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Abstract 

Background: Nowadays, the chance of discovering the best antibody candidates 
for predicting clinical malaria has notably increased due to the availability of multi-
sera data. The analysis of these data is typically divided into a feature selection phase 
followed by a predictive one where several models are constructed for predicting the 
outcome of interest. A key question in the analysis is to determine which antibod-
ies  should be included in the predictive stage and whether they should be included 
in the original  or  a transformed scale (i.e. binary/dichotomized).

Methods: To answer this question, we developed three approaches for antibody 
selection in the context of predicting clinical malaria: (i) a basic and simple approach 
based on selecting antibodies via the nonparametric Mann–Whitney-Wilcoxon test; 
(ii) an optimal dychotomizationdichotomization approach where each antibody 
was selected according to the optimal cut-off via maximization of the chi-squared (χ2) 
statistic for two-way tables; (iii) a hybrid parametric/non-parametric approach that inte-
grates Box-Cox transformation followed by a t-test, together with the use of finite 
mixture models and the Mann–Whitney-Wilcoxon test as a last resort. We illustrated 
the application of these three approaches with published serological data of 36 
Plasmodium falciparum antigens for predicting clinical malaria in 121 Kenyan children. 
The predictive analysis was based on a Super Learner where predictions from multiple 
classifiers including the Random Forest were pooled together.

Results: Our results led to almost similar areas under the Receiver Operating Char-
acteristic curves of 0.72 (95% CI = [0.62, 0.82]), 0.80 (95% CI = [0.71, 0.89]), 0.79 (95% 
CI = [0.7, 0.88]) for the simple, dichotomization and hybrid approaches, respectively. 
These approaches were based on 6, 20, and 16 antibodies, respectively.

Conclusions: The three feature selection strategies provided a better predictive per-
formance of the outcome when compared to the previous results relying on Random 
Forest including all the 36 antibodies (AUC = 0.68, 95% CI = [0.57;0.79]). Given the similar 
predictive performance, we recommended that the three strategies should be used 
in conjunction in the same data set and selected according to their complexity.

Keywords: Multivariate Serological Data, Super Learner, Statistical modelling, Malaria 
outcome prediction, Random forest
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Background
Multi-sera data, where antibodies to multiple antigens are measured in blood samples 
from the same individual, are becoming widely available in malaria research due to sub-
stantial developments at the level of serological assays  [1–4]. This public availability 
has boosted basic research on the discovery of key antibodies associated with protec-
tion to malaria [5–10]. It has also motivated the development of serological-based algo-
rithms that could predict not only past exposure to malaria parasites [11, 12], but also 
time since the last infection [13]. It has been suggested that these algorithms could help  
design better malaria control strategies, such as the serological testing and treatment 
(seroTAT) approach based on 8 antibodies for detecting Plasmodium vivax cases that 
should be targeted to receive an anti-hypnozoite therapy [12].

In these multi-sera studies, the total number of antibody targets varied from dozens 
[8, 10, 13] to thousands [6, 7, 14]. This number implies a huge computational cost for 
algorithms that search for the best model for the data. To overcome this problem, a 
brute-force approach (where every possible antibody combination is tried out) is compu-
tationally feasible for no more than 5 antibody targets [8]. However, above that number, 
implementation of brute-force approaches is not recommended [10, 12]. This computa-
tional drawback motivates the use of data analysis strategies that are generically divided 
into an antibody or feature selection stage, followed by a predictive one, in which several 
statistical or machine learning models are estimated from the data [7, 9, 10, 13, 15]. In 
this scenario, the initial antibody selection stage determines the predictive performance 
of the models to be constructed in the following stage.

Antibody selection can be formulated as the procedure to determine which antibodies 
are important to predict an outcome of interest [16–18]. However, this selection hides 
the question whether data transformation, including dichotomization, should be used. 
Data transformation is particularly relevant in multiplex serological assays, because dis-
tinct data distributions  can  emerge due to differences in the calibration curves across 
antibodies, as demonstrated in assay-optimization studies [16–18]. Until now, antibody 
selection has been carried out using only raw or untransformed [5, 6] data or seroprev-
alence-like data but [10, 12] without any combination of both. Additionally, the trans-
formation of each antibody data is typically not considered. Therefore, current antibody 
selection procedures for multi-sera data lacks the flexibility to accommodate differ-
ent data patterns. The current study tackles this issue and shows that it can potentially 
increase the chance of obtaining improved outcome predictions.

This paper aims at evaluating three  feature selection strategies for the identification of 
antibody responses that could predict clinical malaria with increased accuracy. Initially, 
we implemented a basic approach where the statistical significance for the nonparamet-
ric Mann–Whitney-Wilcoxon test was obtained for each antibody comparing the pro-
tected individuals to susceptible ones. A second strategy is also presented in which data 
of each antibody is initially dichotomized using an optimal cut-off point in the antibody 
distribution based on the maximization of the χ2 test statistic. Finally, we introduced 
a general parametric strategy for antibody selection in which a combination of trans-
formed and dichotomized antibody data can be selected for the predictive phase. This 
strategy adds flexibility to feature selection by combining the Box-Cox data transforma-
tion with well-known parametric statistical tests.
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To illustrate these three strategies, we analyzed a published dataset on Immunoglobu-
lin G (IgG) antibody responses to 36 Plasmodium falciparum (Pf) antigens in Kenyan 
children to understand protection to clinical malaria [8] and whose data analysis was 
previously done with Random Forests [15].

Methods
Data under analysis

We re-analyzed published data of 121 Kenyan children (age range: 1–10 years) described 
in detail elsewhere [8]. All children had a documented parasitaemia (parasite-positive) 
at the time of sampling and were monitored for clinical episodes of malaria over a fol-
low-up period of 6  months. As in the original publication, children were considered 
susceptible (Sus,  ns = 40) or protected (Prt,  np = 81) if they had or did not have any clini-
cal episode during follow-up. The serological data referred to individual IgG antibody 
responses to 36 Plasmodium falciparum antigens. These antibody responses were meas-
ured by multiple enzyme-linked immunosorbent assays (ELISA). Detailed information 
about recruitment, study design and experimental protocols, among other aspects of 
these data, can be found in the original publication [8].

Preliminary antibody feature selection using random forest

The Random Forest (RF) works by constructing multiple decision trees trained on differ-
ent parts of the same training set by a resampling process called bootstrap aggregation 
or bagging [19]. RF were implemented by repeatedly fitting the model to 1000 resam-
pled subsets of the data (100 repeats of tenfold cross-validation). For each repetition, the 
dataset was divided into 10 folds, of which 9-folds were used to perform an inner tenfold 
cross-validation [20]. The number of trees to grow and the number of predictors ran-
domly sampled as candidates in each split was set to default [21] (number of trees = 500; 
number of predictors randomly selected = 2, 19 and 36), and the optimization criterion 
was the maximization of the area under the  Receiver Operating Characteristic (ROC) 
curve (AUC) [22]. Feature importance was determined by the mean decrease in accuracy 
[23]. Briefly, for each tree, the prediction accuracy on the out-of-bag portion of the data 
was recorded. Then, after permuting each predictor variable, the prediction accuracy on 
the out-of-bag portion of the data was once again recorded. The difference between the 
two accuracies was then averaged across all the generated trees, and normalized by the 
standard error [23].

Antibody selection based on a simple non‑parametric approach

The first antibody selection strategy was used to select the antibodies by their statistical 
significance according to the non-parametric Mann–Whitney-Wilcoxon test comparing 
the protected and susceptible groups for each antibody [24].

Antibody selection based on optimal data dichotomization

The second antibody selection strategy was based on a procedure in which the optimal 
cut-off to differentiate one study group from another was estimated by maximizing the 
χ2 statistic for testing independence in two-way contingency tables, as done elsewhere 
[25, 26] (Fig. 1). In more detail, the values of each antibody were sorted by increasing 
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order and then used to divide individuals into two latent serological groups (i.e., seron-
egative/seropositive individuals or high/low responders). For each value of a given anti-
body, the resulting data were summarized into a two-way contingency table comprising 
the qualitative variables serological status (below/above the cut-off) and malaria protec-
tion status (protected/non-protected). The χ2 test statistic was then calculated for this 
contingency table. After repeating this procedure for all antibody values, the optimal 
cut-off was selected as the value that maximized that test statistic, meaning the one that 
provided the best discriminatory ability between both groups of patients. After selecting 
the optimal cut-off, we calculated the respective p-value associated with the χ2 test. The 

Fig. 1 Optimal data dichotomization for antibody selection. The different steps of the analysis are displayed 
on the workflow using distinct colored shapes. Blue color identifies the beginning of the pipeline where 
the antibody values are sorted. Light orange identifies the loop for obtaining the χ2 test p-values for each 
potential cut−off. Green indicates the selection of the most significant cut-off. Dark orange refers to 
the assessment of the statistical significance of the most significant cut-off after controlling for the False 
Discovery Rate (FDR) with the Benjamini−Yekutieli procedure. Red refers to the implementation of the Super 
Learner and the computation of the classification probability. Additional information is provided by the faded 
light orange and red colored shapes
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dichotomized data was then used for the predictive phase. This procedure was finally 
repeated for each of the 36 antibodies included in the dataset. Note that this procedure 
is conceptually equivalent to predict the outcome with individual decision trees using 
data of each antibody separately. In this procedure, we also quantified the uncertainty 
around each optimal cut-off by means of a 95% confidence interval. With this purpose, 
we used the following Bootstrap algorithm in the respective calculation: (i) generate a 
new sample (with the same sample size) with replacement from the observed sample of 
the antibody under analysis; (ii) determine the optimal cut-off value as described above; 
(iii) repeat points (i) and (ii) 1000 times and saving the respective optimal cut-off values; 
(iv) determine a 95% confidence interval by calculating the  empirical 2.5% and 97.5% 
quantiles of the Bootstrap samples related to the estimated optimal cutoff values.

Antibody selection based on a hybrid parametric/non‑parametric approach

We adopted an alternative antibody selection approach using different parametric 
models or statistical tests (Fig. 2). In the first step, we determined the optimal Box-Cox 
transformation for each antibody. This transformation was sought to obtain normal dis-
tributions with homogeneous variances in both groups. We searched the best parameter 
of this transformation (hereafter denoted as λ) within the interval (-4;4) by maximiz-
ing evidence for a Normal distribution using the Shapiro–Wilk (SW) test where the null 
hypothesis states that the data comes from a normal distribution (with unknown param-
eters) [27]. A significance level of 5% was specified to assess whether the data of each 
antibody could follow a normal distribution.

In the antibodies for which there was no evidence against the normal distribution, 
we calculated the p-value for the t-test aiming at comparing the mean values of the 
susceptible and protected groups. The remaining antibodies, for which there was evi-
dence against the normal distribution, were then evaluated via finite mixture mod-
els given that it is recurrent to find latent populations in serological data [28]. Using 
transformed data, we estimated two-component mixture models based on Normal, 
Generalized t, Skew-Normal and Skew-t distributions by maximizing the likelihood 
function via the Expectation–Maximization algorithm [29]. We also estimated the 
Generalized t, Skew-Normal and Skew-t distributions to assess the evidence that the 
data could come from a single non-Normal serological population beyond the ones 
identified by the Box-Cox transformation. We compared all these models using the 
Akaike’s Information Criterion (AIC) and performed the Pearson’s goodness-of-fit 
test by dividing the respective data into deciles (i.e., 10%-quantiles). Minimization of 
the AIC, together with a good fit to the data, at the significance level of 5%, was the 
criterion for selecting the best model. For antibodies whose data provided evidence of 
two latent serological populations, we divided the individuals into two latent serologi-
cal groups using the optimal cut-off by maximization of the χ2 statistic (as described 
in the previous section). In the antibodies for which there was evidence for a single 
latent serological population antibody, we constructed two linear regression models 
using the antibody values as the response variable. The first model comprised only 
the intercept (i.e., not including any covariate), while the second model comprised the 
malaria protection status as the single covariate. We then computed the p-value of 
the Wilks likelihood ratio test to compare the two models at the significance level of 
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5%. The rejection of the null hypothesis suggested statistically significant differences 
between the two models under comparison. Finally, antibodies that could not be fit-
ted by any of the above parametric models were analyzed Mann–Whitney-Wilcoxon 
test to compare the median values of the protected and susceptible groups.

Correction for multiple testing

In each antibody selection strategy, all the p-values obtained were adjusted to ensure 
a global false discovery rate (FDR) of 5%. This p-value adjustment was made via the 
Benjamini-Yekutieli procedure under a general dependence assumption between tests 
[30]. All antibodies with adjusted p-values < 0.05 were carried forward to the predic-
tive analysis.

Fig. 2 Parametric antibody selection. The different steps of the analysis are displayed on the workflow using 
distinct colored shapes. Blue color identifies the beginning of the pipeline where the normality assumption 
is verified after Box−Cox transformation. Green refers to the calculation of the t−test statistic for those 
antibodies for which the normality assumption was verified. Light orange refers to the implementation of the 
finite mixture models to those antibodies or which normality assumption failed and implementation of the 
different tests as according to the best fitted model, or failure to do so. Dark orange refers to the assessment 
of the statistical significance after controlling for the FDR with the Benjamini−Yekutieli procedure and red 
to the implementation of the Super Learner and computation of the classification probability. Additional 
information is provided by the faded light orange and red colored shapes
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Predictive stage

When we analyzed data resulting from each antibody selection strategy, we adopted a 
Super Learner (SL) approach to predict the malaria protection status of each individual 
[31, 32]. In general, this approach aims to estimate different  classifiers whose individual 
predictions for each study subject are combined into a pooled estimate via a weighted 
average calculated by cross-validation. To construct this pooled estimator, we used 
the following 5 classifiers for each set of antibodies selected: logistic regression model 
(LRM) with main effects only, RF, linear discriminant analysis (LDA), quadratic discri-
minant analysis (QDA), and extreme gradient boosting (XGB). Note that the inclusion of 
RF in the SL model assembly algorithm allowed the comparison of the respective results 
with the previous one based on the same machine learning technique but using all the 36 
antibodies as features. For the antibodies selected by optimal dichotomization antibody 
selection strategy, we did not include LDA and QDA in the SL algorithm because these 
classifiers are more appropriate for data containing quantitative predictors only.

To assess the quality of the final predictions, we estimated the ROC curve and its area 
(AUC) [22, 33]. In addition, we calculated the confusion matrices where the rows and 
columns represented the predicted and the observed status of the individuals, respec-
tively [34]. The predicted values in these confusion matrices were calculated using the 
point in the ROC curve that minimizes the distance to the point (0,1) related to the 
perfect classification of the individuals, here called ROC01 criterion [35]. From the 
standpoint of constructing a fair classifier [36, 37], we also determined the predictive 
performance by the point in the ROC curve in which sensitivity (protected) and speci-
ficity (susceptible) were approximately equal [35]. This criterion is hereafter denoted as 
SpEqualSe criterion [35].

Statistical software

All statistical analyses were implemented in the R software [38] version 4.3.0 using the 
following packages: “AID” to perform Box-Cox transformation and to perform the  Nor-
mality tests [39]; “caret” to construct the confusion matrices[23]; “doParallel” for parallel 
processing and faster run times [40]; “dplyr” to better manipulate the data [41]; “ggplot2” 
to plot the data [42]; “ggrepel” to avoid overlaid text on plots [43]; “lmtest” to perform 
the likelihood ratio test [44]; “MASS” for general analysis [45]; “mixsnsm” to estimate 
mixture models based on Skew-Normal and Skew-t distributions [46]; “OptimalCut-
points” to obtain the point in the ROC curve that minimizes of the distance to the point 
(0,1) [35]; “pROC” to estimate ROC curves [47]; “sn” to perform linear regression mod-
els based on Skew-Normal or Skew-t distributions for the residuals [48]; “SuperLeaner” 
to perform all the predictive analysis [31]; “tydir” to facilitate data manipulation [49].

Results
Preliminary analysis based on the random forest approach

Initially, an RF model was implemented using all the 36 antibodies as features in order 
to replicate the results previously reported by Valleta and Recker [15]. We were able to 
reproduce the previously reported AUC of 0.68 (95% CI = (0.57;0.79)) (Fig. 3A). Looking 
at the feature importance values, we concluded that all except one of the 36 antibodies 
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Fig. 3 Analysis of an RF using all the 36 antibodies as features. A ROC curve and its AUC; B) Estimated 
importance of each antibody in the RF
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were required to achieve this predictive performance (Fig.  3B). Nevertheless, a more 
thorough analysis of the feature’s importance values reveals that several features had 
very low importance values (below 20% importance) (Fig. 3B). This led us to hypothesize 
that removing these features could improve the model’s performance. Therefore, three 
distinct filter strategies for feature selection were used.

Analysis based on the simple antibody selection approach

We first tested whether levels of each antibody were significantly different between sus-
ceptible and protected individuals using the Mann–Whitney-Wilcoxon test. According 
to this nonparametric test, 21 out of the 36 antibodies were found statistically signifi-
cant before adjusting for multiple testing. This number dropped to 6 after controlling 
for an FDR of 5%: msp2, msp4, msp10, eba175, msp7, and h103 (Fig. 4A). This substan-
tial reduction in the number of significant antibodies is likely to be explained by the 
positive correlation among different antibodies (average Spearman’s correlation coeffi-
cient = 0.312; Fig. 4B).

We then constructed a Super Learner classifier based on the data of these 6 antibodies. 
The average estimates for the AUC were 0.713, 0.703, 0.702, 0.729 and 0.728 using LRM, 
LDA, QDA, RF and XGB, respectively (Fig. 4C). A closer examination of the RF’s perfor-
mance (AUC = 0.729) reveals an AUC increment over its performance prior to feature 
selection (Fig. 3A).

The average weights of these classifiers were 0.089, 0.506, 0.035, < 0.001, and 0.370 
in the final predictions, respectively. These weights implied an AUC of 0.719 (95% 
CI = [0.615, 0.824]) for the SL predictions. Moreover, the SL predictions had a sensitivity 
of 0.753 and a specificity of 0.625 according to the ROC01 criterion (Fig. 4D). A higher 
number of protected individuals in the dataset could explain the fact that sensitivity 
was estimated at a higher value than specificity. To assess the final classifier without this 
potential selection bias, we determined the point at which the ROC sensitivity and spec-
ificity were similar and used it to obtain a fair classification (SpEqualSe criterion). The 
balanced sensitivity and specificity estimates were 0.630 and 0.625, respectively (Fig. 4E).

Analysis based on the data dichotomization approach

In this analysis, we determined the optimal classification cut-off for each antibody 
according to the χ2 statistic. The sensitivity estimates using these optimal cut-offs var-
ied from 0.049 (pf14_0344) to 1 (eba140, msrp3), while the specificity varied from 0.100 
(msp9) to 0.95 (pf11_0373). The top 3 antibodies whose optimal cut-offs provided the 
sensitivity and specificity estimates closest to perfect classification (i.e., specificity = sen-
sitivity = 1) were msp7 (Se = 0.852, Sp = 0.600), eba175 (Se = 0.827, Sp = 0.550), and 
msp2 (Se = 0.556, Sp = 0.800; Fig. 5A).

There were 28 out of 36 antibodies whose proportions above the respective opti-
mal cut-off were significantly different between protected and susceptible individu-
als at the 5% significance level (Table 1). The uncertainty around each optimal cut-off 
was highly heterogenous across these 28 antibodies. On the one extreme, the shortest 
95% confidence for the optimal cut-off was obtained for the antibodies against ron6 
(95% CI = [0.04;0.11]). On the other extreme, the widest 95% confidence for the opti-
mal cut-off was obtained for the antibodies against eba175 (95% CI = [0.10;1.81]). After 
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controlling for an FDR of 5%, the number of statistically significant antibodies dropped 
to 20 (Fig. 5B). The optimal dichotomization of these antibodies was used in the predic-
tive analysis.

The AUC of the SL-based predictions was estimated at 0.801 (95% CI = [0.709, 0.892]) 
(Fig. 5C), which showed an improvement from the previous analysis using a non-par-
ametric antibody selection. The average AUC (and weights) estimates for each classi-
fier were: LRM -0.729 (< 0.001), RF -0.800 (0.973), and XGB -0.714 (0.026). This result 
showed that, notwithstanding the reasonable AUC estimates for LRM and XGB, the final 
predictions were basically derived from the RF classifier. Not only that, but the RF’s AUC 
also increased significantly when compared to implementation using all  the variables, 

Fig. 4 Simple antibody selection results. A Statistical significance of each antibody according to Mann–
Whitney−Wilcoxon where the p−values were adjusted for an FDR of 5%. B Average Spearman’s correlation 
concerning all the 36 antibodies. C Average AUC estimated for each individual model embedded in the 
Super Learner. D Confusion matrix of the predicted versus observed individual’s classification derived from 
the Super Learner model using the ROC01 and E) SpEqualSe criterion
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Fig. 5 Optimal data dichotomization antibody selection results. A Sensitivity versus specificity plot for each 
antibody according to the cut−off that maximized the Pearson’s χ2 statistic. B Statistical significance of each 
antibody following p−value correction using the Benjamini−Yekutieli procedure. C AUCs for the individual 
models: Logistic regression (LRM), Random Forest (RF) and XGBoost (XGB) embedded in the Super Learner; 
and the overall AUC provided by the Super Learner. D Confusion matrix of the predicted versus observed 
individual’s classification derived from the Super Learner model using the ROC01 and E) SpEqualSe criterion
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highlighting the value of feature selection. Moreover, note that LDA and QDA were not 
included in the SL algorithm, as they are more suitable for analyzing quantitative multi-
variate data.

According to the ROC01, the final sensitivity and specificity were estimated at 0.753 
and 0.750, respectively. These estimates were identical for the SpEqualSe criterion. In 
conclusion, this analysis produced a combined classifier that exhibited an improved and 
better-balanced predictive performance than the previous one. However, this classifier 
had the disadvantage of including a higher number of antibodies compared to the previ-
ous one (20 antibodies versus 6 antibodies).

Analysis based on the hybrid parametric/non‑parametric approach

We first estimated the Box-Cox optimal data transformation and applied it to the anti-
body data. Then, we compared the protected and susceptible groups using the para-
metric t-tests for two independent samples. Our findings suggested that there were 6 

Table 1 Results from the 28 antibodies deemed significant by the data dichotomization approach. 
The antibody levels that maximized the separation between the susceptible and protected group of 
individuals (Cut-off ) and the proportion of seropositive individuals for all (Total), Protected (Prt) and 
susceptible (Sus) children, respectively

Antibody P‑value Cutoff (95% CI) Total Prt Sus

msp1 0.01 0.14 (0.04;0.99) 0.85 0.91 0.73

msp2  < 0.01 0.07 (0.04;0.34) 0.45 0.57 0.20

msp4  < 0.01 0.13 (0.10;1.36) 0.86 0.96 0.65

msp5 0.02 0.09 (0.06;0.23) 0.56 0.64 0.40

msp10  < 0.01 0.25 (0.11;1.57) 0.79 0.90 0.58

pf12  < 0.01 0.10 (0.07;0.45) 0.65 0.75 0.45

pf92  < 0.01 0.11 (0.05;1.32) 0.83 0.91 0.65

pf34  < 0.01 0.07 (0.05;0.15) 0.61 0.72 0.40

pf113 0.02 0.05 (0.04;0.13) 0.74 0.81 0.60

gama  < 0.01 0.05 (0.04;0.11) 0.61 0.72 0.40

ama1  < 0.01 0.16 (0.04;1.09) 0.74 0.84 0.53

eba175  < 0.01 0.14 (0.10;1.81) 0.71 0.84 0.45

eba140  < 0.01 0.11 (0.11;1.55) 0.96 1.00 0.88

eba181  < 0.01 0.11 (0.09;1.46) 0.90 0.96 0.78

mtrap 0.01 0.05 (0.04;0.12) 0.85 0.91 0.73

asp  < 0.01 0.08 (0.07;0.15) 0.70 0.79 0.53

msp3 0.01 0.08 (0.04;0.30) 0.48 0.57 0.30

msp6  < 0.01 0.12 (0.10;0.32) 0.78 0.86 0.60

msp7  < 0.01 0.24 (0.10;1.27) 0.71 0.86 0.40

msrp1  < 0.01 0.05 (0.05;0.22) 0.79 0.88 0.63

msrp3  < 0.01 0.04 (0.04;0.10) 0.96 1.00 0.88

h101 0.03 0.05 (0.04;0.11) 0.74 0.80 0.60

h103  < 0.01 0.07 (0.04;0.24) 0.50 0.60 0.28

pf41  < 0.01 0.12 (0.04;0.53) 0.38 0.48 0.18

pff0335c  < 0.01 0.05 (0.04;0.35) 0.88 0.95 0.75

rh5 0.04 0.16 (0.09;0.25) 0.39 0.46 0.25

ron6 0.02 0.04 (0.04;0.11) 0.81 0.88 0.68

pf11_0373  < 0.01 0.08 (0.05;0.14) 0.21 0.28 0.05
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antibodies whose data in each study group could be analyzed by these tests after the 
Box-Cox transformation: asp, pf11_0373, pf14_0344, pf34, rh5, and ron6 (Fig. 6A); note 
that, at this stage, we did not adjust the p-values of the respective goodness-of-fit tests 
due to multiple testing, because such adjustment would increase the evidence for the 
null hypothesis of these tests. In these antibodies, the estimates for the parameter  λ of 
the Box-Cox transformation varied from -3.80 (ron6) to -0.78 (pf34).

The estimates suggest that the logarithmic transformation would not be the best to 
generate a normal distribution. The strongest evidence for a Normal distribution was 
found for pf34 with a p-value of 0.75 using the SW test (Fig. 6A). The remaining 30 anti-
body data were then analyzed by fitting finite mixture models based on Normal, Gener-
alized T, Skew-normal, and Skew-T distributions; note that Normal and t distributions 
come as special cases of the latter probability distributions. For the statistical conveni-
ence of having these antibodies defined in terms of positive and negative values, we log-
transformed the respective antibody data.

We found evidence that data from 7 antibodies could be described well by either Skew-
Normal (msp3 and h103) or Skew-t (gama, h101, msrp2, msrp3, and pf10_0323) distribu-
tions (Table 2). In this case, the comparison between study groups was made via regression 
models using these distributions for the errors. Except for the antibodies against pf92 and 
ama1, data of the remaining antibodies were best described by a mixture of two Normal 
distributions (4 antibodies), two Skew-Normal distributions (16 antibodies) or two Skew-t 
distributions (1 antibody; see Table 2). The best fit of these mixture models was obtained 
for the antibody against pf113 using a two-component Normal mixture model (p = 0.73, 
Pearson’s goodness-of-fit test; Table 2). For these antibodies, we assumed the existence of a 
seronegative and a seropositive population. We dichotomized the respective data using the 
optimal cut-off by maximization of the χ2 test statistic. Data of the antibodies against pf92 
and ama1 could not be fitted by either the Normal distribution after Box-Cox transforma-
tion or using the above mixture models. Therefore, we used the Mann-Whitney-Wilcoxon 
test as the last resort statistical test to compare the protected and susceptible groups. Thus, 
comparing the protected and susceptible groups using the different tests led to 25 signifi-
cant antibodies before applying a multiple testing correction. This number decreased to 16 
after ensuring an FDR of 5%. These antibodies were found to be significant by the Wilks 
likelihood ratio test (msp3, msrp3 and h103), the χ2 test (eba175, eba181, msp2, msp4, 
msp6, msp7, msp10, msrp1, pf12, pf41, pff0335c) and the Mann–Whitney-Wilcoxon test 
(pf92, ama1) (Fig. 6B). In the predictive analysis, data of each antibody were included in 
the SL approach according to the suggested scale by the antibody selection procedure: log-
transformed data for antibodies coming from the Wilks likelihood ratio test, dichotomized 
seropositive/seronegative data for antibodies coming from the χ2 test, and the original scale 
for the pf92 and ama1-related antibodies coming from the Mann–Whitney-Wilcoxon test. 

Fig. 6 Hybrid antibody selection results. A P-values for the SW normality test (y-axis) after Box-Cox 
transformation with the respective lambda (x-axis). B Statistical significance of each antibody 
following p-value correction using the Benjamini-Yekutieli procedure. D Confusion matrix of the predicted 
versus observed individual’s classification derived from the Super Learner model using the ROC01 and D) 
SpEqualSe criterion

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Before obtaining the combined predictions, we checked each individual classifier’s perfor-
mance. The average AUC were 0.756, 0.807, 0.768, 0.656 and 0.643 using LRM, RF, LDA, 
QDA, and XGB, respectively. Therefore, the best individual classifier was the RF, which 
once more performed better than the one implemented prior to feature selection. The aver-
age weights of these classifiers were 0.021, 0.912, 0.0132, 0.053, and 0 in the final predic-
tions, respectively, resulting in an AUC of 0.79 CI = [0.7, 0.879]) According to the ROC01 
criterion, the sensitivity and specificity were estimated at 0.703 and 0.750, respectively 
(Fig. 6C). Moreover, based on the ROC curve, the best balance between these quantities 
was obtained for a sensitivity and a specificity of 0.716 and 0.725, respectively (Fig. 6D).

Discussion
Multi-sera data, where thousands of antibody targets are simultaneously measured, can 
increase the chance of discovering the antibodies responsible for natural protection 
against malaria or the antibodies that can be used to detect previously exposed individu-
als to malaria parasites [50–52]. Nonetheless, this type of data brings novel challenges 

Table 2 Analysis based on finite mixture model. Results from the analysis of 28 antibodies based 
on finite mixture models, where AIC and GOF denote the Akaike’s information criterion and the 
Pearson’s goodness-of-fit test, respectively

Antibody Best Mixture Model # Components AIC P‑value (GOF)

eba140 Skew Normal 2 23,92 0,32

eba175 Skew Normal 2 33,29 0,03

eba181 Skew Normal 2 42,9 0,03

gama Skew-t 1 -272,19 0,24

h101 Skew-t 1 -230,91 0,33

h103 Skew Normal 1 -41,91 0,72

msp1 Skew Normal 2 25,35 0,26

msp10 Normal 2 71,52 0,07

msp2 Skew Normal 2 -24,09 0,43

msp3 Skew Normal 1 1,46 0,32

msp4 Skew Normal 2 76,23 0,04

msp5 Normal 2 -71,25 0,33

msp6 Normal 2 -168,02 0,35

msp7 Skew Normal 2 46,11 0,16

msp9 Skew Normal 2 -10,75 0,53

msrp1 Skew-t 2 -89,1 0,06

msrp2 Skew-t 1 -122,32 0,12

msrp3 Skew-t 1 -283,83 0,02

mtrap Skew Normal 2 -213,58 0,13

pf10_0323 Skew-t 1 -344,51 0,62

pf113 Normal 2 -139,5 0,73

pf12 Skew Normal 2 -33,29 0,24

pf38 Skew Normal 2 99,41 0,05

pf41 Skew Normal 2 35,96 0,10

pff0335c Skew Normal 2 4,83 0,04

rama Skew Normal 2 -153,54 0,32

rhoph3 Skew Normal 2 -152,73 0,02

tlp Skew Normal 2 -426,93 0,02
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[53, 54]. One of the main drawbacks when dealing with this type of data is the difficulty 
of identifying the relevant features for the task at hand. Among the thousands of features 
screened, most will be irrelevant or redundant and will negatively impact the predictive 
ability of a predictive model [55]. Not only that, trying to fit a predictive model with 
many features increases the computational complexity and cost, reduces the model gen-
eralization ability, and affects the interpretability of the model [54]. To overcome these 
limitations, feature selection strategies have been proposed, where the aim is to iden-
tify and remove all the irrelevant features so that the learning algorithm focuses only 
on those features of the training data useful for prediction [53]. This leads to not only a 
simpler interpretability, as when a small number of features is selected, their biological 
relationship with the target disease is more easily identified, but also a lower compu-
tational cost and increased accuracy stemmed from reducing the chance of overfitting 
[54, 56]. Therefore, feature selection before the implementation of a predictive model is 
strongly advocated [57]. Amongst the different feature selection approaches, we opted 
for the use of filter methods  in this study [53, 56, 57]. These rely on statistical meas-
ures (i.e., p-value, correlation coefficient), and their application precedes the predictive 
phase, thus being independent of any predictive model [56, 57]. For this reason, they are 
usually very fast to implement. Here we will discuss the advantages and drawbacks of the 
distinct filter methods employed in each proposed methodology. The simple approach 
relying on the Mann–Whitney-Wilcoxon test for feature selection is the most scalable 
approach for larger datasets among the ones here proposed. It is the most straightfor-
ward and fastest approach to implement, making it an appealing tool for those looking 
for a low complexity model when conducting a classification task. Moreover, given its 
ranking intrinsic nature, this strategy represents the best option to achieve reproducible 
results [24]. Nevertheless, its low statistical and computational complexity comes at a 
cost since this feature selection approach might lead to a lower predictive performance 
when compared to the other strategies, as demonstrated in this study.

The best predictive performance was obtained from the feature selection strategy 
based on data dichotomization. This performance contradicts the general expectation of 
losing statistical information every time one analyses dichotomized data [58–60]. How-
ever, in serological data analysis, one typically expects the existence of a single latent 
seronegative population and a single latent seropositive population in a given antibody 
distribution [28, 61, 62]. These populations can be conceptually interpreted as noise and 
signal of genuine antibody responses to a given antigen, respectively. In this scenario, 
data dichotomization is a natural way to separate noise from a true biological signal. In 
other words, data dichotomization comes naturally if one intends to eliminate the effect 
of noise in the respective data analysis. In fact, the original study reported that the sero-
prevalence varied from 5 to 96% in the dataset analyzed [9]. Hence, all the antibodies 
contained some degree of noise in the respective data and the presence of such a noise 
across multiple antibodies is a likely explanation for the best performance of this fea-
ture selection method in the dataset analyzed. In the same line of thought, we speculate 
that a better predictive performance using this feature selection strategy could not be 
achieved due to a possible overlap between seronegative and seropositive populations. 
The detailed exploration of this point, although interesting, was beyond the scope of the 
present study.
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The data dichotomization approach also showed a great practical advantage due to 
its simple computational implementation. However, the performance of this approach 
might be dependent on the uncertainty around the optimal cut-off for each antibody. As 
demonstrated by our analysis, this uncertainty varied substantially from one antibody 
to another. Such a variation is likely to be explained by not only a relatively small sam-
ple size of the original study, but also the ratio between the proportions of susceptible 
and resistant individuals. Thus, the cut-offs here reported should be used with caution. 
Ideally, they should be confirmed with a larger data set where there is a good balance 
between susceptible and resistant individuals.

Notwithstanding being more complex from a statistical standpoint, our hybrid 
approach provides a more comprehensive analysis of the data. In this approach, feature 
selection is made on the basis of data transformation and dichotomization via mixture 
modelling, thus accommodating different data patterns. However, this feature selection 
strategy is expected to increase the computational time dramatically as the number of 
antibodies under analysis increases. The computational implementation in user-friendly 
packages is also not trivial in relation to the other feature strategies applied in this study. 
Finally, this feature selection strategy is based on complex statistical models such as 
finite mixture models related to Skew-Normal distributions. In this scenario, this strat-
egy seems less appealing to the malaria research community where, despite the efforts 
to improve mathematical modelling capacity, the availability of qualified staff with sta-
tistical and machine learning skills remains scarce. Therefore, the use of simple filter 
methods seems a more viable solution at the moment, especially, when it comes to ana-
lyzing data featuring thousands of antibodies. Such a case is seen in Proietti et  al. [7] 
where antibodies with a p-value < 0.01 for the univariate logistic regression were selected 
after Bonferroni correction followed by sparse partial least squares discriminant analy-
sis (sPLS-DA) and Support Vector Machine (SVM). Another example is the use of the 
Spearman’s correlation coefficient to remove highly correlated antibodies prior to  the 
implementation of the RF presented by Valletta and Recker [15].

A significant disadvantage of filter methods is the inability to detect complex relations 
between multiple features and the outcome of interest, which generally translates into 
poorer results in the predictive phase [56, 57]. Thus wrappers or embedded methods are 
more appealing. Wrappers are created around a particular classifier and rely on the clas-
sifier’s information concerning feature relevance [56, 57]. For this reason, the computa-
tional effort they require is usually significant, becoming unfeasible in real time when 
thousands of features are considered. Therefore, wrappers are often avoided, and their 
implementation for feature selection in malaria is scarce [8]. A more attractive approach 
are embedded methods that use the core of a classifier to establish a criterion to rank 
features [53, 56].  Embedded algorithms perform feature selection during the classifier 
training procedure while optimizing the feature set used to achieve the best accuracy. 
Therefore, they are less computationally costly than wrappers while still dealing with the 
complex interactions between multiple features and the outcome [53, 56]. Examples of 
embedded feature selection methods intending to unveil antibody immune signatures in 
malaria are described in the literature. Aitken et al. [63] used an elastic net-regularized 
logistic regression for antibody selection followed by a partial least squares discrimi-
nant analysis to find a minimal set of antibodies that accurately classified the individuals 
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under analysis. Helb et al. [13] used a hierarchical criterion for feature selection, where 
a combination of embedded and filter methods was performed before the implementa-
tion of a Super Learner for predicting past exposure to malaria. Here, the Least Abso-
lute Shrinkage and Selection Operator (LASSO) regression was initially used to select 
one third of the responses. Then, using variable importance measures from RF, they 
iteratively selected the best responses which were then ranked by the p-values for the 
underlying Spearman’s correlation coefficient [13]. Although not implemented here due 
to the relatively small number of features, we envision that embedded feature selection 
approaches will be more useful in datasets in where the number of antibody responses 
exceeds the number of observations, as already seen in a study from Mali [14]. A forth-
coming research study will investigate this solution and its impact on variable selection.

Alternative approaches to feature selection techniques for identifying the optimal anti-
body combinations for the task at hand have also been proposed [10, 12]. These rely on 
simulated annealing algorithms that efficiently explore the vast space of feature combi-
nations and thus identify the optimal feature combination solution given a fixed number 
of features defined by the user [10]. Whether this approach is preferable over feature 
selection techniques is an interesting research question for future work.

Concerning our predictive analysis, we adopted a SL approach. The reasoning for this 
option relied on the fact that by combining the individual predictions of each classifier, 
the SL avoids the bias created by manually choosing the best-fitting model procedure 
and often provides better results than each individual classifier [31, 32]. However, this 
was not always the case, as the RF alone tended to provide better predictions than the 
SL. Given that RF is an embedded method, it performs feature selection during the clas-
sifier training procedure and thus we speculated that the removal of further features 
could be behind this increased performance [20, 64]. Nevertheless, our validation analy-
sis revealed that regardless of the strategy chosen for feature selection, nearly all features 
were important for classification purposes. This highlights the filter strategy’s ability to 
identify the most relevant features, avoiding any additional feature removal by the mod-
els embedded in the SL classifier. However, this issue should be addressed in cases where 
the  embedded methods are implemented after a feature selection phase, such as done 
in Helb et al [13], as further feature removal might occur without the user’s knowledge 
which may affect the interpretability of the results. Hence the slight decrease in the SL 
performance is expected to be explained by the SL attempt to correct for a possible over-
fitting to the data when using RF. In this sense, these results should raise awareness con-
cerning analysis where only RF  is considered for predictive purposes, as it may lead to 
overfitting. Thus, the implementation of techniques such as the SL may provide more 
consensual results across the classifiers chosen for the predictive stage.

Comparing our results with the previous ones by Valletta and Recker [15] revealed 
an increase in the prediction ability of up to 14% in the best-case scenario. Not only 
that, but feature selection also increase the RF’s predictive ability compared to the 
one obtained by the same authors, an increase that ranged from 5% of in the worst-
case scenario (simple antibody selection) to 12% in the best-case scenario (data 
dichotomization selection). These results further emphasize the impact of feature 
selection prior to predictive analysis. On the one hand, this step removes antibody 
responses with negligible effect on clinical malaria. On the other hand, this stage 
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decreases the number of features allowing for a more thorough feature analysis 
increasing the chance of finding the right transformation and dichotomization for 
each antibody response.

Concerning the antibodies identified, we found that the antibody responses against 
different Merozoite Surface Proteins (MSPs) were consistently selected across the 
different feature selection strategies. These proteins are expressed at the parasite 
surface, thus, providing promising targets for malaria immunity, because they are 
repeatedly and directly exposed to the host humoral immune system [7, 8]. In par-
ticular, msp2 has been associated with protection from clinical malaria in many 
studies and even suggested as a vaccine candidate [9–12]. For example, msp2 has 
been strongly associated with protection against clinical malaria in two independ-
ent cohorts of Kenyan children [13]. Msp4 has also been reported to have a protec-
tive effect in Kenyan children [14, 16]. High antibody levels against msp4 constructs 
have been associated with reduced morbidity in a Senegalese community [17]. Msp7 
protection against malaria has also already been identified in the Kenyan popula-
tion [16, 18]. Moreover, panels of antibodies comprising msp7 have been associated 
with clinical protection against malaria in Kilifi, a rural district along the Kenyan 
coast [14]. In the same article, high antibody levels against the Erythrocyte-bind-
ing antigen-175 (eba175) antigen were also associated with protection from clini-
cal malaria in children [14]. Moreover, eba175 is associated with protection from 
symptomatic malaria, as demonstrated in Papua New Guinean children [15]. These 
findings corroborate the ability of our methodologies to identify relevant antibod-
ies associated with protection to malaria. However, msp10 and h103 have not have 
not previously been associated with clinical malaria protection. To the best of our 
knowledge, this is the first study where these 2 antibodies emerge as  candidates 
for protection against malaria. This evidence thus suggests that there are antibodies 
associated with protection against clinical malaria that have not yet been identified. 
Nevertheless, further studies are necessary to validate our findings. Finally, none of 
our feature selection metrics selected msp1, an immune response commonly associ-
ated with malaria protection and often referred to as a potential vaccine candidate. 
Similar findings have been reported in other studies, where msp1 has been described 
to show low or no associations with exposure or protection to clinical malaria [13, 
15]. These inconsistent findings further suggest the need for constructing robust 
feature selection strategies that could help increase reproducibility among studies. 

At this moment, the pipelines are implemented in the free R software whose 
scripts are publicly available for consultation and improvement. However, current 
implementation of the pipelines is not in the form of a stand-alone and easy-to-use 
package. The respective adaptation to other datasets or the deployment of the tools 
here developed to malaria endemic countries might require the intervention of R 
experts to modify the available scripts. The requirement of this specific expertise 
might limit the applicability of these computational tools in many malaria-endemic 
regions with poor human resources. Therefore, setting the computational imple-
mentation of these and other tools as a top priority is likely to help in the clinic and 
contribute to the development of new therapeutics and a better malaria manage-
ment and control.
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Conclusions
In summary,  we have implemented feature selection strategies to analyze multiple 
antibody data. These were developed with the idea of coupling classical, traditional 
statistical techniques for variable selection with popular machine learning techniques 
for predictive analysis. Considering the transformation of each antibody data indi-
vidually these strategies represent a more flexible approach to accommodate different 
data patterns than those commonly described in the literature. Overall, these meth-
odologies led to an improved classification over previous analysis based on the use of 
the RF alone, highlighting their potential to integrate future multi-sera pipelines.

Abbreviation
AIC  Akaike’s Information Criterion
Ama  Apical membrane antigen 1
AUC   Area Under the Receiver Operating Characteristic Curve
EBA  Erythrocyte-binding antigen
ELISA  Enzyme-linked immunosorbent assay
FDR  False discovery rate
GOF  Goodness of fitness
IgG  Immunoglobulin G
LASSO  Least Absolute Shrinkage and Selection Operator
LDA  Linear discriminant analysis
Log  Logarithmic
LRM  Logistic regression model
MSP  Merozoite Surface Protein
MSRP  MSP7-related proteins
np  Number of Protected individuals
ns  Number of Susceptible individuals
Pf  Plasmodium falciparum
Prt  Protected
QDA  Quadratic discriminant analysis
RF  Random Forest
ROC  Receiver Operating Characteristic
rS  Spearman’s Correlation Coefficient
SeroTAT   Serological testing and treatment
sPLS-DA  Sparse partial least squares discriminant analysis
Sus  Susceptible
SVM  Support vector machine
SW  Shapiro-Wilk
χ2  Chi-square
XGB  Extreme Gradient Boosting
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