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Abstract 

Background: Supervised machine learning models have been widely used to predict 
and get insight into diseases by classifying patients based on personal health records. 
However, a class imbalance is an obstacle that disrupts the training of the models. In 
this study, we aimed to address class imbalance with a conditional normalizing flow 
model, one of the deep‑learning‑based semi‑supervised models for anomaly detec‑
tion. It is the first introduction of the normalizing flow algorithm for tabular biomedical 
data.

Methods: We collected personal health records from South Korean citizens (n = 706), 
featuring genetic data obtained from direct‑to‑customer service (microarray chip), 
medical health check‑ups, and lifestyle log data. Based on the health check‑up data, six 
chronic diseases were labeled (obesity, diabetes, hypertriglyceridemia, dyslipidemia, 
liver dysfunction, and hypertension). After preprocessing, supervised classification 
models and semi‑supervised anomaly detection models, including conditional normal‑
izing flow, were evaluated for the classification of diabetes, which had extreme target 
imbalance (about 2%), based on AUROC and AUPRC. In addition, we evaluated their 
performance under the assumption of insufficient collection for patients with other 
chronic diseases by undersampling disease‑affected samples.

Results: While LightGBM (the best‑performing model among supervised classification 
models) showed AUPRC 0.16 and AUROC 0.82, conditional normalizing flow achieved 
AUPRC 0.34 and AUROC 0.83 during fifty evaluations of the classification of diabetes, 
whose base rate was very low, at 0.02. Moreover, conditional normalizing flow per‑
formed better than the supervised model under a few disease‑affected data numbers 
for the other five chronic diseases – obesity, hypertriglyceridemia, dyslipidemia, liver 
dysfunction, and hypertension. For example, while LightGBM performed AUPRC 0.20 
and AUROC 0.75, conditional normalizing flow showed AUPRC 0.30 and AUROC 0.74 
when predicting obesity, while undersampling disease‑affected samples (positive 
undersampling) lowered the base rate to 0.02.
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Conclusions: Our research suggests the utility of conditional normalizing flow, 
particularly when the available cases are limited, for predicting chronic diseases using 
personal health records. This approach offers an effective solution to deal with sparse 
data and extreme class imbalances commonly encountered in the biomedical context.

Keywords: Personal health record, Class imbalance, Machine learning, Conditional 
normalizing flow

Background
Personal health records (PHRs) are a comprehensive dataset that captures an individ-
ual’s health status, including medical, genetic, and lifestyle data [1]. In a conventional 
setup, the PHR typically encompasses data from hospital records, such as physi-
cian visits, treatment histories, test results, and prescription records [2]. However, the 
scope of the PHR has been expanding to incorporate genetic information like genomic 
sequences and life-log data [3, 4], which may include elements such as daily diet records, 
exercise routines, and sleep patterns. While most medical data originate from hospital 
environments, a significant portion of PHR data is now recorded outside hospitals or 
organizations, especially life-log data [5]. This data predominantly comes from healthy 
individuals or the general population rather than patients in a healthcare setting [6, 7].

Preventive medicine primarily focuses on health maintenance and disease preven-
tion, especially for chronic conditions, often resulting from a complex interplay between 
genetic predispositions and lifestyle factors [8]. The robust and diversified data from 
PHRs allow for a more in-depth analysis of these factors and their interactions, offering 
unprecedented opportunities for early detection, risk factor identification, and disease 
prevention.

Detection of phenotypes or disease-specific patterns within PHRs is widely carried 
out using machine learning methods [1], especially classification models such as random 
forest [9], support vector machine [10], and light gradient boosting machine (LGBM) 
[11], in terms of disease prediction, diagnosis, and risk factor detection. In particular, 
disease development is often caused by a complex interplay of genetic and non-genetic 
factors such as lifestyle. Machine learning has many advantages in dealing with this 
complex system.

Class imbalance is an issue when the total number of samples in one class is far less 
than the respective totals in other classes [12]. This discrepancy can hinder the training 
of supervised machine learning models, which typically function under the assumption 
of evenly distributed classes [13]. It is especially problematic in predicting diseases since 
the number of people with the disease is often much smaller than those without it. Espe-
cially in the general population, the proportion of people with a particular disease will 
likely be much lower than in a hospital setting since most individuals are healthy. This 
creates an extreme class imbalance with a significantly larger ‘disease-unaffected’ class 
and a relatively more minor ‘disease-affected’ class. Such an imbalance presents a signifi-
cant challenge for traditional machine learning approaches in predicting diseases from 
PHRs [14].

Despite this being a well-known significant problem, the extreme imbalance in per-
sonal health records of general diseases remains unsolved [8]. To address this issue, we 
introduced a semi-supervised anomaly detection model that utilizes only the majority 
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class (i.e., non-disease) as the training set and then predicts whether a test data point is 
an anomaly (i.e., a patient).

Semi-supervised anomaly detection models based on normalizing flow have recently 
garnered attention due to their success in managing industrial anomalies [15]. Despite 
their promising potential, applications of normalizing flow for anomaly detection in 
biology and translational research remain unexplored. Our work aims to bridge this gap 
and develop more effective models for biomedical research, especially within the context 
of class imbalances typical of general population PHRs.

The goal of a normalizing flow model is to represent the vector x sampled from a given 
probability distribution as T (u) where u is sampled from a base probability distribution, 
which is usually a multivariate normal distribution. In particular, let T be a diffeomor-
phism, which means it has an inverse map T−1 , and both T and T−1 are differentiable. 
Through invertible T, the space of the base distribution is skewed to create the given 
distribution. Since the ratio for hypervolume expansion is expressed as the absolute 
Jacobian determinant locally, the magnification in probability through T is expressed as 
an inverse of the absolute Jacobian determinant of T [16]. For efficient calculation, T is 
represented by the layer composition, which is designed so that the inverse mapping and 
Jacobian determinant are easily calculated.

Normalizing flow models are widely used for image generation and density estimation 
[17] because sampling from the multivariate normal distribution is identical to the gen-
eration of images through T. They have also applied for semi-supervised anomaly detec-
tion tasks, as with DifferNet [18]. In this approach, the model is exclusively trained with 
only “normal” data and maps these data points onto a standard normal distribution. The 
test data then contains both normal and anomaly data. Outputs from normal data are 
expected to have a high likelihood of fitting the normal distribution. Conversely, outputs 
derived from anomaly data are expected to show lower likelihoods to the normal dis-
tribution. This distinction aids in effectively discerning between normal and anomalous 
data points.

The conditional normalizing flow (CNF) has been introduced to deal with the condi-
tional distribution. The CNF architecture ensures that each layer is transformed accord-
ing to the conditional vector, which in turn allows for the accurate representation of data 
variations based on distinct conditions [19]. One of the notable applications of CNF is 
CFLOW-AD, where the CNF utilized conditional vectors derived from the two-dimen-
sional positional encoding of industrial images for accurate anomaly localization [15]. 
Such models show the adaptability of CNFs in handling varied datasets.

In this study, we seek to apply a conditional normalizing flow model to resolve the 
extreme class imbalance problems present in PHRs.

Materials and methods
Data collection and incorporation

We recruited data from 706 South Korean citizens aged 19 to 59 years, 315 males and 
391 females, in which there is no specific focus on disease as a random sampling of ordi-
nary individuals was designed. The average age of all participants was 37.8  years old, 
with men averaging 40.4 and women 35.7 years old. Demographic details, namely the 
age and gender distributions, are presented in Table 1.
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Model features were composed of genetic, lifelog, and medical check-up data. Genetic 
data was collected via direct-to-customer  (DTC) service (microarray chip, gen2me 
product from Eone-Diagnomics Genome Center). Polygenic risk scores (PRS) for 
63 traits, such as cholesterol level and risk of conditions like alopecia, were provided 
in the DTC results. Each trait is categorized into five discernible stages. For example, 
the genetic probability of excessive blood glucose concentration was expressed as low, 
somewhat low, medium, somewhat high, and high. Non-genetic data, including medical 
health check-ups and lifestyle log data, were collected through a survey and a wearable 
device (Samsung Galaxy Fit v1, v2). The survey covered aspects of lifestyle such as smok-
ing, drinking, and food intake tendency. Finally, the smart band recorded information, 
including heart rate, number of steps, and exercise for 30 days. The medical check-ups 
provided information such as height, weight, blood glucose level, and blood pressure.

After integrating the various data, the total number of features was 229, comprised of 
63 genetic, 21 medical check-up, and 145 life-log features. Among the life-log features, 
136 variables were derived from surveys and nine from smart band data. A complete list 
of the 229 features is shown in Supplementary Table S1.

Target definition

Figure 1 provides a schematic representation of our overall workflow. We first aimed to 
model machine learning algorithms for predicting six chronic diseases: obesity, diabe-
tes, hypertriglyceridemia, dyslipidemia, liver dysfunction, and hypertension. Participant 
disease status was determined according to biomarkers extracted from their medical 
check-up data. We assigned disease status as a binary class, categorizing them as either 
‘affected’ or ‘unaffected’ for each participant based on the simple categorical thresh-
olds listed in Supplementary Table S2. Biomarkers corresponding to each specific dis-
ease were excluded while fitting machine learning models. Any data points with missing 
values in the target variables were excluded from the analysis to ensure robustness and 
accuracy.

Data preprocessing

Features exhibiting right-skewed distributions, such as AST, ALT, neutral fat, and step 
count per day, underwent log-transformation to better approximate normal distribu-
tions. Because an excessively large number of features compared to the sample size may 
hinder the models’ accuracy and interpretability, we filtered out inconsiderable features 
[20, 21]. Certain features were dropped due to sparseness or lack of clinical relevance. 

Table 1 Age and gender distribution of participants

Age group Total Male Female

19 1 0 1

20–29 172 45 127

30–39 228 98 130

40–49 193 104 89

50–59 112 68 44

Total 706 315 391
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Specifically, features such as house floor material, house room number, and road traffic 
experience were deemed clinically irrelevant to the chronic diseases under investigation.

The data were partitioned into training and test sets at a ratio of 8 to 2, respectively, for 
standardized measurement of generalized model performance [22]. Missing values were 
imputed with an iterative imputer and standardized with a robust scaler [23]. To address 
multicollinearity among correlated features (e.g., smoking duration and daily cigarette 
consumption, various secondary smoking experience features), we applied principal 
component analysis (PCA) to relevant feature subsets.

To prevent data leakage, all preprocessing techniques, including missing value imputa-
tion, scaling, and PCA, were fitted to the training set. The test set was then transformed 
using the parameters learned from the training set. After preprocessing, 51 features 
remained for modeling. The complete list of these 51 features and detailed preprocessing 
steps are provided in Supplementary Table S3.

Supervised machine learning model fitting for classification as a baseline performance

We trained four supervised classification machine learning models in preparation for 
this study, including well-recognized algorithms like support vector machine (SVM), 
light gradient boosting machine (LGBM), random forest, and extreme gradient boosting. 
Class weights were used to calibrate imbalance labels. To optimize the models, hyperpa-
rameters were tuned via a five-fold cross-validation in the training set.

Meanwhile, tree-based algorithms are relatively powerful at capturing irregular pat-
terns, which makes them advantageous for tabular datasets [24], and LGBM is a well-
known model in this matter. Therefore, we adopted LGBM as our baseline model for 
our study. Most of all, LGBM has been designed to be more efficient in terms of 

Fig. 1 Overall research workflow. A Integrated version of four datasets from 706 participants is composed of 
229 features (Supplementary Table S1). The integrated PHR dataset was preprocessed, ending the remaining 
51 features (Supplementary Table S3). B Four classification algorithms – SVM, RF, LGBM, and XGBoost were 
used to predict six chronic diseases (obesity, diabetes, hypertriglyceridemia, dyslipidemia, liver dysfunction, 
and hypertension) occurrence. Extreme class imbalance limited the performance of LGBM, a baseline model, 
in predicting diabetes. C We then trained semi‑supervised anomaly detection models – 1C‑SVM, ISF, GMM, 
and CNF—to solve the performance limitation issue caused by extreme class imbalance. We also tested the 
models in various extreme imbalance cases and compared with the resampling methods commonly used in 
imbalance situations
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computational speed, memory usage, generalized outstanding performance, and effi-
ciency, and it is widely used in various research domains [25].

Machine learning models for semi‑supervised anomaly detection: one class support vector 

machine (1C‑SVM), isolation forest (ISF), and gaussian mixture model (GMM)

We utilized 1C-SVM, ISF, and GMM modeling approaches, training both models exclu-
sively on data from unaffected individuals.

Unlike a typical binary SVM, 1C-SVM creates boundaries with only normal classes: 
that is, it additionally assumes that the origin of the feature space (where the kernel 
function is mapping to) is an anomaly. Thus, a hyperplane separates normal points in the 
feature space from the origin. Ultimately, 1C-SVM aims to find the plane farthest from 
the origin, and adds a relaxed form of constraint into the loss to prevent misjudgment 
[26].

Isolation forest, one of the representative semi-supervised algorithms, constructs iso-
lation trees by random selection of a feature and a split value in subsamples of the data-
set. Anomalies are identified by their shorter paths in the tree, as they are isolated more 
quickly than the densely located normal samples [27].

Gaussian mixture model (GMM), on the other hand, is a well-known algorithm 
designed to approximate any arbitrary distribution as a mixture of multiple gaussian dis-
tributions, represented as:

for wi = 1,wi ≥ 0 [28]. The likelihood f (x|θ) of the test set can be utilized for 
inference.

After subjecting the models to a preprocessing routine similar to that used for prior 
supervised classification models, hyperparameters were ascertained through evaluation 
on a validation set.

Benchmark with state‑of‑the‑art deep learning models: TabNet, FT‑Transformer, and GOAD

In addition to the above mentioned models, we further benchmarked our data with 
three state-of-the-art deep learning models designed explicitly for tabular data: TabNet, 
FT-Transformer, and GOAD.

TabNet [29] is a deep learning architecture that utilizes sequential attention to choose 
which features to reason from at each decision step, enabling interpretability and better 
learning as the network can learn to focus on the most salient features. The model con-
sists of a feature transformer, an attentive transformer, and a classifier. The feature trans-
former processes the raw input features, the attentive transformer employs a sparsemax 
function to select the most relevant features, and the output is aggregated from the pro-
cessed features at each step to make the final prediction.

FT-Transformer [30] is an adaptation of the Transformer architecture [31] for tabu-
lar data. It employs a feature tokenizer to convert the input features into a sequence of 
embeddings, which are then processed by standard transformer layers. The [CLS] token 
embedding from the Transformer output is used for final prediction. The model also 
incorporates normalization techniques and GLU activations to improve optimization 
stability and performance.

f (x|θ ) = �wifi(x), fi(x) ∼ Nm(µi, �i), θ = (Wi, µi, �i)
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GOAD [32] is a deep learning approach for anomaly detection that achieves the state-
of-the-art performance in broad types of data, including tabular datasets. GOAD trains 
a classifier to predict the applied transformation on both normal and transformed data 
points. The approach assumes that the transformed normal samples are likely to fall in 
the corresponding subspace modeled by the network, while anomalies would deviate 
from the learned manifold. The classification probability is used to compute an anomaly 
score.

Conditional normalizing flow model

Training loss

To tackle the extreme class imbalances within our dataset, particularly in the distinction 
between affected and unaffected individuals, we introduced the CNF model.

Given an invertible mapping between a multivariate normal distribution (Z) and a 
more intricate distribution (X), PHRs from unaffected individuals are used to construct 
the maximum likelihood:

where θ and ψ represent the parameters associated with the model and the base dis-
tribution (Z), respectively. Training loss is captured by the negative log-likelihood, as is 
done for general normalizing flow models. This formulation offers a strategic approach 
to address the class imbalance issue [16].

Conditional affine transformation

To account for the variations in PHR distributions influenced by age and gender, we 
incorporated a conditional affine transformation, which takes conditions into account 
sufficiently. Specifically, since age and gender have significant influences on health con-
ditions [33], we set these two features as a conditional vector c ∈ R

2 and thus excluded 
from the input vector x ∈ R

50.
A conditional affine transformation (x|c) �→ u operates as per the following [34]:

  
Here, the function s : R2 → R

48 signifies a neural network architecture, which is 
constructed with a sequence of a linear layer, a GeLU activation function, followed by 
another linear layer. The hyperparameter α is a constant, while Ψ denotes an activation 
function. The symbol ⊙ denotes the Hadamard product, an element-wise multiplication. 
The SPLIT function divides s(c) ∈ R

48 into two distinct vectors, a, b ∈ R
24 . Simply, the 

coefficients of affine transformation, a and b , are induced by two independent neural 
networks.
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The coefficients of affine transformation are derived from the conditional vector. 
Finally, the affine transformation is performed on the input x. This configuration enables 
the data to be modified based on their age and gender, owing to this unique structure.

General incompressible‑flow networks (GIN) coupling blocks

Coupling block, one of computationally efficient bijective transformation, is a key struc-
ture in our conditional normalizing model in terms of provision of representability. In 
particular, we stacked double conditional GIN coupling layers to make coupling layers 
preserve volume, based on the expanded theory of nonlinear independent component 
analysis (ICA) for problems with unknown intrinsic dimensions [35]. A global offset 
tglobal and permutation with R were also applied for better representability. The specific 
process can be expressed as:

Within the confines of the coupling layer, c persists as the conditional vector. We addi-
tionally split x ∈ R

48 into two subsets: x1 ∈ R
24 and x2 ∈ R

24 . Subsequently, the trans-
formation proceeds as CONCAT(u1,u2) , where:

Here, CONCAT represents vector concatenation. The functions s and t denote subnet-
works, which are architecturally composed of a linear layer, followed by a ReLU activa-
tion, and another linear layer. The unique was proposed to simplify the calculation of 
the Jacobian determinant [17]. The normalizing flow implementation from FrEIA was 
utilized in our study [36].

Strategy for optimizing CNF model training

To train the above-described models, we adopted the Adam optimizer [37] and the 
Cosine Annealing Warmup Restart scheduler [38]. These were chosen to ensure efficient 
and effective model training. Additionally, to further enhance the optimization and rep-
resentability of the model, we introduced AltUB, which periodically trains the param-
eters of the base distribution [39].

Inference

The evaluation of anomalies was measured using a scoring system defined as:

which is negatively proportional to the likelihood of z . A lower likelihood implies that 
the given test point bears a greater resemblance to an anomaly. Outputs from disease 
samples are expected to have a lower likelihood and thus, a higher anomaly score.

To ensure fair and robust performance comparisons between models, we stratified 
evaluation steps: the proposed CNF model was evaluated with multiple sampling cases 

RCoupling(x, c)+ tglobal

u1 = x1 ⊙ exp(tanh (s(CONCAT(x2, c)))+ t(CONCAT(x2, c))

u2 = x2

−exp

(

-
zT z

2

)
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that conserved the base rate. First, only unaffected samples were divided into a training 
set and a test set using 8:2 splitting. Then, affected samples were partitioned into five 
subsets. Each of these subsets was merged with unaffected data. This step ensured that 
each of the test datasets maintained base rates analogous to that of the original data-
set. Subsequent evaluations were conducted across these datasets, with performance 
metrics averaged to provide a comprehensive assessment of the model’s robustness and 
adaptability. The full process and architecture of the proposed CNF model is graphically 
presented in Fig. 2.

Metrics

Prediction models were evaluated using the area under the receiver operating character-
istics curve (AUROC) and also the area under the precision-recall curve (AUPRC). The 
baseline AUROC value (the performance of a random estimator) is always 0.5, whereas 
the base value of AUPRC is the proportion of positive data. A key difference between 
AUROC and AUPRC is that the latter prioritizes how well the model handles positive 
samples, while the former considers handling positive and negative samples equally. 
AUPRC is thus regarded as the more appropriate metric when false negatives are more 
consequential than false positives, such as in the prediction of chronic diseases [40]. 
Therefore, we considered AUPRC as the primary metric in our research.

Fig. 2 Architecture of the CNF model. A Within the framework of semi‑supervised anomaly detection 
models, only the unaffected data, which represents the controls, is employed during the training phase. The 
test set encompasses both unaffected and affected data so as to assess model performance. To conserve 
base proportions, test sets were determined through random sampling. In the conditional normalizing flow 
model for anomaly detection, the unaffected data are mapped into a multivariate normal distribution (m. n. 
d). The affected data, representing the patients, undergoes a transformation resulting in a non‑standard 
distribution. The difference between these distributions is quantified using the metric exp

(

− z
T
z

2

)

 , which is 

negatively proportional to the likelihood of m. n. d. Here, z symbolizes the resultant output of the CNF model. 
B The comprehensive pipeline of the CNF model for semi‑supervised anomaly detection. Notably, age and 
gender are taken as a bi‑dimensional conditional vector, underscoring their significance in the model’s 
architecture
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Results
Data characteristics

The total number of participants was 706 individuals, with 44.6% males and 55.4% 
female. Their ages ranged from 19 to 59 years. Participant disease status was determined 
using the simple categories as described in Materials and methods (Supplementary 
Table  S2). We identified the following disease prevalence among the participants: 230 
(32.6%) as having obesity, 13 (1.8%) diabetes, 58 (8.2%) hypertriglyceridemia, 56 (7.9%) 
dyslipidemia, 81 (11.4%) liver dysfunction, and 242 (34.3%) hypertension. As shown 
above, diabetes prevalence status was extremely imbalanced (1.8% of the population 
were diabetes-affected).

Performance of machine learning models on predicting chronic disease occurrence

LGBM emerged as the best classification model for the prediction of the six chronic 
diseases regarding overall AUROC, AUPRC, and F1 score (Supplementary Fig. S1). 
The average AUROC and AUPRC values, accompanied by their respective 95% confi-
dence intervals derived from LGBM, are detailed in Table 2. Due to the extreme class 
imbalance for diabetes, the corresponding AUPRC value was low (0.16) associated 
with diabetes prediction. Although this value may seem commendable given the foun-
dational base ratio (0.02), it underscores potential enhancement in the model’s perfor-
mance. Motivated by this observation, we applied a semi-supervised anomaly detection 
models (1C-SVM, ISF, and GMM) with CNF specifically for diabetes, as illustrated in 
Fig.  3. Additionally, the state-of-the-art models, TabNet, FT-Transformer, and GOAD 
were evaluated. As a result, CNF achieved the highest AUPRC (0.34) with comparable 
AUROC (0.83). Supplementary Fig. S2 summarizes the performance of LGBM and CNF 
on every investigated disease. A comparison between LGBM and CNF revealed that 
LGBM achieved better AUPRC values for the other five chronic diseases, but for diabe-
tes, which exhibited an extremely low prevalence, CNF outperformed LGBM by achiev-
ing a higher AUPRC. In short, the CNF could cope with class imbalance better than 
LGBM and the other models for classification or semi-supervised anomaly detection.

Evaluation of model performance in further extreme imbalance cases

To further investigate whether our model works on which level of imbalance degree, 
regardless of the target disease, we systematically excluded 20% to 95% of the disease-
affected samples from our dataset (positive undersampling). Then, LGBM and CNF 
models were evaluated with performance metrics. The results can be found in Fig. 4 and 

Table 2 AUROC and AUPRC of LGBM in chronic diseases

LGBM AUROC AUPRC Base rate

Obesity 0.82 ± 0.01 0.73 ± 0.02 0.33

Diabetes 0.82 ± 0.03 0.16 ± 0.04 0.02

Hypertriglyceridemia 0.87 ± 0.01 0.51 ± 0.02 0.08

Dyslipidemia 0.89 ± 0.01 0.55 ± 0.03 0.08

Liver dysfunction 0.92 ± 0.01 0.65 ± 0.03 0.11

Hypertension 0.72 ± 0.01 0.56 ± 0.02 0.34
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Fig. 3 Performance of eight models in predicting diabetes. All 95% confidence intervals were determined 
through 50 repetitions. A AUPRC of the models. The base rate (= 0.02) is indicated as a dashed line. The 
conditional normalizing flow (CNF) model achieved an AUPRC of 0.34, which was significantly high and 
stable. B AUROC of the models. LGBM and CNF achieved high values compared to other algorithms at about 
0.83

Fig. 4 The relationship between positive undersampling ratio and performance of LGBM (blue) and 
conditional normalizing flow (CNF, red) models on two chronic diseases: (A) obesity, (B) hypertriglyceridemia. 
The dashed line indicates the actual base rate after adjustment of the number of positive samples. The left 
and right panels represent AUPRC and AUROC, respectively. The AUPRC of LGBM dropped dramatically with 
extremely low base rates. (A, B) Statistical analysis by Welch’s t‑test, *p < 0.05, **p < 0.01, ***p < 0.001
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Supplementary Fig. S3. Interestingly, as the base rate gradually decreased, the AUROC 
values did not significantly differ between the two model types. However, in scenarios 
where the base rate was extremely low, the CNF model exhibited a pronounced superi-
ority in AUPRC over the LGBM. For example, while LGBM performed AUPRC 0.20 and 
AUROC 0.75, CNF showed AUPRC 0.30 and AUROC 0.74 when predicting obesity in a 
95% positively undersampled dataset.

The effect of positive oversampling and negative undersampling methods

While integrating class weights offers a mechanism to manage class imbalances in 
LGBM, we observed a decline in model performance in  situations characterized by 
profound imbalances, especially when base rates plummeted below 5%. Resampling 
techniques, which include (positive) oversampling – increases the number of minority 
class—and (negative) undersampling – decreases that of the majority class—have been 
canonically employed to rectify class imbalances. In our study, we applied resampling 
methods such as Tomek Link [41], SMOTE [42], and ADASYN [43] to LGBM mod-
els. These methods were particularly tested under conditions of severe class imbalance, 
where the AUPRC values significantly declined, as illustrated in Fig. 4 and Supplemen-
tary Fig. S3. However, none of the resampling strategies demonstrated higher AUPRC 
compared to the baseline (Fig. 5). In contrast, the CNF model exhibited a robust capabil-
ity, outperforming the traditional resampling methods in terms of AUPRC. Furthermore, 
which presents AUROC comparisons, all methods yielded relatively similar AUROC val-
ues, showcasing no substantial differences (Supplementary Fig. S4). This suggests that 
while the CNF model offers advantages in addressing AUPRC in severe imbalanced sce-
narios, its performance in terms of AUROC remains consistent with other traditional 
methods.

Discussion
CNF as the best predictor in the extreme class imbalance (diabetes)

LGBM predicted most of the examined diseases well. However, the model did not suc-
cessfully predict diabetes, achieving an AUPRC of 0.16, largely attributable to the signifi-
cant class imbalance with a base rate of just 2%. As presented in Fig. 3, our CNF model 
outperformed various classification and anomaly detection models, including state-of-
the-art deep learning models, and managed to double the AUPRC value of LGBM (0.34 
vs. 0.16) while maintaining comparable AUROC values. Furthermore, as depicted in 
Fig. 4, as the base rate decreases, indicating heightened class imbalance – the CNF model 
becomes more pronounced in contrast to LGBM. Notably, our semi-supervised anom-
aly detection approach is inherently robust against overfitting issues since the models 
are trained solely on disease-unaffected samples and aim to identify disease-affected 
instances as anomalies during testing. The consistent AUROC performance across vary-
ing base rates further corroborates this robustness (Fig. 4). These results underscore the 
potential of CNF for tasks dominated by class imbalances, suggesting that CNF can be 
specialized for these tasks and merits more research in this area.

Figure  6(A) illustrates the transformation process to construct a normal distribu-
tion through CNF. The data from non-diabetic participants from the test dataset con-
verges toward a normal distribution with a mean of zero. In contrast, the data from 
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patients with diabetes were transformed into a distribution distinct from the normal, 
as per the previous assumption. The histogram presented in Fig. 6(B) further eluci-
dates this conversion, where outputs from diabetic patients are observed to be farther 
from the origin, indicating their divergence from the standard normal distribution N 
(0, 1).

These observations suggest that while conventional classification algorithms can 
exhibit satisfactory performance for predicting chronic diseases when provided with a 
sufficient number of affected samples, they show weakness in the face of extreme class 
imbalances. In such situations, CNF models emerge as a more robust alternative. Since 
normalizing flow models have enormous expressive power, they also perform better 
than general semi-supervised anomaly detection models. In the case of predicting dia-
betes, in particular, the failure of 1C-SVM (Fig. 3) implies that the topology of diabetes is 
highly complex since it is susceptible to noise [44]. CNF is well-equipped to navigate and 
address these complexities.

Fig. 5 The effects of positive oversampling and negative undersampling methods on AUPRC. LGBM models 
were constructed with (positive) over‑ or (negative) undersampling methods for addressing class imbalances, 
namely Tomek Link, SMOTE, and ADASYN, for six chronic diseases: (A) Obesity: 95% undersampling, 0.02 base 
rate, (B) Diabetes: no undersampling, 0.02 base rate, (C) Hypertriglyceridemia: 80% undersampling, 0.02 base 
rate, (D) Dyslipidemia: 90% undersampling, 0.01 base rate, (E) Liver dysfunction: 95% undersampling, 0.01 
base rate, and (F) Hypertension: 80% undersampling, 0.07 base rate. The dashed line indicates the actual 
base rate after adjustment of the number of positive samples. Positive undersampling was performed as 
needed to create a class imbalance situation. In the case of extreme class imbalance, (positive) oversampling 
or (negative) undersampling had little beneficial effect on the performance of LGBM‑based classification 
models, whereas CNF showed consistently good performance
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First attempt of normalizing flow on tabular PHRs

Normalizing flow has been utilized for tasks such as density estimation, data synthesis 
[17], and anomaly detection [18]. Although models based on conditional normalizing 
flow like CFLOW-AD have achieved state-of-the-art performance in diverse fields for 
anomaly detection, few studies applied the idea in clinical and biological domains. 
Within these domains, the focus of normalizing flow has usually been on density esti-
mation and data generation, rather than anomaly detection [45–47]. Another notable 
point is that the majority of current and previous applications of normalizing flow 
concern images. For instance, the application of normalizing flow for identifying out-
of-distribution was introduced for coronary artery segmentation [48].

Thus, our work, in which a CNF model is applied to predict chronic diseases from 
tabular PHR data, represents a pioneering effort. It marks the first attempt to apply 
CNF to chronic diseases such as diabetes, which seeks to improve imbalance prob-
lems from the perspective of anomaly detection.

CNF performance according to the degree of class imbalance

The performance (especially AUPRC) of LGBM, as a supervised classification model, 
was always constrained by low base rates regardless of the diseases, as shown in Fig. 4. 
On the other hand, while CNF may exhibit suboptimal performance compared to 
LGBM at higher base rates, its power becomes distinctly apparent when the base rate 
plunges below approximately 5%. Furthermore, conventional classification models 
often lean on resampling strategies to mitigate the challenges posed by class imbal-
ance. Yet, as Fig. 5 shows, these traditional methods exhibited small efficacy on our 
dataset. Such findings strengthen the argument for the utility of CNF, which remains 
effective in the face of pronounced class imbalances.

Fig. 6 A The marginal distribution of outputs from applying the CNF model for diabetes to the test set. While 
outputs from unaffected samples follow the normal distribution, those from diabetes‑affected cases do 
not. B Squared norm of output from the test set. Outputs from cases tend to be farther from the origin than 
controls



Page 15 of 18Kim et al. BioData Mining           (2024) 17:14  

Recent works have also illuminated the potential of generative models, such as gen-
erative adversarial networks and variational autoencoders [49, 50], as solutions to 
class imbalance problems. While these models exhibit promise, their training pro-
cesses can be intricate, and optimal performance is not always guaranteed. Conse-
quently, the utilization of CNF is a promising and pragmatic strategy, particularly 
when confronted with datasets characterized by limited affected samples or extreme 
class imbalances.

Necessity of the conditional vector

The conditional vector was critical, affording the model to account for age and gender-
specific distributions. Supplementary Fig. S5 illustrates the associations between the 
gender and age, and the overall patterns of PHRs. In the broader context of medicine, it 
is widely recognized that these two features exert significant influence on health condi-
tions, including the predisposition to chronic diseases [33]. Hence, the proposed model 
incorporated a conditional affine transformation, which maximizes the influence of age 
and gender during the training process. In addition, conditional coupling layers further 
emphasized the model’s sensitivity to the complexity of age and gender dynamics.

Usage of AltUB

AltUB was proposed to address the parameter-shift phenomenon observed in normal-
izing flow models [39]. During our research, we also observed the phenomenon during 
modeling, indicating a potential enhancement in model performance through the incor-
poration of AltUB. However, the training process sometimes became unstable. Thus, the 
usage of AltUB can be optional based on the input dataset.

Limitations and future works

The major limitation of our study is that the data size is small, at 706 samples. However, 
this study is still meaningful since the data were collected from various sources, includ-
ing genetic data, medical check-ups, surveys, and wearable devices. In addition, we were 
able to fit machine learning algorithms, even with this small and imbalanced dataset, to 
improve its prediction power of chronic disease.

Our approach can be seamlessly adapted to diverse medical situations. Since many 
diseases have a low incidence, the challenge of class imbalance problem would play a sig-
nificant role when applying canonical supervised classification algorithms. In the future, 
we will adopt CNF to break down the imbalance problems for rare diseases.

While the current study focused on various machine learning algorithms on PHRs for 
predicting chronic diseases, our further study will extend these methods to predict the 
risk factors associated with these diseases. In addition, we will identify critical genetic 
and non-genetic features among chronic diseases. Extending our current research focus 
will seek to enhance the ability of the CNF to accommodate a wider range of diseases 
by using techniques such as masking and householder permutation. Based on our 
approach, we expect to provide improved solutions to participants and introduce a new 
machine learning method for further health research.
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Conclusion
In this research, we introduced a conditional normalizing flow designed for anomaly 
detection, aiming to address extreme class imbalances rampant in personal health 
records. This study significantly improved prediction performance compared to tra-
ditional methods such as LGBM and 1C-SVM. In particular, for diabetes prediction 
with a base rate of 2%, conditional normalizing flow (AUPRC = 0.34) was higher than 
the baseline model LGBM (AUPRC = 0.16). In conclusion, the conditional normal-
izing flow can be a promising solution for dealing with extreme class imbalance prob-
lems on personal health records. This approach not only augments the precision of 
predictive modeling in the realm of medical informatics but also provides a new ave-
nue in biomedical research.
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