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Abstract 

Background: Breast cancer is the most common malignancy among women world-
wide. Despite advances in treating breast cancer over the past decades, drug resist-
ance and adverse effects remain challenging. Recent therapeutic progress has shifted 
toward using drug combinations for better treatment efficiency. However, with a grow-
ing number of potential small-molecule cancer inhibitors, in silico strategies to pre-
dict pharmacological synergy before experimental trials are required to compensate 
for time and cost restrictions. Many deep learning models have been previously pro-
posed to predict the synergistic effects of drug combinations with high performance. 
However, these models heavily relied on a large number of drug chemical structural 
fingerprints as their main features, which made model interpretation a challenge.

Results: This study developed a deep neural network model that predicts synergy 
between small-molecule pairs based on their inhibitory activities against 13 selected 
key proteins. The synergy prediction model achieved a Pearson correlation coefficient 
between model predictions and experimental data of 0.63 across five breast cancer 
cell lines. BT-549 and MCF-7 achieved the highest correlation of 0.67 when considering 
individual cell lines. Despite achieving a moderate correlation compared to previous 
deep learning models, our model offers a distinctive advantage in terms of interpret-
ability. Using the inhibitory activities against key protein targets as the main features 
allowed a straightforward interpretation of the model since the individual features 
had direct biological meaning. By tracing the synergistic interactions of compounds 
through their target proteins, we gained insights into the patterns our model recog-
nized as indicative of synergistic effects.

Conclusions: The framework employed in the present study lays the groundwork 
for future advancements, especially in model interpretation. By combining deep learn-
ing techniques and target-specific models, this study shed light on potential patterns 
of target-protein inhibition profiles that could be exploited in breast cancer treatment.
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Background
Breast cancer is one of the most prevalent cancers, affecting over 2 million people 
annually worldwide and causing the highest cancer-related deaths in women. Even 
though breast cancer treatment has steadily improved over the past decades, drug 
resistance and side effects are still the major challenges for breast cancer therapy. 
Cancer cells develop resistance resulting from adaptive pathway rewiring (e.g., acti-
vation of compensatory or alternative proliferation pathways) in response to treat-
ment [1–3] or acquire resistant mutations under selective pressures of treatment [4, 
5]. Another obstacle is the adverse effects of cancer drugs, which may drive patients 
to decline an appropriate treatment dosage, resulting in the ineffective destruction 
of tumor cells and the development of drug resistance. To overcome the challenges, 
research has shifted from single-agent targeted therapies to combination treatments 
that use medications with distinct but synergistic mechanisms of action to overcome 
resistance [6–9]. In addition, each drug can be administered at lower levels in com-
bination therapies, circumventing high-dose toxicity, which is a limitation of single-
agent treatments [10, 11].

However, the number of possible combinations for testing increases dramatically 
with the growing number of drugs being considered [12]. As a result, there has been 
extensive research into computational methods for predicting the efficacy of phar-
macological combinations. For example, the AstraZeneca-Sanger Drug Combination 
Prediction DREAM Challenge was established to encourage innovative computa-
tional algorithms to predict drug combination effects on cancer and benchmark these 
approaches [13]. Participants were presented with a drug combination dataset of 
11,576 tests from 910 combinations across 85 molecularly defined cancer cell lines to 
evaluate their computational methodologies. However, the performance of the algo-
rithms was not satisfactory, with a weighted average Pearson correlation coefficient of 
0.21 to 0.39 [13].

With deep learning, a more recent model achieved prediction performance to an aver-
age of 0.73 (Pearson correlation coefficient) [14]. The deep learning model development 
utilized a dataset containing 23,062 drug combinations with 38 unique drugs tested 
against 39 human pan-cancer cell lines. With the growing number of tested drug pairs 
on the DrugComb database [15], another deep learning model utilizing 286,421 drug 
combinations across 81 cell lines achieved a Pearson correlation coefficient of 0.79 [16]. 
However, these deep learning models heavily relied on a large number of drug chemi-
cal structural fingerprints as their main features, which made model interpretation a 
challenge.

Our study utilized a smaller set of inhibitory scores, indicating the inhibitory effects 
of drugs on key target proteins in cancer pathways, as the input features. This choice 
allowed a straightforward model interpretation because individual features are mean-
ingful (i.e., a value between 0 and 1 of each inhibitory score indicates the likelihood of a 
given compound acting as an inhibitor for the respective protein target). Through a sys-
tematic exploration of the input feature space, our study uncovered synergistic patterns 
within the target-protein inhibition profiles, which revealed helpful information for 
future drug combination design and provided improved therapeutic choices for breast 
cancer.
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Methods
Datasets

The current study focused on developing a drug-synergy prediction model for breast 
cancers. A dataset of drug combinations tested on breast cancer cell lines was obtained 
from the DrugComb database [15, 17]. The dataset originally contained drug combina-
tion trials across 12 breast cancer cell lines. Among the 12 breast cancer cell lines, five 
(BT-549, MCF-7, MDA-MB-231, MDA-MB-468, and T-47D) with the highest numbers 
of tested drug pairs were selected (Table 1). These cell lines represent different types of 
heterogeneity as classified in [18] (Table S1). Overall, the drug combinations used in this 
study were 24,145 pairs with 98 unique drugs.

Feature construction

We aimed to use inhibition profiles of drugs against cancer-related proteins as the main 
features of the model because drug target information was shown to be useful for deter-
mining drug synergy [19]. However, the target information of many cancer drugs is not 
available. Therefore, our first step was to develop a group of models, each of which pre-
dicted the inhibitory effects of individual drugs against a selected protein.

Initially, the protein targets of 98 drugs in our dataset were collected from the Drug-
Bank database [20], resulting in 131 targets. However, only 13 proteins (ABL1, CSF1R, 
EGFR, FLT1, FLT4, KDR, KIT, MCL1, NR1I2, PDGFRB, RET, TOP2A, and TUBB1), 
which were the most frequent targets among the 24,145 drug pairs in the dataset (Table 
S2), were chosen.

Next, 13 target prediction models were individually developed to predict an inhibi-
tory effect on the respective protein by a given compound, given its structure in the 
SMILES format. For each target protein, the inhibitory effect of tested compounds 
against the target was retrieved from the PubChem database [21]. The retrieved com-
pounds were categorized into two classes: inhibitory and non-inhibitory. These catego-
ries were defined by PubChem, where compounds with IC50 ≤ 10 μM were classified as 
’active’ compounds possessing inhibitory activity, and compounds labeled as ’inactive’ 
by PubChem were classified as non-inhibitory. Table S3 lists the number of compounds 
in both classes for each target protein. Next, the SMILES format of the compounds and 
their class (inhibitory or non-inhibitory) were used to train a graph convolutional neu-
ral network using the DeepChem library [22] with the tenfold cross-validation (CV) 
method. The neural network contained a graph convolutional (GC) layer that received 

Table 1 Information of datasets investigated in this study

Data Count

Number of unique drugs 98 drugs

Total number of drug combinations 24,145 pairs

Number of drug combinations tested on MCF-7 4862 pairs

Number of drug combinations tested on T-47D 4823 pairs

Number of drug combinations tested on MDA-MB-468 4799 pairs

Number of drug combinations tested on BT-549 4806 pairs

Number of drug combinations tested on MDA-MB-231 4855 pairs
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75 atomic features and the atomic neighborhood information from each molecule. The 
GC layer was followed by a dense layer and an output layer. The SoftMax function was 
implemented at the output layer to determine a score that represents an inhibitory effect 
of an input compound against the target protein.

This step finally resulted in 13 individual target prediction models (one for each of the 
13 protein targets). The performance of the models was reported as the receiver operat-
ing characteristic (ROC) score.

Drug‑synergy prediction model development

We first generated a target-protein inhibition profile for each of the 98 drugs present in 
the dataset to be used in developing the drug-synergy prediction model. To do this, the 
structure of each drug in the SMILES format was fed into each of the 13 target predic-
tion models developed in the previous section to generate an inhibitory score against 
each target protein. Then, the 13 inhibitory scores of each drug (the target-protein inhi-
bition profile) in each drug pair were combined into 26 features (13 values from each 
drug in the pair) (Fig. 1).

Additionally, since drug pairs have different synergistic effects when treated in other 
cell lines, the mutation profiles of the cell lines were also combined with the input data. 
The missense mutations found among the five breast cancer cell lines from Cell Model 
Passports [23] and DepMap [24] databases were used, and the biological function (gain-
of-function or loss-of-function) was annotated with the OncoKB database [25]. This 
resulted in the selection of seven genes with gain-of-function or loss-of-function among 
the five breast cancer cell lines (Table S4). Therefore, the input data was composed of 33 
features (26 inhibitory scores and seven mutation profiles) (Fig. 1). The input data and 
the synergy value reported in the database (the ZIP score) were used to train the drug-
synergy prediction model using a 3-hidden layer neural network written with Keras.

In this work, the ZIP scores were normalized to have mean = 0 and variance = 1 before 
training. The ZIP scores greater than 0, less than 0, and equal to 0 indicate synergistic, 
antagonistic, and additive effects of drug pairs, respectively. A 3 × 3 nested CV method 
was implemented to tune the hyperparameters (inner loops) and validate the models 
(outer loops) (Fig. 2). The dataset (24,145 drug pairs across five breast cancer cell lines) 
was divided into three folds. Stratification was applied to ensure an equal representation 
of different cell lines within each fold. One fold was used as a test dataset in the outer 

Fig. 1 Input features of the drug-synergy prediction model. A group of graph convolutional neural network 
models generated 13 scores, representing inhibitory activities against 13 protein targets (the target-protein 
inhibition profile). To predict synergy between two drugs, the target-protein inhibition profile of each drug 
was concatenated, resulting in 13 × 2 = 26 features. Each feature has a value between 0 and 1. Mutation 
profiles of seven genes of each cell line retrieved from the Cell Model Passports and DepMap databases were 
also concatenated, where 0, 1, and 2 represent no mutation, loss-of-function mutation, and gain-of-function 
mutation, respectively
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loop, while the other two folds were combined and further divided into three folds in the 
inner loop. Two folds of the inner loop were used to tune the hyperparameters, and the 
other fold was a validating dataset (Fig. 2). Since drug pairs A + B and B + A should have 
the same synergy score, the number of drug combinations was doubled by swapping fea-
ture columns 1–13 with 14–26. We constructed the neural network model with three 
hidden layers. Each hidden layer had a dropout with a rate of 0.5. The output layer had a 
single node with ’Linear’ as the activation function to predict the synergy score. We per-
formed the grid search for the hyperparameters of the hidden layers (Table 2) using the 
kerashypetune package [26] to identify the best combination among all possible param-
eters based on the Pearson correlation coefficient between predicted ZIP scores of the 
validating dataset and the normalized ZIP scores from the DrugComb database. The 

Fig. 2 3 × 3 nested cross-validation (CV) method. 24,145 drug pairs tested on five cell lines from the 
DrugComb database were divided into three folds in the outer loop of the nested CV, where one fold was 
used as a test dataset while the other two folds were further divided into three folds in the inner loop. In each 
round of the inner loop, two folds were used as a training dataset, and the other fold was used as a validation 
set in a grid search for the best hyperparameter set. The best hyperparameter set (identified based on the 
average Pearson correlation coefficients obtained across each round of the three inner loops) was used to 
train a model, and the model was evaluated using the test set from the outer loop
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training process was optimized by the Adam optimizer with a learning rate of  10−5. The 
best hyperparameter set indicated by the average Pearson correlation coefficients from 
each round of the three inner loops was used to train the model, and the model’s perfor-
mance was validated with the test set (outer loop).

Results
Generating a target‑protein inhibition profile for each drug

The selected protein targets included ABL1, CSF1R, EGFR, FLT1, FLT4, KDR, KIT, 
MCL1, NR1I2, PDGFRB, RET, TOP2A, and TUBB1. Most proteins are members of 
the receptor tyrosine kinase (RTK) family known to play a critical role in breast can-
cer development and metastasis [27]. The inhibitory effects of tested compounds against 
the 13 protein targets were used to create 13 individual target prediction models. Each 
model gave a score that represents the inhibitory activity of a given compound against 
the protein. The performance of the 13 target prediction models presented by an ROC 
score is shown in Table 3. The ROC scores for an independent test dataset varied from 
0.6460 (the TOP2A model) to 0.9705 (the KDR model).

To prepare input for the drug-synergy prediction model, SMILES of 98 drugs present 
in the drug combination dataset were fed to each of the 13 target prediction models. Fig-
ure 3 shows the predicted scores of three example drugs. These inhibitory scores, rang-
ing between 0 and 1, represent the likelihood of each drug inhibiting the corresponding 
target protein. Higher scores indicate a greater inhibitory effect on the activity of the 

Table 2 Parameters considered in hyperparameter tuning

Parameter Possible values

The number of nodes in the first hidden layer 128, 256, 512

The number of nodes in the second hidden layer 128, 256, 512

The number of nodes in the third hidden layer 128, 256, 512

The activation function in the first hidden layer tanh, ReLU

The activation function in the second hidden layer tanh, ReLU

The activation function in the third hidden layer tanh, ReLU

Table 3 The ROC scores of 13 target prediction models

Model Test ROC score Model Test ROC score

ABL1 0.8638 MCL1 0.7567

CSF1R 0.6524 NR1I2 0.8841

EGFR 0.9110 PDGFRB 0.9227

FLT1 0.9207 RET 0.8767

FLT4 0.8997 TOP2A 0.6460

KDR 0.9705 TUBB1 0.7424

KIT 0.9363

Fig. 3 Example of inhibitory scores for three drugs (row) against some target proteins (column)
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respective protein. ABL1, CSF1R, KIT, PDGFRB, and RET have been reported to be 
imatinib targets in the DrugBank database. Sorefinib has been reported to antagonize 
FLT1, FLT4, KDR, KIT, PDGFRB, and RET. Similarly, sunitinib’s targets registered in 
the database include CSF1R, FLT1, FLT4, KDR, KIT, and PDGFRB, which correspond 
with our model’s predictions, except for KDR. The target-protein inhibition profiles of 
98 drugs against the 13 targets are provided in Supplementary File S1.

Developing drug‑synergy prediction models

Overall, 24,145 drug pairs tested against five breast cancer cell lines obtained from the 
DrugComb database were used to develop the model. The inhibitory scores from the 
13 target prediction models of each drug in each combination, cell lines’ mutation pro-
files, and the reported synergy values (the normalized ZIP scores) were used to train the 
drug-synergy prediction model (Fig. 1 and Supplementary File S2).

A 3 × 3 nested CV method was implemented to tune the hyperparameters and eval-
uate the models (Fig.  2). Table  4 shows the best hyperparameter sets from the inner 
loops of the 3 × 3 nested CV method, which were used to train a model, and the model 
was tested with the test dataset from the outer loop, achieving a correlation coefficient 
between 0.61–0.63 and a mean squared error (MSE) ranging from 0.62–0.7 (Table  4). 
(Note that the synergy scores were normalized to have mean = 0 and variance = 1 before 
training.) Fig. 4 shows a scatter plot illustrating the relationship between experimental 
data and the predicted synergy scores (which were re-normalized to compare to the 
original data scale) from the test dataset of the model with the highest correlation coeffi-
cient of 0.63 (Model 1). When individual cell lines were considered, BT-549 and MCF-7 
achieved the highest (0.67) correlation coefficient (Table 5).

In Fig. S1, it is shown that the model produced similar predicted scores between pairs 
A + B and B + A (e.g., when the input feature columns 1–13 and 14–26 were swapped; 
see Fig. 1). The final predicted score of each drug pair used in the correlation analysis 
(e.g., as shown in Table 4 and 5) was derived from the average between the predicted 
scores of drug pairs A + B and B + A.

Identifying synergistic patterns learned by the models

To gain further insights into the patterns underlying the observed synergistic effects 
of drug pairs, we systematically created target-protein inhibition profiles by assign-
ing values of 0 or 1 to each of the 26 profile features. Particularly, drug pairs with 
N targets have values of 1 in the N columns and 0 in the other (26 − N) columns of 
the profile features in all possible combinations. First, we created protein inhibition 

Table 4 Hyperparameter tuning results and model performance from the 3 × 3 nested CV method

Model The best 
parameters of 
the first hidden 
layer

The best 
parameters of the 
second hidden 
layer

The best 
parameters of 
the third hidden 
layer

Correlation 
coefficient on the 
test dataset

Mean squared 
error (MSE) on the 
test dataset

1 tanh; 512 nodes ReLU; 256 nodes ReLU; 512 nodes 0.63 0.7

2 tanh; 512 nodes ReLU; 256 nodes ReLU; 512 nodes 0.61 0.7

3 tanh; 512 nodes ReLU; 512 nodes ReLU; 128 nodes 0.62 0.62
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profiles with the number of targets ranging from N = 2 to 4. The profiles were then 
concatenated with the cell-line mutation features. Based on the highest correlation 
observed in BT-549 (a triple-negative cell line) and MCF-7 (a luminal ER + cell line), 
we selected these two cell lines for further investigation.

The generated profiles were used to predict the synergy score, which was deter-
mined by averaging the predicted scores from the three trained models. The gen-
erated profiles that yielded the top 20 predicted synergy scores were clustered into 
groups based on their inhibition-profile similarity using the Euclidean distance and 
displayed as a dendrogram. Figure 5 depicts the dendrogram of the top 20 predicted 
synergy scores for BT-549. The colors in the dendrogram signify the level of inhibi-
tion scores attributed to the targets. The orange color indicates that the targets were 

Fig. 4 The scatter plot compares true and predicted ZIP scores from the test dataset of Model 1. The true 
ZIP scores were from the original values reported in the DrugComb database. BT-549 (blue); MCF-7 (red); 
MDA-MB-231 (magenta); MDA-MB-468 (black); T-47D (green)

Table 5 Performance of Model 1 on individual cell lines evaluated by the test dataset

Breast cancer cell line Correlation coefficient on the test 
dataset

Mean squared error 
(MSE) on the test 
dataset

BT-549 0.67 0.75

MCF-7 0.67 0.59

MDA-MB-231 0.62 0.58

MDA-MB-468 0.58 0.93

T-47D 0.58 0.66
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inhibited with a score of 1.0 by either one of the drugs in the pair, maroon represents 
inhibition with a score of 1.0 by both drugs in the pair, and yellow indicates that nei-
ther of the drugs inhibited the targets (score = 0). For example, the first row in Fig. 5 
depicts a protein inhibition profile where one drug inhibited KIT, one drug inhibited 
PDGFRB, and both drugs inhibited TUBB1. The profile yielded the predicted synergy 
score of 0.4.

The dendrogram in Fig. 5 reveals two distinct groups of profiles that exhibit synergis-
tic effects. The first group involves the inhibition among TUBB1, KDR, and PDGFRB 
(located in the upper right of Fig. 5). The second group comprises the inhibition among 
TOP2A, KIT, and CSF1R (located in the lower left of Fig. 5).

Table S5 lists drug pairs from which the models potentially captured the synergis-
tic patterns. For instance, the combination of paclitaxel (an inhibitor of TUBB1) and 
sorafenib (a multi-target RTK inhibitor, including KDR and PDGFRB) yielded a ZIP 
score of 18.94 when tested on BT-549. Similarly, the combination of docetaxel (a TUBB1 
inhibitor) and imatinib (a multi-target RTK inhibitor, including PDGFRB) exhibited a 
ZIP score of 14.42. Another example is the combination of dasatinib (an inhibitor of 
PDGFRB) and axitinib (a VEGFRs inhibitor, including KDR), achieving a ZIP score of 
6.04 on BT-549. Consistent with the predictions, synthesized compounds targeting 

Fig. 5 Inhibitory activities of the top 20 predicted synergy scores for BT-549 obtained from the generated 
inhibition profiles with 2–4 targets. The orange color indicates that the targets were inhibited with a score of 
1.0 by either one of the drugs in the pair, maroon represents inhibition with a score of 1.0 by both drugs in 
the pair, and yellow indicates that neither of the drugs inhibited the targets (score = 0). The numbers indicate 
the predicted synergy scores
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tubulin assembly, KDR, and PDGFRB displayed antiproliferative activity against a panel 
of cancer cell lines, including breast cancers [28–30].

The drug pairs identified as the second synergistic group by the models include, for 
instance, teniposide (a TOP2A inhibitor) and imatinib (a multi-target RTK inhibitor, 
including KIT and CSF1R), which demonstrated a ZIP score of 13.67 on BT-549 (Table 
S5). The potential synergy between TOP2A and RTK inhibitors has been discussed 
before [31]. Another combination of nilotinib (a KIT inhibitor) and sunitinib (a KIT and 
CSF1R inhibitor) achieved a ZIP score of 4.73. All other combinations among drug pairs 
whose targets included TUBB1, KDR, and PDGFRB and among drug pairs whose targets 
included TOP2A, KIT, and CSF1R for BT-549 are listed in Table S6-S11.

For MCF-7, we observed two recognized patterns: 1) inhibition among TOP2A, 
TUBB1, and PDGFRB and 2) inhibition among TOP2A, TUBB1, and ABL1 (Fig.  6). 
Examples of drug pairs from which the model potentially captured the synergistic pat-
terns included mitoxantrone (a TOP2A inhibitor) combined with imatinib or dasatinib 
(both are multi-target RTK inhibitors, including ABL1 and PDGFRB), with ZIP scores of 
12.27 and 8.38, respectively, on MCF-7 (Table S12). All combinations among drug pairs 
whose targets included TOP2A, TUBB1, PDGFRB, and ABL1 for MCF-7 are listed in 
Table S13-S17.

Fig. 6 Inhibitory activities of the top 20 predicted synergy scores for MCF-7 obtained from the generated 
inhibition profiles with 2–4 targets. The orange color indicates that the targets were inhibited with a score of 
1.0 by either one of the drugs in the pair, maroon represents inhibition with a score of 1.0 by both drugs in 
the pair, and yellow indicates that neither of the drugs inhibited the targets (score = 0). The numbers indicate 
the predicted synergy scores
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Consistent with our predictions, synthesized multi-target compounds against tubu-
lin polymerization and topoisomerase activity achieved antiproliferative activity against 
breast cancer cell lines, including MCF-7 and MDA-MB-231 [32, 33]. In addition, the 
combination of docetaxel (TUBB1 inhibitor) and doxorubicin (TOP2A inhibitor) has 
shown improved clinical outcomes for metastatic breast cancer [34, 35]. Another study 
showed that a multi-target compound against tubulin assembly and ABL1 significantly 
inhibited the growth of a panel of cancer cell lines [36].

Furthermore, we extended our analysis by creating the inhibition profiles with a higher 
number of targets (N = 4 to 6) and feeding the profiles into our models to predict the 
synergy scores. The predictions revealed inhibition profiles that yield high levels of 
synergy, as depicted in Fig. S2. For BT-549, a combination of inhibitory effects target-
ing TOP2A, TUBB1, PDGFRB, and EGFR was predicted to result in high synergy (Fig. 
S2A). It has been shown that combining a topoisomerase inhibitor with an EGFR inhibi-
tor (e.g., gefitinib) is an effective treatment for breast and other cancer types [37–39]. 
Another combination involved the inhibitory activities against TOP2A, KIT, and FLT4, 
producing a highly synergistic effect (Fig. S2A). For MCF-7, the models predicted high 
synergy when combining the inhibitory effects against TOP2A, TUBB1, and PDGFRB. 
In one prediction, these inhibitory effects were further synergized with those against 
ABL1, RET, and NR1I2 (Fig. S2B).

Investigating the effects of target‑protein inhibition profiles on the synergy prediction

The framework presented in the current study relied on a two-stage prediction (a group 
of 13 models computed the protein-inhibition profiles for individual drugs, and then the 
second model utilized the profiles to predict the synergy scores between drug pairs.). 
Therefore, in this section, our investigation focused on the impact of the 13 protein-
inhibition profiles on the performance of the synergy prediction model. We conducted a 
comparison of four different sets of profiles.

1. The first set was the protein-inhibition profiles generated from the 13 target predic-
tion models (Supplementary File S1).

2. The second set was the protein-inhibition profiles generated from the 13 target pre-
diction models created with random weights instead of trained weights. In this case, 
the profiles did not correspond to the correct inhibitory activities of the compounds 
against each target protein. Nonetheless, drugs with similar structures still possess 
similar profiles (Supplementary File S3).

3. The third set was the protein-inhibition profiles generated from the 13 target predic-
tion models, which were shuffled such that each drug was associated with a profile 
of another random drug. Therefore, drugs with similar structures no longer possess 
similar profiles (Supplementary File S4).

4. The fourth set was the Morgan fingerprints. Each drug was featurized into a 2048-bit 
fingerprint generated from the RDKit package (Supplementary File S5).

The four sets of profiles were used to generate the input features for drug pairs. We 
used the model setting from Model 1 in Table 4 to compare the predictive performance 
on the test dataset, leave-one-cell-line-out datasets, and leave-one-drug-out datasets, as 
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detailed in Table 6. For leave-one-cell-line-out validation, drug pairs treated on one cell 
line were treated as the test dataset, while drug pairs tested on the other four cell lines 
were used for training (predictive performances on individual leave-out cell lines are 
listed in Table S18). For leave-one-drug-out validation, we randomly chose 25 drugs (out 
of 98) for the task. For each drug left out, the drug pairs containing the leave-out drug 
were designated as the test set, while the remaining drug pairs were employed for train-
ing the model (predictive performances on individual leave-out drugs are listed in Table 
S19). The results in Table  6 demonstrate that the Morgan fingerprints were the most 
efficient, while the other three types of profiles exhibited similar performance, with the 
shuffled profiles showing the least favorable results.

The results suggest that the accuracy of the target prediction models did not have a 
significant impact on the synergy prediction model. The performance of the synergy 
prediction model that utilized the 13 target-inhibition profiles was comparable to the 
one that used the profiles generated from the target prediction models with random 
weights. This is likely because the target prediction models with random weights still 
generate similar profiles for drugs with similar structures. Therefore, the synergy predic-
tion model can still learn effectively from the provided profile patterns. In contrast, the 
model utilizing the shuffled profiles (i.e., drug structures no longer correlated with the 
generated profiles) demonstrated slightly less performance in leave-one-drug-out valida-
tion. This suggests that the model struggled to generalize patterns learned from known 
drugs to unseen ones.

While we demonstrated that target prediction model accuracy does not hinder the 
learning of the synergy prediction model, it is evident that the accuracy directly influ-
ences the interpretability of learned patterns. For example, the validity of interpret-
ing a high synergy score for drugs with inhibitory activities against TUBB1, KDR, and 
PDGFRB (e.g., Fig. 5) hinges on the accuracy of the 13 target prediction models. Con-
sequently, future exploration should focus on techniques generating accurate inhibi-
tory profiles for drugs, such as employing molecular docking to derive scores from drug 
interactions with target proteins.

Finally, we confirmed that structural fingerprints (e.g., Morgan fingerprints) are the 
most effective features in predicting synergy, as they were used successfully in previ-
ous deep learning models [14, 16]. However, unlike structural fingerprint features, our 

Table 6 Comparison of predictive performance of four different sets of profiles

Profiles Correlation coefficient Mean squared error (MSE)

Test dataset Leave‑one‑
cell‑line‑out

Leave‑one‑
drug‑out

Test dataset Leave‑one‑
cell‑line‑out

Leave‑one‑
drug‑out

Protein-inhibi-
tion profiles

0.63 0.42 ± 0.07 0.42 ± 0.08 0.70 0.83 ± 0.09 1.02 ± 0.48

Protein-inhi-
bition profiles 
(random weight)

0.63 0.37 ± 0.09 0.43 ± 0.08 0.68 0.87 ± 0.10 1.01 ± 0.49

Protein-inhi-
bition profiles 
(shuffled)

0.56 0.43 ± 0.08 0.36 ± 0.10 0.76 0.82 ± 0.08 1.11 ± 0.54

Morgan finger-
prints

0.71 0.53 ± 0.06 0.48 ± 0.12 0.56 0.72 ± 0.04 0.96 ± 0.49
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profile features offer direct interpretability. For instance, a value of 1.0 in our first feature 
signifies that the drug exhibits inhibitory activity against ABL1. (However, it is crucial to 
note that this interpretation relies on the accuracy of the ABL1 model.) Therefore, the 
inhibitory profiles that yield high synergy scores can directly assist in the design of novel 
drug combinations or guide the synthesis of multi-target compounds.

Discussion
This study developed a deep learning model framework for predicting synergistic drug 
combinations specific to breast cancer cell lines and identifying potential target-protein 
inhibition patterns that yielded synergy among different drug combinations. Identifying 
protein targets of drugs is crucial to determining drug synergy [19]. However, the lim-
ited availability of protein target information hinders predicting the synergistic effects 
of compounds. To overcome this challenge, we addressed the issue by creating a group 
of target prediction models capable of generating target-protein inhibition profiles asso-
ciated with 13 key proteins in breast cancer-related pathways. For this task, we chose 
graph neural networks (GNNs) to represent the inherent graph structure of small mol-
ecules. These networks have demonstrated superior predictive performance across vari-
ous tasks [40, 41]. Training data for these models consisted of 75 atomic features and 
the structural topology of each compound, which were processed using the DeepChem 
package. These target prediction models were designed to receive compound structures 
in the SMILE format as input and provided 13 inhibitory scores (values between 0 and 
1). These profile scores indicated the likelihood of a given compound acting as an inhibi-
tor for the respective protein targets.

Subsequently, another deep learning model was constructed utilizing the inhibitory 
scores of individual compounds against 13 target proteins, along with mutation infor-
mation, to predict the synergy scores for drug combinations. The model architecture 
consisted of five layers, including one input layer, three hidden layers, and one output 
layer. The input layer comprised 33 nodes. Among these, 26 nodes corresponded to the 
protein inhibition profiles predicted by the target prediction models for each drug pair 
(13 × 2 = 26), and additional seven nodes received the mutation profiles for each cell 
line. Dropout layers were introduced after each hidden layer to prevent overfitting. The 
output layer provided the predicted synergy scores, which were correlated with experi-
mental ZIP scores obtained from DrugComb (Pearson correlation coefficients ranging 
between 0.61 and 0.63). When considering individual cell lines, predictions from BT-549 
and MCF-7 yielded the highest correlation coefficient of 0.67.

Although our model achieved an adequate correlation, its performance was outper-
formed by models using structural fingerprints. For example, the model with Morgan 
fingerprints (correlation coefficient = 0.71) outperformed our model with the 13 target-
inhibition profiles (correlation coefficient = 0.63) (Table 6). Furthermore, previously pro-
posed deep learning models, such as DeepSynergy [14] and MatchMaker [16], achieved 
Pearson correlation coefficients of 0.73 and 0.69, respectively, on their datasets of pan-
cancer cell lines.

However, it should be noted that a tradeoff often exists between performance and 
interpretability [42, 43]. The models with structural features included numerous inputs 
(2048 vector bits for Morgan fingerprints, 4387 chemical descriptors for DeepSynergy, 
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and 541 chemical descriptors for MatchMaker). In addition, DeepSynergy and Match-
Maker incorporated gene expression data consisting of 3984 and 972 features, respec-
tively. Having an excessive number of features can lead to over-parameterization, making 
it difficult to interpret the prediction results of the models.

Unlike these models, our model relied on a smaller set of 13 × 2 = 26 features derived 
from predicted inhibitory activities of drugs against 13 selected key proteins, plus 
seven mutation features. This approach allowed a straightforward interpretation of the 
model since the individual features had direct biological meaning. We took advantage 
of this interpretability by exploring the input feature space by systematically generating 
target-protein inhibition profiles. As a result, we gained insights into the patterns that 
our models recognized as indicative of synergistic effects. Focusing on the two cell lines 
with the highest predictive accuracy, we found that simultaneously inhibiting TOP2A, 
TUBB1, PDGFRB, and EGFR resulted in high synergistic effects on BT-549. Similarly, 
for MCF-7, combinations involving inhibitions among TOP2A, TUBB1, PDGFRB, and 
ABL1 were found to generate high levels of synergy. Many predictions from the analysis 
are consistent with evidence from experiments showing synergistic effects. Synthesized 
multi-target compounds targeting tubulin assembly, KDR, and PDGFRB [28–30], com-
bined inhibition of both tubulin polymerization and topoisomerase activity [32–35], a 
synthesized compound simultaneously targeting both ABL1 and tubulin assembly [36], 
and drug combinations targeting both EGFR and topoisomerase activity [37–39] all 
showed synergism in vitro or in clinical treatments. Furthermore, the model predicted 
additional protein-inhibition combination choices (Fig. S2), which may aid future drug 
combination design.

Enhancing the accuracy of the target prediction models is essential to strengthening 
the validity of model interpretability. This necessity arises from the inherent imbalance 
in the datasets used to train the target prediction models, a characteristic of bioactivity 
data sourced from high-throughput screening [44] (see Table S3). Addressing this prob-
lem is crucial for advancing the future development of this work. Additionally, due to the 
limited number of tested compounds in the database, we chose to develop a classifica-
tion model for each target protein. It is interesting to investigate the possibility of using 
predicted IC50 values (by creating a regression model) instead of the inhibitory scores as 
the features in the synergy prediction model. It is also possible to prioritize other tech-
niques that generate precise inhibitory profiles for drugs, such as utilizing molecular 
docking scores derived from drug interactions with target proteins.

The current model focused specifically on breast cancer, a complex disease influenced 
by multiple signaling pathways, which is one of the primary reasons for therapy failure. 
Our current model is limited to only 13 protein targets. To enhance the model’s capa-
bilities, future improvements can also involve expanding the number of protein targets 
associated with other key pathways, such as the PI3K/AKT/mTOR pathway, mitogen-
activated protein kinases (MAPKs) pathway, and NF-κB signaling pathway. This expan-
sion would enable the model to uncover additional underlying mechanisms related to 
drug synergy.

An alternative enhancement for the current study is incorporating gene expression 
and methylation data to provide more informative characteristics for the prediction 
process. In addition, exploiting more sophisticated deep learning algorithms rather 
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than relying on a basic feedforward neural network would enhance the model’s per-
formance. One notable example is the utilization of autoencoders in AuDNNsyn-
ergy to extract representations of cancer cell line information [45]. This approach 
has demonstrated improved drug synergy prediction capabilities compared to earlier 
models. However, the future development of the models should also focus on the bal-
ance between model performance and interpretability, making it a valuable tool for 
selecting novel synergistic drug combinations in breast cancer treatment.

Conclusions
The framework employed in the present study lays the groundwork for future 
advancements, especially in model interpretation. By tracing the synergistic interac-
tions of compounds through their target proteins, the model framework addresses 
a knowledge gap in understanding the mechanism of pharmacological synergy. By 
combining deep learning techniques and target-specific models, this study shed light 
on potential patterns of target-protein inhibition profiles that could be exploited in 
breast cancer treatment.
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