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Introduction
Recent advancements in omics technologies have enabled large-scale data acquisition 
across multiple biological layers, including genomics, transcriptomics, proteomics, 
metabolomics, and many others. Considering that each type of omics data contributes 
distinct layers of biological information, data integration serves as an efficient tool in 
multi-omics studies, for not only providing a comprehensive understanding of the multi-
faceted complexity inherent in biological phenomena but also substantially improves our 
capabilities in elucidating disease mechanisms and identifying disease biomarkers [1, 2].
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Compared to single-omics studies, multi-omics analyses require computational meth-
odologies to encompass a more holistic perspective. These advanced methods aim to 
overcome the inherent limitations of single-omics approaches by providing nuanced 
insights into complex biological interactions. However, the complexity and heteroge-
neity contained within and across multi-omics data pose significant challenges to their 
integration and downstream tasks. Traditional approaches for analyzing multi-omics 
data mainly rely on statistical methodologies, as indicated in studies  [3–5]. These sta-
tistical approaches often encounter difficulties in feature extraction, typically requiring 
manual intervention that can be both labor-intensive and suboptimal for interpreting 
global feature significance. Deep learning models have been widely designed to address 
this issue and demonstrated superior predictive capabilities and proficiency in identify-
ing nonlinear and hierarchical features [6–8].

Deep neural networks in multi-omics analyses enable the autonomous extraction of 
relevant features and facilitate the identification of intricate associations among them. 
However, when applying neural networks to multi-omics data, a series of challenges 
remain, one notable issue being the ‘curse of dimensionality’ [9]. Due to the multiple 
causes and pathogenic mechanisms underlying complex diseases, omics data are par-
ticularly prone to this issue. Such high dimensionality creates intricate spatial distribu-
tions that can impede both traditional machine learning and deep learning algorithms 
in their classification tasks. Preserving all original features magnifies the computational 
complexity in such high-dimensional spaces, inducing overfitting and diminishing the 
predictive accuracy. To address these challenges, autoencoder models have been inves-
tigated as a means to transform and integrate multi-omics features, particularly for dis-
cerning disease subtypes [10–12]. Various strategies based on autoencoders have been 
proposed to integrate high-dimensional, multi-source datasets and to derive low-dimen-
sional latent representations. For example, Wang et  al.  [13] employed autoencoders 
to align and integrate data from single-cell RNA-seq and ATAC-seq, adeptly mapping 
the sparse and noisy data from varied spaces into a harmonized subspace for improved 
alignment and integration. Lin et al. [14] introduced scMDC, an architecture featuring 
one encoder for cascading data and two decoders for each data modality. This design 
uniquely characterizes distinct data sources and co-learns deep embeddings of latent 
features for cluster analyses. Autoencoders use a combination of nonlinear functions 
to reconstruct the original inputs, which can be used as new feature representations of 
the original data. These algorithms have been proven effective in producing clinically 
relevant features  [15], analyzing high-dimensional omics data  [16, 17], and integrating 
multi-omics data  [7, 18]. However, autoencoders can exhibit suboptimal performance 
in certain tasks, especially when the generated subrepresentations are utilized for down-
stream tasks [7, 19]. This issue often originates from the focus of traditional autoencoder 
objective functions on input reconstruction, which can limit their effectiveness in clas-
sification tasks.

In addition to omics-specific feature extraction, data fusion is another key step in 
multi-omics studies. Attention mechanisms have been a robust technique for enhanc-
ing classification performance by selectively emphasizing salient features across vari-
ous omics levels. These mechanisms enhance the model performance by prioritizing 
more relevant features for classification outcomes. Such adaptability is particularly 
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crucial in light of the varying importance of different features. As substantiated by 
feature interpretation studies such as  Mogonet  [20], attention mechanisms are jus-
tified in their application for multi-omics fusion, given their capacity to weigh the 
importance of features in diagnosis prediction adaptively.

On the other hand, deep learning models for classification tasks typically adopt 
maximum class probability (MCP), that is, the highest probability values given by the 
softmax output, to evaluate the prediction confidences [21]. This can lead to assign-
ing high confidence values to even incorrect predictions. To mitigate this limitation 
and enhance classification accuracy, the true class probability (TCP) criterion is inte-
grated into the loss function [22, 23]. Unlike MCP, TCP assesses the predicted prob-
ability for each class against the probability of the true class label, incorporating these 
values into the loss computation. This criterion acts as a regularizer during training 
by offering more detailed insights into the performance of the classifier on individual 
sample predictions. This becomes more essential in challenging scenarios, like those 
where performance improvement is hindered due to hard samples (that is commonly 
observed in complex diseases) or when only a few samples are incorrectly predicted 
due to the well-designed models.

Upon recognizing the observed limitations in existing methods, we present a Multi-
Omics integration framework with auxiliary Classifiers-enhanced AuToencoder 
(MOCAT) to improve both stability and predictive accuracy in disease classification 
tasks. Acknowledging the importance of explicability within the domain of biomedi-
cal research, our framework also incorporates model interpretability for biomarker 
discovery. The architecture employs autoencoders for efficient high-dimensional fea-
ture compression, while the integration of omics-specific classifiers promotes refined 
optimization aligned with disease prediction. Furthermore, adopting attention mech-
anisms affords greater flexibility in fusing multiple omics types. We also incorporate 
the trustworthy strategy to facilitate fine-grained optimization in the weighting of 
the classification network, culminating in an augmented accuracy of classification. 
Benchmark experiments and comparative evaluations show that the proposed model 
outperforms existing state-of-the-art methods, with extensive validations demon-
strating both the reliability and interpretability of the proposed framework.

Our main contributions are summarized as the following:

• Omics-Specific Feature Optimization: We introduce auxiliary classifiers tailored 
for each type of omics data, which significantly enhances feature representation by 
identifying the most informative biomarkers pertinent to disease states.

• Enhanced Classifier Confidence Calibration: We incorporate the true class prob-
ability criterion to regularize classifier confidence of incorrect predictions, thereby 
improving model overconfidence and enhancing predictive accuracy.

• Explainability: By integrating mechanisms that elucidate the decision-making 
process of our model, we provide predictive proficiency and facilitate a deeper 
understanding of the underlying biological phenomena, thereby aiding in the 
interpretive aspects of biomarker discovery.
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• State-Of-The-Art (SOTA) Performance: The proposed framework has yielded supe-
rior results on four independent datasets, indicating an improvement over the cur-
rent benchmarks.

Materials and methods
Datasets

To conduct fair comparative experiments, we adopt public data preprocessed by Wang 
et al. [20], which provide four datasets for multi-omics disease classification, including 
a binary classification ROSMAP dataset for Alzheimer’s disease (AD) patients and nor-
mal controls (NC), a BRCA dataset for PAM50 subtype classification of invasive breast 
cancer (five-class), an LGG dataset for the grade classification of gliomas (binary), and a 
KIPAN dataset for subtype classification of renal cancer (three-class). Table 1 shows the 
detailed information of these datasets, where the preprocessed features were used for 
training.

Model formulation

The proposed model is structured into three sequential phases for comprehensive data 
analysis. Phase 1 focuses on efficiently compressing high-dimensional data to extract 
critical omics-specific features. Phase 2 involves the integration of multi-omics data and 
confidence-based disease prediction. Finally, Phase 3 is concerned with biomarker dis-
covery, harnessing the insights collected from the previous phases. The overall architec-
ture of the proposed model is shown in Fig. 1.

Phase 1: omics‑specific feature extraction

In phase 1, high-dimensional features of each omics dataset are fed into autoencoder 
networks for extracting representative features. At the same time, each omics data is 
separately trained to assist the autoencoder network in learning a more compact and 
accurate representation. Developing independent models for each omics dataset can 
help avoid losing the specificity of each data source, as they may exhibit distinct dynam-
ics. The independent models are expected to provide reliable feature information for 
multimodal fusion.

Autoencoders for dimensionality reduction: Three autoencoders are trained 
separately on different omics types. In particular, each autoencoder uses a multi-
objective optimization method in the encoder with Dropout, BatchNorm, and ELU 

Table 1 Summary of datasets

Dataset Sample Number of raw features Number of features for 
training

mRNA methy miRNA mRNA methy miRNA

ROSMAP NC: 169, AD: 182 55,889 23,788 309 200 200 200

BRCA Luminal A: 436, Luminal B: 147, HER2-
enriched: 46, Normal-like: 115, Basal-like: 
131

20,531 20,106 503 1,000 1,000 503

LGG Grade 2: 246, Grade 3: 264 20,531 20,114 548 2,000 2,000 548

KIPAN KICH: 66, KIRC: 318, KIRP: 274 20,531 20,111 445 2,000 2,000 445
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activation functions to compress the original data and extract corresponding low-
dimensional representations. The Dropout layer is generally set after the fully con-
nected layer and randomly drops part of the nodes according to a preset ratio during 
training, effectively improving the problem of model overfitting and improving model 
generalization. The BatchNorm layer, as shown in Eq. 1, is used to normalize the mean 
and variance of features and is widely applied in deep learning tasks. This approach 
speeds up model training and improves model stability while alleviating issues like 
gradient vanishing and gradient explosion.

where µx and σ 2
x  are the batch mean and variance, γ is a scale parameter used to scale 

the normalized data, ǫ is a small constant added to the denominator to prevent division 
by zero, and β is a shifting parameter used to shift the normalized results by the batch 
mean.

The ELU activation function can better manage the gradient vanishing problem, 
making the training converge faster, thus achieving better results:

In detail, each autoencoder model consists of multiple fully connected layers, with 
a bottleneck layer in the middle that minimizes node size. The intermediate layer 
with the fewest nodes serves as the bottleneck layer for dimensionality reduction in 
the original dataset. The last layer reconstructs the raw data from the first layer. We 
aim to minimize reconstruction errors and extract better feature representations at 
the bottleneck layer. The effectiveness of feature representation can be evaluated by 
omics-specific classifiers.

Omics-specific classifiers: Auxiliary classifiers specific to each omics data are 
incorporated to fulfill two objectives: (i) improve representation by encouraging the 
autoencoders to learn more fine-grained and discriminative features; (ii) improve pre-
diction performance by forcing the model to learn from multiple perspectives. The 
classification loss from the omics-specific classifiers directs the autoencoders in refin-
ing feature compression, ensuring that the compressed representations align with the 
distinguishing characteristics of each omics data. This alignment is intuitively thought 
to promote the overall effectiveness of the autoencoder for dimensionality reduction.

Overall, M omics-specific feature subrepresentations F(m),m ∈ {1, . . . ,M} were 
obtained from phase 1. The loss of the first phase includes the reconstruction loss 
L
(m)
rc  of each autoencoder and the auxiliary classification loss L(m)

ac  of each omics-spe-
cific classifier, and can be expressed as:

where �1 and �2 are hyperparameters for adjusting different losses. We set �1 = 1 and �2 
= 0.005 in our experiment.

(1)BatchNorm(x) = γ
xi − µx

σ 2
x + ǫ

+ β ,

(2)ELU(x) =

{

x if x ≥ 0
α(ex − 1) if x < 0

.

(3)Lphase1 = �1

M
∑

m=1

L
(m)
rc + �2

M
∑

m=1

L
(m)
ac ,
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Phase 2: cross‑omics fusion and trustworthy prediction

Integrating heterogeneous multi-omics data, characterized by varying expression pat-
terns and dimensions, presents a significant challenge. In phase 2 of our approach, 
we delve into improving both multi-omics fusion and final disease prediction, utiliz-
ing feature representations derived from phase 1. We specifically apply the attention 
mechanism to establish global correlations within the fused features and introduce 
the classification confidence mechanism into the network to enhance its prediction 
performance.

Adaptive fusion with autoencoder and attention: We first concatenated the 
omics-specific subrepresentations obtained from phase 1 to create the preliminary 
fused representations. Subsequently, an autoencoder network was trained to map 
these heterogeneous features into a novel embedding space. This space is designed to 
learn and encapsulate shared representations across the different omics data types. 
This procedure facilitates the extraction of discriminative and representative features 
from a more comprehensive perspective, thereby augmenting the overall effectiveness 
of the model. Given the M omics-specific feature representations F(m),m ∈ {1, . . . ,M} , 
the output ZAE of the autoencoder layer is calculated as follows:

where ‖ represents concatenation operation.
The integrated features were subsequently fed into an attention layer. This is 

designed to capture and emphasize the distinct significance of various omics modali-
ties, thereby augmenting the efficacy of our model. It has been noted that different 
types of omics data contribute variably to the aggregate predictive accuracy. The inte-
gration of the attention mechanism allows for a dynamic recalibration of the influ-
ence exerted by the fused modality features during the classification procedure. Given 
the input ZAE , the output ZAtt of the attention layer is calculated as follows:

where WQ ∈ Rd×dq , WK ∈ Rd×dk , and WV ∈ Rd×dv with dq = dk are three learnable 
weight matrices for generating the corresponding matrices of query Q ∈ Rn×dq , key 
K ∈ Rn×dk , and value V ∈ Rn×dv , n is the number of samples and d is the embedding 
dimensionality of the previous autoencoder layer.

Trustworthy prediction with ConfNet: In addition to improving the representa-
tion effectiveness of intra- and inter-omics data, we also employed the trustworthy 
strategy to assess and adaptively adjust the prediction confidence linked to the fused 
features.

The traditional method for determining confidence in classification, known as the 
maximum class probability (MCP), relies on the highest probability output of the soft-
max function. For a given input feature matrix ZAtt , the classifier acts as a probabilis-
tic model. This model assigns a predictive probability distribution P(Y |ZAtt) for each 
class in the set k={1, ...,K } . The class with the highest probability is then selected as the 

(4)ZAE = Autoencoder







M
�

�

�

m = 1

F(m)






,

(5)ZAtt = Attention(Q,K,V) = Attention
(

ZAEW
Q,ZAEW

K ,ZAEW
V
)

,
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predicted class, denoted as ŷ=arg maxk∈{1,...,K } P(Y =k|ZAtt) . However, a notable issue 
with MCP is its tendency to exhibit overconfidence for incorrect predictions.

The true class probability (TCP) confidence criterion was proposed to solve this prob-
lem [22], by assigned confidences according to P(Y = y∗|ZAtt) , where y∗ represents the 
true label vector. TCP and MCP yield equivalent results when a sample is correctly clas-
sified. However, for misclassified samples, TCP provides a more conservative and, thus, 
potentially more accurate confidence value. The direct estimation of TCP confidence 
on the test set is not feasible due to the absence of true labels. To solve this problem, a 
confidence network (denoted as ConfNet) was introduced to the training data, and the 
parameters were learned as follows:

Here, the function Conf(ZAtt, y
∗) , denoted by f, processes the output ZAtt from the 

attention layer to produce the true label vector y∗ through a fully connected layer. The 
Ĉonf(ZAtt, ConfNet(·)) follows the same logic. In this context, Conf(ZAtt, y

∗) is the TCP 
confidence proposed to learn. As illustrated in Fig. 1, both the confidence network and 
the classifier were built upon the output of the attention layer. The classifier was trained 
using the cross-entropy loss and fixed, after which the confidence network was trained 
according to Eq. 6. In this way, the model is designed to adjust the feature weights in 
response to misclassified samples adaptively. This dynamic penalization mechanism 
enhances the model to learn from errors and refine its predictive accuracy. Furthermore, 
by effectively distinguishing false predictions from true ones through enhanced confi-
dence separation, the TCP criterion holds the potential to boost the generalizability of 
the model and thereby reduce the risk of overfitting.

Therefore, the loss of phase 2 consists of the reconstruction loss of the fused features 
Lrc and the confidence loss Lconf:

where �3 and �4 are hyperparameters used to balance different losses and are set to 0.5 in 
the experiments.

In total, the loss of the entire model includes the phase 1 loss, phase 2 loss, and the 
cross-entropy loss for the final classification Lclf:

Phase 3: biomarkers identification

Identifying biomarkers is fundamental for understanding underlying biological mecha-
nisms and interpreting outcomes in biomedical contexts. Discovering biomarkers via 
deep learning models facilitates the discernment of highly representative and predictive 

(6)LConf =

∥

∥

∥
Conf(ZAtt, y

∗)− Ĉonf(ZAtt, ConfNet(·))

∥

∥

∥

2

,

(7)Conf(ZAtt, y
∗) = f (ZAtt, y

∗),

(8)Ĉonf(ZAtt, ConfNet(·)) = f (ZAtt, ConfNet(·)).

(9)Lphase2 = �3Lrc + �4Lconf ,

(10)L = Lphase1 + Lphase2 + Lclf,
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features in classification tasks. We evaluated the importance of each omics feature to 
find those showing significant effects on the prediction performance of the model. Spe-
cifically, feature ablation was employed wherein each feature was eliminated, and the 
feature-level importance score was calculated according to the decreasing accuracy. In 
practice, we repeated five times to obtain the mean importance measurements to reduce 
experimental variability.

Furthermore, we investigated the inter-omics relevance of the identified biomarkers to 
showcase the efficacy of the proposed model in uncovering interactive cross-omics bio-
markers. We specifically selected the top 30 biomarkers identified through the previous 
feature ablation analysis. Subsequently, we evaluated the joint effects of all possible com-
binations of inter-omics biomarkers, including both pairwise (e.g., mRNA-methylation, 
mRNA-miRNA, and methylation-miRNA) and tri-omics (mRNA-methylation-miRNA) 
interactions. Moreover, we randomly selected 1, 000 sets of tri-omics biomarker combi-
nations and compared their prediction importance with our top findings to demonstrate 
the significant inter-omics relevance of the biomarkers prompted by our method.

Results
We evaluated the performance of our proposed method by comparing it with state-of-
the-art multi-omics classification approaches using four public datasets. Furthermore, 
extensive ablation studies were executed to elucidate the efficacy of each component 
within our framework. We focused on three metrics for binary classification: classifica-
tion accuracy (ACC), F1 score, and area under the ROC curve (AUC). For multiclass 
classification datasets, we also focused on three metrics including accuracy (ACC), 
weighted average F1 score (F1_w), and macroaverage F1 score (F1_m).

Diseases prediction comparison

Our comparative analysis encompassed fourteen computational methods, includ-
ing six early-stage single-omics benchmark algorithms, namely, K-nearest neighbors 
(KNN)  [24], support vector machine (SVM)  [25], Lasso  [26], random forest (RF)  [27], 
eXtreme Gradient Boosting (XGboost)  [28], and fully connected neural networks 
(NN)  [29]. We also evaluated seven advanced multi-omics classification frameworks, 
which include group-regularized ridge regression (GRridge) [30], Bayesian partial least 
squares discriminant analysis-based BPLSDA [31], BSPLSDA [31], Concatenate Fusion 
(CF) for post-modality connection of multi-omics representations [32], Gate Modulated 
Unit (GMU) for information fusion with gating mechanisms [33], and the two state-of-
the-art algorithms Mogonet  [20] and Dynamics  [34]. For fair comparisons, we evalu-
ated all methods according to the same experimental settings as Mogonet [20], and the 
outcomes were expressed as the mean and 95% confidence interval (95% CI) of five 
experiments.

As shown in Tables 2 and 3, our model outperformed both the benchmark and state-
of-the-art methods on both binary and multiclass classification tasks. Our approach 
consistently outperformed existing methods on the ROSMAP, BRCA, and LGG data-
sets, demonstrating the robustness and adaptability of our model. In the case of the 
KIPAN dataset, performance from our model was on par with advanced algorithms, val-
idating its competitive capability. Statistical analysis demonstrated that the performance 
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improvements are significant ( P < 0.05 ), further confirming the substantial superiority 
of the proposed model.

Comparative analysis across varied omics types

In our investigation, we endeavored to integrate diverse omics data types—specifically 
mRNA, DNA methylation, and miRNA—to provide a more comprehensive understand-
ing of disease etiology and to enhance the accuracy of disease classification beyond what 
is possible with single or dual omics data sources. This is based on the hypothesis that 
each data contributes uniquely to the model and that integrating multiple sources can 
lead to more robust performance. We designed a series of ablative studies on the ROS-
MAP, BRCA, and LGG datasets to validate our hypothesis, excluding the KIPAN dataset 
due to its relatively straightforward classification nature. We assessed the performance 
impact when transitioning from using individual omics datasets to combinations of two 
and ultimately incorporating all three.

Table 2 Comparison with state-of-the-art methods on ROSMAP and BRCA datasets

Means and 95% confidence intervals (95% CIs) are presented, and the best results are in bold. The 95% CI is calculated using 
the t‑distribution, with degrees of freedom set at n− 1 , where n is the number of experiments conducted.

 Compared to the suboptimal model, the superior model is denoted by ∗ to indicate a statistically significant improvement 
( P < 0.05 ) when using the two‑sample t‑test

Method ROSMAP (2 Categories) BRCA (5 Categories)

ACC(%) F1(%) AUC(%) ACC(%) F1_w(%) F1_m(%)

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

KNN 65.7 (61.2-
70.2)

67.1 (61.6-
72.6)

70.9 (65.3-
76.5)

74.2 (71.2-
77.2)

73.0 (70.1-
75.9)

68.2 (65.1-71.3)

SVM 77.0 (74.0-
80.0)

77.8 (75.8-
79.8)

77.0 (73.8-
80.2)

72.9 (70.7-
75.1)

70.2 (68.3-
72.1)

64.0 (61.9-66.1)

Lasso 69.4 (64.8-
74.0)

73.0 (68.9-
77.1)

77.0 (72.7-
81.3)

73.2 (71.7-
74.7)

69.8 (67.9-
71.7)

64.2 (61.0-67.4)

RF 72.6 (69.0-
76.2)

73.4 (70.8-
76.0)

81.1 (78.7-
83.5)

75.4 (74.3-
76.5)

73.3 (72.1-
74.5)

64.9 (63.3-66.5)

XGBoost 76.0 (70.3-
81.7)

77.2 (71.6-
82.8)

83.7 (80.0-
87.4)

78.1 (77.1-
79.1)

76.4 (75.2-
77.6)

70.1 (68.0-72.2)

NN 75.5 (72.9-
78.1)

76.4 (73.8-
79.0)

82.7 (79.6-
85.8)

75.4 (71.9-
78.9)

74.0 (69.8-
78.2)

66.8 (61.0-72.6)

GRridge 76.0 (71.8-
80.2)

76.9 (73.3-
80.5)

84.1 (81.2-
87.0)

74.5 (72.5-
76.5)

72.6 (70.2-
75.0)

65.6 (62.5-68.7)

BPLSDA 74.2 (71.2-
77.2)

75.5 (72.6-
78.4)

83.0 (79.9-
86.1)

64.2 (63.1-
65.3)

53.4 (51.7-
55.1)

36.9 (34.8-39.0)

BSPLSDA 75.3 (71.2-
79.4)

76.4 (72.1-
80.7)

83.8 (81.2-
86.4)

63.9 (62.9-
64.9)

52.2 (50.2-
54.2)

35.1 (32.4-37.8)

CF 78.4 (77.0-
79.8)

78.8 (78.2-
79.4)

88.0 (87.4-
88.6)

81.5 (80.5-
82.5)

81.5 (80.4-
82.6)

77.1 (76.0-78.2)

GMU 77.6 (74.5-
80.7)

78.4 (76.4-
80.4)

86.9 (84.9-
88.9)

80.0 (75.2-
84.8)

79.8 (72.3-
86.7)

74.6 (67.4-81.8)

Mogonet 81.5 (78.6-
84.4)

82.1 (79.4-
84.8)

87.4 (85.9-
88.9)

82.9 (80.7-
85.1)

82.5 (80.5-
84.5)

77.4 (75.3-79.5)

Dynamics 84.2 (83.6-
84.8)

84.6 (84.3-
84.9)

91.2 (90.9-
91.5)

87.7 (87.6-
87.8)

88.0 (87.8-
88.2)

84.5 (84.3-84.7)

MOCAT(Ours) 87.6∗ (86.7-
88.5)

87.5∗ (86.8-
88.2)

92.3∗ (91.2-
93.4)

88.5∗ (88.1-
88.9)

88.9∗ (88.5-
89.3)

86.2∗ (85.3-
87.1)
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Figure 2 illustrates the performance comparison of using various omics combinations. 
It can be observed that utilizing all three omics types yielded the highest performance 
across all three tasks, except the AUC of mRNA+miRNA on the LGG dataset (89.9% 
> 88.5%). This emphasizes the advantage of harnessing multiple omics, which provide 
a more comprehensive spectrum of crucial information. Furthermore, it validates the 
capacity of our proposed model in effectively extracting and integrating representative 
features from these diverse omics sources.

Ablation study

We performed ablation studies to assess the key modules used in our method, includ-
ing the omics-specific auxiliary classifiers (AC), the attention mechanism (Att), and the 
trustworthy strategy (ConfNet). We respectively removed these three components from 
the proposed model and explored the prediction performance.

Results are summarized in Table 4. We can observe that each critical component con-
tributes to enhancing the classification efficacy of our model. Specifically, the removal 

Table 3 Comparison with state-of-the-art methods on LGG and KIPAN datasets

Means and 95% confidence intervals (95% CIs) are presented, and the best results are in bold.The 95% CI is calculated using 
the t‑distribution, with degrees of freedom set at n− 1 , where n is the number of experiments conducted.

 Compared to the suboptimal model, the superior model is denoted by ∗ to indicate a statistically significant improvement 
( P < 0.05 ) when using the two‑sample t‑test

Method LGG (2 Categories) KIPAN (3 Categories)

ACC(%) F1(%) AUC(%) ACC(%) F1_w(%) F1_m(%)

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

KNN 72.9 (68.7-
77.1)

73.8 (69.7-
77.9)

79.9 (75.2-
84.6)

96.7 (95.3-
98.1)

96.7 (95.3-
98.1)

96.0 (94.3-97.7)

SVM 75.4 (69.7-
81.1)

75.7 (69.5-
81.9)

75.4 (69.7-
81.1)

99.5 (99.1-
99.9)

99.5 (99.1-
99.9)

99.4 (98.9-99.9)

Lasso 76.1 (73.9-
78.3)

76.7 (74.0-
79.4)

82.3 (78.9-
85.7)

97.4 (97.2-
97.6)

97.4 (97.2-
97.6)

97.2 (96.7-97.7)

RF 74.8 (73.3-
76.3)

74.2 (73.0-
75.4)

82.3 (81.1-
83.5)

98.1 (97.4-
98.8)

98.1 (97.4-
98.8)

97.5 (96.1-98.9)

XGBoost 75.6 (70.6-
80.6)

76.7 (72.7-
80.7)

84.0 (81.1-
86.9)

99.3 (98.3-
100)

99.3 (98.3-
100)

98.9 (97.2-100)

NN 73.7 (70.8-
76.6)

74.8 (71.8-
77.8)

81.0 (76.4-
85.6)

99.1 (98.5-
99.7)

99.1 (98.5-
99.7)

99.1 (98.5-99.7)

GRridge 74.6 (69.9-
79.3)

75.6 (71.1-
80.1)

82.6 (77.1-
88.1)

99.4 (98.9-
99.9)

99.4 (98.9-
99.9)

99.3 (98.8-99.8)

BPLSDA 75.9 (72.8-
79.0)

73.8 (70.0-
77.6)

82.5 (79.6-
85.4)

93.3 (91.7-
94.9)

93.3 (91.7-
94.9)

91.9 (89.3-94.5)

BSPLSDA 68.5 (65.1-
71.9)

66.2 (62.5-
69.9)

73.0 (69.8-
76.2)

91.9 (90.4-
93.4)

91.8 (90.2-
93.4)

89.5 (87.8-91.2)

CF 81.1 (79.6-
82.6)

82.2 (81.7-
82.7)

88.1 (87.6-
88.6)

99.9 (99.7-
100)

99.9 (99.7-
100)

99.9 (99.7-100)

GMU 80.3 (78.4-
82.2)

80.8 (79.3-
82.3)

88.6 (87.1-
90.1)

99.2 (98.6-
99.8)

99.2 (98.6-
99.8)

98.8 (97.7-99.9)

Mogonet 81.6 (79.6-
83.6)

81.4 (79.7-
83.1)

84.0 (80.6-
87.4)

97.7 (95.7-
99.7)

97.6 (95.5-
99.7)

95.8 (91.8-99.8)

Dynamics 83.3 (82.8-
83.8)

83.7 (83.5-
83.9)

88.5 (88.3-
88.7)

99.9 (99.8-
100)

99.9 (99.8-
100)

99.9 (99.8-100)

MOCAT(Ours) 85.1∗ (84.4-
85.8)

85.1∗ (84.1-
86.1)

88.5 (88.0-
89.0)

99.9 (99.8-
100)

99.9 (99.8-
100)

99.8 (99.3-100)
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of the expressly designed auxiliary classifiers results in a significant decline in perfor-
mance. This is particularly noticeable in the context of binary classification tasks. Nota-
bly, in the ROSMAP and LGG datasets, we obtain an improvement of 8.2% and 5.1% in 
accuracy and 7.9% and 6.9% in the F1 score, respectively. This underscores the efficacy of 
omics-specific classifiers in enriching the capacity of autoencoders for nuanced feature 
representation.

Incorporating the attention mechanism also enhances almost all of the three experi-
ments. For example, the attention module significantly improves the classification of 
BRCA subtypes across all three evaluation metrics. This highlights the capacity of the 
attention mechanism to fine-tune the ability of the model to discern and prioritize criti-
cal features across the various omics datasets.

The novel confidence criterion also illustrates increased prediction performance com-
pared to the conventional MCP strategy. The results consistently show that integrat-
ing the TCP criterion contributes to performance enhancements in most experiments. 
Specifically, on the BRCA dataset, the application of TCP results in significant improve-
ments in ACC, AUC, and F1 scores (t-test P < 0.05 ). The ROSMAP and LGG datasets, 
including the confidence networks, also achieve significantly higher accuracy and F1 
scores.

We further monitored the progression of training and testing losses over increasing 
epochs to investigate if the TCP-based confidence network can help reduce the risk of 
overfitting. Figure 3 illustrates the learning curve comparison of the ROSMAP classifi-
cation task. It shows that the model without using ConfNet exhibits tendencies toward 
overfitting (around epoch 300), while a limitation is effectively reduced by including the 
TCP criterion. This suggests that the novel confidence criterion can improve prediction 
performance and contribute to the generalization capabilities of the model, making it 
more robust and reliable when applied to unseen data.

Table 4 Ablation study of the key modules

Mean values (%) and 95% confidence intervals (CIs) are presented, and the best results are in bold. The 95%CI is calculated 
using the t‑distribution, with degrees of freedom set at n− 1 , where n is the number of experiments conducted.

 The overline denotes the ablation of the corresponding module. The asterisk ∗ denotes a statistically significant difference 
between the scenarios with and without the respective key module, as computed by the two‑sample t‑test ( P < 0.05).

 Abbreviations. AC: auxiliary classifiers; AEos : omics‑specific autoencoders; AE f  : autoencoders applied on the fused 
features; Att: self‑attention; ConfNet: confidence network

Dataset Method ACC (95% CI) F1 (95% CI) AUC (95% CI)

ROSMAP AC : AEos+AE f+Att+ConfNet 79.4∗ (76.9-81.9) 79.6∗ (76.6-82.6) 88.2∗ (87.3-89.1)

Att : AEos+AC+AE f+ConfNet 86.7 (85.8-87.6) 86.5 (85.8-87.2) 92.3 (91.8-92.8)

ConfNet : AEos+AC+AE f+Att 85.5∗ (84.5-86.5) 85.6∗ (84.6-86.6) 92.2 (91.3-93.1)

Ours 87.6 (86.7-88.5) 87.5 (86.8-88.2) 92.3 (91.2-93.4)

LGG AC : AEos+AE f+Att+ConfNet 80.0∗ (78.5-81.5) 78.2∗ (76.5-79.9) 88.8 (88.1-89.5)

Att : AEos+AC+AE f+ConfNet 83.6∗ (83.0-84.2) 83.4∗ (82.5-84.3) 88.9 (88.3-89.5)

ConfNet : AEos+AC+AE f+Att 84.1∗ (83.5-84.7) 83.8∗ (82.8-84.8) 89.0 (88.5-89.5)

Ours 85.1 (84.4-85.8) 85.1 (84.1-86.1) 88.5 (88.0-89.0)

Dataset Method ACC (95% CI) F1_w (95% CI) F1_m (95% CI)

BRCA AC : AEos+AE f+Att+ConfNet 87.8 (87.2-88.4) 88.0 (87.1-88.9) 84.5 (82.4-86.6)

Att : AEos+AC+AE f+ConfNet 87.4∗ (86.8-88.0) 87.7∗ (87.1-88.3) 84.8∗ (84.7-84.9)

ConfNet : AEos+AC+AE f+Att 87.9∗ (87.5-88.3) 88.1∗ (87.7-88.5) 85.0∗ (84.4-85.6)

Ours 88.5 (88.0-89.0) 88.9 (88.4-89.4) 86.2 (85.2-87.2)
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Identification of important biomarkers

The results of our biomarker identification experiments, focusing on mRNA expression, 
DNA methylation, and miRNA expression, are comprehensively detailed in Table 5. This 
table highlights the top thirty biomarkers identified from each dataset. To validate the 
relevance of these biomarkers, we cross-referenced them with existing medical litera-
ture. The inter-omics relevance among the top findings are depicted in Fig. 4. The top 
biomarkers exhibit significantly greater interactive effects than random tri-omics com-
binations, with t-test P < 2.2E-16 for the ROSMAP dataset and P < 0.011 for the BRCA 
dataset. These findings support that the proposed model effectively facilitates the identi-
fication of highly relevant biomarkers.

Several key findings emerged in the analysis of biomarkers within the BRCA dataset. 
The loss of SFRP1 has been linked with the progression of breast cancer and a poorer 
prognosis in early-stage tumors [35]. Furthermore, TRIM29 plays a role in suppressing 
TWIST1 and the invasive behavior of breast cancer [36]. The expression of C1ORF112 
is notably high in both breast and cervical cancers [37]. Chen et al.  [38] observed that 
the genetic depletion of GSG2 marginally inhibits the growth of breast cancer cells 
while significantly enhancing their sensitivity to MLN8237 treatment. Additionally, 

Fig. 3 Comparison of training and testing curves with and without the ConfNet in the ROSMAP classification 
task

Table 5 Top important biomarkers identified through our algorithm

Dataset Omics Top identified biomarkers

ROSMAP mRNA NPNT, ANKRD30B, TCEA3, PRTN3, ZNF652-AS1, SAMD4A, SYTL1, AC131056.3, NRIP2

methy C10orf99, RORC, CRMP1, TMEM59, SNRPA, NGEF, C1orf83, TMEM85, ATP6V1B1, KIAA1267, HYAL2

miRNA hsa-miR-375, hsa-miR-767-5p, hsa-miR-146b-5p, hsa-miR-651, hsa-miR-93, hsa-miR-1266, hsa-let-
7i, hsa-miR-224, hsa-miR-129-5p, hsa-miR-132, hsa-miR-330-3p

BRCA mRNA ZIC4, SCN7A, HPDL, PPP1R14C, SFRP1, TRIM29, WDR67, DUSP7, FABP7, PI3, CAMKV , CCDC150, 
CDKN2A, COG2, FANCE, NR2E1, PHOSPHO2, C1orf112, C9orf100, CCDC99, FANCB, GSG2, LBR, 
NUBPL, SGOL2, YBX1

methy COQ3, SOX21

miRNA hsa-mir-9-3, hsa-mir-374a, hsa-mir-92b

LGG mRNA LOC349196, TMEM179, BBC3, WDR53, ZNF77, ZSCAN16, GSTM3, LOC442308, LBX2, BPHL, APOL4, 
BTN2A2, DUSP10, GP9, HGF, IRGM, LOC222699, LYVE1, MSX2P1, TARSL2

methy SIGLEC11, GDF3, TWSG1, OR6Q1

miRNA hsa-mir-1234, hsa-mir-142, hsa-mir-21, hsa-mir-3655, hsa-mir-618, hsa-mir-9-3
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the distribution of miR-374a in breast tumors has been examined by Li et al. [39], with 
implications for its role in breast cancer progression.

In the ROSMAP dataset, several biomarkers with significant implications for AD 
are discovered. For example, NPNT has been recognized as a crucial gene differen-
tially expressed in brain tissues associated with late-onset AD  [40]. Moreover, PRTN3 
has been identified as a key protective factor across various cognitive states, including 
dementia, mild cognitive impairment, and no cognitive impairment, and is instrumental 
in cognitive decline  [40]. The role of TMEM59 haploinsufficiency in reducing pathol-
ogy and cognitive impairment has been well documented in the 5xFAD mouse model 
of AD  [41]. Additionally, Hsa-miR-375 has emerged as a novel circulating biomarker 
associated with extracellular vesicles in AD [42]. Furthermore, Hsa-miR-132, noted for 
its prosurvival, anti-inflammatory, and memory-enhancing functions in the nervous sys-
tem, has been consistently observed to be downregulated in AD [43].

In analyzing biomarkers from the LGG dataset, several notable findings related to gli-
oma cells have been observed. Li et  al.  [44] reported an increase in the expression of 
GSTM3 in glioma cells compared to normal cells. Chen et al. [45] revealed that LBX2-
AS1, a long non-coding RNA (lncRNA), is significantly upregulated in glioma, with its 
expression being associated with the prognosis of glioma patients. The role of SIGLEC11 
in maintaining microglia in a silent homeostatic status through sensing the intact gly-
cocalyx of neighboring cells [46]. Zhang et al. (2020) [47] found that increased expres-
sion of Sema3C, which is regulated by miR-142-5p, indicates a poor prognosis in glioma. 
Additionally, Hermansen et al. (2013)  [48] noted that MiR-21 expression in the tumor 
cell compartment is associated with an unfavorable prognosis in gliomas.

These findings from our experiments align with existing research, thereby substantiat-
ing the robustness of our methodology in pinpointing biologically pertinent biomarkers 
critical for assessing disease impact.

Discussion
Our model is based on the existing shortcomings of multi-omics research, integrating 
auxiliary classifier-enhanced autoencoder, attention module, and the confidence net-
work and verifying the rationality of these key components through argumentation and 
experimental comparison. The model not only demonstrated its state-of-the-art disease 
prediction ability on Alzheimer’s disease, breast cancer, gliomas, and renal cancer but 
also successfully detected important biomarkers for understanding disease mechanisms 
through feature ablation experiments.

Our contribution mainly lies in three parts. Firstly, we designed auxiliary classifiers for 
each omics-specific autoencoder before combining omics data. These auxiliary classi-
fiers help train autoencoders to accurately optimize sub-representations based on task 
requirements, better utilize the unique features present in each omics source, and thus 
improve classification performance. Secondly, the attention mechanism is an effective 
data fusion processing method, where the model can focus more attention on omics 
features that significantly contribute to the classification results, further optimizing 
the prediction performance. Finally, the TCP criterion evaluates model confidence by 
comparing the predicted probabilities with real labels, thereby effectively calibrating the 
overconfident predictions often observed in the standard softmax output.
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Our model successfully pinpoints meaningful biomarkers within each omics data type 
in the BRCA, ROSMAP, and LGG datasets, demonstrating robust associations with 
various diseases. The biomarkers identified align closely with existing medical literature 
findings, reinforcing the biological significance of our discoveries. The congruence of 
our results with established literature not only validates the efficacy of our methodology 
but also emphasizes the potential of these biomarkers in clinical diagnosis and their con-
tribution to the progression of various diseases.

While our model demonstrates impressive performance, there is potential for further 
enhancement. First, significant opportunities remain to delve into various data fusion 
methodologies. For example, utilizing interaction features over basic concatenation 
might yield more insightful revelations regarding the interplay among features from dif-
ferent modalities. Another aspect worthy of exploration is the differential contributions 
of various model components to prediction performance. Understanding the reasons 
behind these varying sensitivities in different components, particularly across a range of 
complex diseases, presents a valuable direction for future research.

Conclusion
In this study, we have developed a multi-omics data integration framework that signifi-
cantly enhances the prediction accuracy of complex diseases and demonstrates stable 
prediction performance across various datasets. By adeptly compressing high-dimen-
sional data, extracting key biologically relevant features, and further leveraging omics-
specific classifiers along with true class probability optimization, our framework has 
demonstrated superior disease classification performance compared to SOTA methods. 
Rigorous validation across datasets confirms the robustness and effectiveness of our 
model, which also serves as a potent tool for identifying critical biomarkers. These bio-
markers offer profound insights into disease diagnosis and the underlying mechanisms, 
potentially guiding the development of targeted therapies. Thus, our work is a significant 
stride toward advancing precision medicine and sets the stage for subsequent research 
to enhance disease prediction and treatment.
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