GradCAM did not produce 
clinically meaningful saliency masks contrary to the models’ prediction performance. It is, however, hard to 
qualitatively evaluate these methods since the dataset does not have a ground-truth segmentation mask
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Fig. 15  Visualization of feature importance for different chest X-ray classifications using a VGG16 model. Rows 
correspond to different diagnostic categories: Lung Opacity, Normal, and COVID-19. Columns represent various 
explainability methods. We noticed that XRAI Full, Fast XRAI 30%, GradCAM++, and ScoreCAM highlighted more 
meaningful features compared to other methods. It is also noticed that Fast XRAI has consistent salient features 
across InceptionResNetV2 and VGG16 models
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Computed saliency scores for top performing models for each image‑based saliency method

Fig. 16  Visualization of GIG SIC scores at varying blurring thresholds for the best-performing model, 
Inception-ResNetV2, on the Brain Tumor dataset. Each panel displays the GIG Blurred image for a specific 
threshold, with the corresponding score indicating the model’s confidence level. The thresholds range from 0 
to 1.0, showcasing the progression of identified significant regions as the threshold increases. Higher thresholds 
emphasize more critical features, aligning with the model’s high-confidence predictions, thus offering insights 
into the explainability and robustness of the Inception-ResNetV2 model in detecting and analyzing brain tumor 
regions

Fig. 17  Visualization of GradCAM SIC scores at varying thresholds for the same Inception-ResNetV2, on the Brain 
Tumor dataset. Unlike GIG, scores only converge at higher thresholds, row three of this plot
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Fig. 18  Visualization of GradCAM++ SIC scores at varying thresholds for the best-performing model, 
Inception-ResNetV2, on the Brain Tumor dataset. Like GradCAM, we noticed a similar trend in score convergence. 
However, the score converged at a threshold of 0.5 instead of 0.34 as in GradCAM

Fig. 19  Visualization of XRAI SIC scores at varying thresholds for the best-performing model, Inception-ResNetV2, 
on the Brain Tumor dataset. This method also converges in the last three thresholds as depicted in the figure
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Fig. 20  Visualization of GIG Blurred SIC scores at varying thresholds for the best-performing model, Xception, 
on the Chest X-ray dataset. Unlike the Brain Tumor case, we noticed a different pattern here. The scores remain 
constant at the different thresholds which is unexpected and counter-intuitive

Fig. 21  Visualization of GradCAM scores at varying thresholds for the best-performing model, Xception, on the 
Chest X-ray dataset. Like the previous result, we noticed a similar pattern here as the scores remain invariant 
across varied thresholds of blurring. This is the case for GradCAM++ and XRAI full
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Buffer‑size‑based AICs and SICs evaluations

Fig. 22  Aggregated AICs comparing the performance of various saliency methods on the Brain Tumor MRI 
image classification task. Vanilla IG achieves the highest AUC of 0.871, followed closely by SmoothGrad IG (0.866) 
and Guided IG (0.835), suggesting these methods are particularly effective in retaining relevant image regions. 
ScoreCAM shows a respectable AUC of 0.706, indicating good performance as well. GradCAM and GradCAM++ 
display moderate effectiveness with AUC values of 0.595 and 0.560, respectively. XRAI has an AUC of 0.511, and 
the Random saliency mask shows an AUC of 0.493, suggesting that some important regions might be retained 
by chance. This comparison highlights the variability of the entropy estimation to compute the saliency metric 
scores across datasets. This is primarily because the AUCs are not in agreement with the visual saliency results nor 
the Shannon entropy-based approach
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Fig. 23  Aggregated SICs comparing the performance of various saliency methods on the Brain Tumor MRI image 
classification task. Vanilla IG achieves the highest AUC of 0.893, closely followed by SmoothGrad IG (0.884) and Guided 
IG (0.865), suggesting these methods are particularly effective in highlighting regions that influence the model’s 
class probabilities. ScoreCAM also performs well with an AUC of 0.768. GradCAM++ and GradCAM show moderate 
performance with AUC values of 0.634 and 0.620, respectively. XRAI shows an AUC of 0.530, and the Random saliency 
mask exhibits an AUC of 0.573, indicating some critical regions might be retained by chance. This comparison 
highlights the variability in this evaluation metric irrespective of the underlying approach to estimating image entropy

Fig. 24  Aggregated AICs evaluating the performance of various saliency attribution methods on the Chest X-ray 
image classification task. ScoreCAM demonstrates the highest AUC of 0.077, suggesting it retains the most 
relevant image regions effectively. This is followed by XRAI with an AUC of 0.071, Vanilla IG with an AUC of 0.053, 
and Guided IG with an AUC of 0.042. Methods like SmoothGrad IG, GradCAM, and GradCAM++ show minimal to 
zero AUC values, indicating limited effectiveness in this evaluation. The overall trend highlights that some 
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methods, particularly ScoreCAM and XRAI, provide better retention of relevant regions compared to others. This 
result is in line with the Shannon entropy-based approach

Fig. 25  Aggregated SICs comparing the performance of various saliency methods on the Chest X-ray images. 
The overall trend shows that Vanilla IG achieves the highest AUC of 0.972, closely followed by SmoothGrad IG 
(0.970) and Guided IG (0.961). Random saliency exhibits a high AUC of 0.828, suggesting that some important 
regions might be retained by chance. Other methods, including XRAI (0.731), GradCAM (0.694), ScoreCAM (0.692), 
and GradCAM++ (0.660), show moderate performance. This detailed comparison highlights a somewhat inverse 
relation with the visual explainability results
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