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Abstract 

Background: Although the 2019 EULAR/ACR classification criteria for systemic lupus 
erythematosus (SLE) has required at least a positive anti‑nuclear antibody (ANA) titer 
(≥ 1:80), it remains challenging for clinicians to identify patients with SLE. This study 
aimed to develop a machine learning (ML) approach to assist in the detection of SLE 
patients using genomic data and electronic health records.

Methods: Participants with a positive ANA (≥ 1:80) were enrolled from the Taiwan 
Precision Medicine Initiative cohort. The Taiwan Biobank version 2 array was used 
to detect single nucleotide polymorphism (SNP) data. Six ML models, Logistic Regres‑
sion, Random Forest (RF), Support Vector Machine, Light Gradient Boosting Machine, 
Gradient Tree Boosting, and Extreme Gradient Boosting (XGB), were used to identify 
SLE patients. The importance of the clinical and genetic features was determined 
by Shapley Additive Explanation (SHAP) values. A logistic regression model was applied 
to identify genetic variations associated with SLE in the subset of patients with an ANA 
equal to or exceeding 1:640.

Results: A total of 946 SLE and 1,892 non‑SLE controls were included in this analysis. 
Among the six ML models, RF and XGB demonstrated superior performance in the dif‑
ferentiation of SLE from non‑SLE. The leading features in the SHAP diagram were 
anti‑double strand DNA antibodies, ANA titers, AC4 ANA pattern, polygenic risk scores, 
complement levels, and SNPs. Additionally, in the subgroup with a high ANA titer 
(≥ 1:640), six SNPs positively associated with SLE and five SNPs negatively correlated 
with SLE were discovered.

Conclusions: ML approaches offer the potential to assist in diagnosing SLE 
and uncovering novel SNPs in a group of patients with autoimmunity.
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Introduction
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease characterized by 
a wide range of clinical manifestations and diverse autoantibody profiles. Diagnosis of 
SLE is notoriously complex, often requiring a careful clinical evaluation and laborious 
serological testing [1]. The 2019 European League Against Rheumatism/American Col-
lege of Rheumatology (EULAR/ACR) classification criteria for SLE stipulated the need 
for a positive anti-nuclear antibody (ANA) test with a titer equal to or exceeding 1:80 [2]. 
Despite this advancement, the precise identification of SLE patients continues to pose 
significant challenges for clinicians, mainly due to the heterogeneity of the disease and 
its overlap with other autoimmune diseases [3].

Over the past decade, there has been a substantial rise in the adoption of machine 
learning (ML) techniques in medical diagnosis, as they provide robust tools capable of 
deciphering intricate patterns and relationships within voluminous datasets [4, 5]. This 
computational approach has demonstrated significant utility in various clinical domains, 
from predicting disease outbreaks to personalizing treatment strategies [6, 7].

In the context of SLE, ML applications have shown promise in addressing several criti-
cal aspects of the disease, including refining diagnosis, identifying disease flares, pre-
dicting patient prognosis, and uncovering genetic and environmental risk factors. For 
instance, ML models have been utilized to identify potential biomarkers and create pre-
diction models for disease activity, damage accrual, organ-specific involvement in SLE, 
and therapeutic response [8, 9]. Another study utilized ML algorithms to develop a risk 
probability index for SLE using clinical and demographic data [10]. Given the complexity 
and heterogeneity inherent in SLE diagnosis, applying ML techniques can significantly 
improve disease identification by utilizing both genomic data and electronic health 
records (EHRs). Consequently, these advancements can potentially revolutionize SLE 
management and research, contributing to improved patient outcomes [11].

Previously, we constructed an ML model to predict genomic susceptibility to SLE and 
rheumatoid arthritis (RA) [12]. That study also led to the discovery of genetic varia-
tions at the human leukocyte antigen (HLA) region crucial for differentiating RA from 
SLE. However, in clinical practice, rheumatologists generally diagnose SLE through the 
combination of an ANA test result and clinical feature assessment. Currently, no studies 
have reported the integration of ML models into the clinical diagnosis workflow of SLE. 
Therefore, this study aimed to fill this gap and explore the potential role of ML models in 
streamlining and improving the diagnosis of SLE.

This study aimed to employ six machine learning models—Logistic Regression (LR), 
Random Forest (RF), Support Vector Machine (SVM), Light Gradient Boosting Machine 
(LGBM), Gradient Tree Boosting (GTB), and Extreme Gradient Boosting (XGB)—to 
improve the identification of SLE patients using genomic data and EHRs from the Tai-
wan Precision Medicine Initiative (TPMI) cohort.

Materials and methods
Study population & study design

This study followed a retrospective case–control design utilizing data from the TPMI. 
The TPMI assembled EHRs and collected specimens from participants at the Taichung 
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Veterans General Hospital (TCVGH), Taiwan, from June 2019 to June 2020, as previ-
ously described [12]. The analysis included participants who tested positive for ANA 
with a titer equal to or exceeding 1:80. Cases consisted of 946 patients diagnosed with 
SLE based on the 2012 Systemic Lupus International Collaborating Clinics classification 
criteria for SLE [13]. The control group, at a 1:2 ratio, was comprised of TPMI partici-
pants who tested positive for ANA but were not diagnosed with SLE. The study protocol 
received approval from the Ethics Committee of TCVGH (SF19153A), and all partici-
pants provided written informed consent.

Genotyping

At TCVGH, we extracted DNA by automated platforms. Genotyping for each partici-
pant was conducted using the Taiwan Biobank version 2 (TWBv2) array, provided by 
Thermo Fisher Scientific, Inc. (Santa Clara, CA, USA). This array is specifically tailored 
for Genome-Wide Association Studies (GWAS), targeting known risk alleles. It encom-
passes a comprehensive set of 714,431 single nucleotide polymorphisms (SNPs), as 
delineated by Wei et al. in the prior research [14]. For optimal accuracy and to counter-
act potential batch inconsistencies, genotype calls were centrally processed by Academia 
Sinica in batches of 3,000 samples. In both cases and controls, the integrity of each SNP 
genotyping was assessed by evaluating the overall call rate (indicative of the successful 
call rate) and the minor allele frequency (MAF). Samples with call rates exceeding 95% 
were included in subsequent analyses. SNPs were excluded if they met any of the follow-
ing conditions: If only one allele was present in both cases and controls, if the total call 
rate was below 95% or if the total MAF was less than 0.01, or if there was a significant 
departure from the Hardy–Weinberg equilibrium (P < 1 ×  10−4).

ANA test titers and patterns

ANA tests were conducted using an automated Indirect Immunofluorescence (IIF) 
NOVA View instrument and NOVA Lite HEp-2 ANA kit (Inova Diagnostics, Inc., San 
Diego, USA), as detailed by Wu et al. [15]. Titers and patterns of the ANA tests were 
reported in accordance with the expert-level reporting and interpretation principles 
stipulated by the International Consensus on ANA Patterns (ICAP) [16].

Data extraction and preprocessing

The clinical parameters included a variety of demographic factors, comorbidities, base-
line laboratory profiles, ANA titer and pattern profiles, and medication history. The 
index date was defined as the date of the initial ANA test with a titer equal to or exceed-
ing 1:80, and the primary outcome was defined as the occurrence of SLE within one year 
following the index date. Comorbid conditions, such as diabetes mellitus, hypertension, 
and hyperlipidemia, were ascertained based on the patients’ ICD codes registered prior 
to the index date. Baseline laboratory profiles, encompassing parameters such as anti-
dsDNA antibody (Anti-dsDNA ab), C3, C4, white blood cell count (WBC), neutrophils, 
basophils, monocytes, eosinophils, hemoglobin, erythrocyte count, hematocrit, mean 
corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin 
concentration, erythrocyte distribution width, platelet count, serum creatinine, and esti-
mated glomerular filtration rate (eGFR) [17], were evaluated within the year preceding 
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and following the index date, and prior to the outcome date. ANA titers were observed 
at levels of 1:80, 1:160, 1:320, and ≥ 1:640, and ANA pattern profiles, including AC1, 
AC4, AC5, AC19, and AC24, were identified within six months after the index date and 
prior to the outcome date. Medication profiles encompassing glucocorticoids, hydroxy-
chloroquine, cyclophosphamide, cyclosporin, mycophenolate mofetil, and azathioprine 
were ascertained using historical data extracted from EHRs during the six-month win-
dows preceding and following the index date, and prior to the outcome date. Labora-
tory data features with missing value percentages exceeding 30% were excluded from 
the analysis. To address the missing values within the clinical features, the missForest 
imputation method was employed [18]. Continuous features were normalized using the 
RobustScaler technique, centering them around the median and scaling according to the 
interquartile range (IQR), thus ensuring that the ML models remained resilient against 
outliers [19]. For preprocessing the GWAS data, SNP values were encoded as 0, 1, or 2, 
representing the number of minor alleles under an additive genetic model [20]. Missing 
SNP values were imputed using the most frequent value within the training set. Addi-
tionally, the polygenic risk score (PRS) was computed using the candidate SNP features, 
serving as an assessment of individual genetic risk for ANA-positive patients who subse-
quently developed SLE [21]. The PRS for each SNP was calculated as follows:

where βj represents the effect size of the jth SNP generated from the logistic regression, 
and SNPij is the feature value of the jth SNP on the ith patient.

However, the concept of the PRS did not incorporate the significance of the p-values 
derived from the association tests for pivotal SNPs. To address this limitation, a refined 
approach involving the aggregation of the adjusted PRS, which is weighted by the p-val-
ues obtained from the additive logistic regression, was introduced. This was executed 
separately for the top 50% of SNPs exhibiting significant positive and negative effects, 
yielding the following expressions:

where p and n are the total number of SNPs selected from the top 50% of significant 
p-values from the positive and negative effects, respectively.

Feature selection

The initial step involved the application of the GWAS methodology to preselect SNPs 
exhibiting a strong association with ANA-positive patients diagnosed with SLE [20]. To 
discern the most pertinent SNP attributes, an association test was employed using the 
univariate logistic regression method [22]. Candidate SNPs were singled out based on 
a p-value threshold of less than 1 ×  10–3, a measure taken to mitigate the effects of the 
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high-dimensional nature inherent to GWAS analyses. To mitigate concerns related to 
overfitting, the default RF algorithm was employed to identify the top 5% most impact-
ful SNPs for subsequent utilization as candidate features in the ensuing ML model con-
struction process.

Supervised Machine learning approaches

To forecast the likelihood of patients developing SLE within one year from the index 
date, six ML algorithms, LR, RF, SVM, LGBM, GTB, and XGB, were employed [11, 23]. 
The entire dataset (n = 2,838) was randomly divided into a training set (80%) and a test-
ing set (20%), maintaining proportional representation across both sets. To optimize the 
ML algorithms’ performance, hyperparameter optimization was employed. This optimi-
zation involved tuning the parameters using five-fold cross-validation and utilizing the 
GridSearchCV package within the training set. The validation set was used during the 
model training and optimization phases [24]. While fine-tuning the hyperparameters, 
the proposed models employ the training set to reach the optimized hyperparameters, 
without reference to the testing set. The optimized hyperparameters for each ML model 
are as described as Supplementary Table 1. Addressing the challenge of class imbalance, 
the Synthetic Minority Over-sampling Technique (SMOTE) was employed to balance 
the occurrences of the minority class [25]. Additionally, the TomekLinks method was 
implemented to regulate unnecessary instances of the majority class in the training set 
[25]. For feature interpretation and the pursuit of explainable artificial intelligence (XAI), 
the SHapley Additive exPlanations (SHAP) method was harnessed. This method enabled 
the identification of features closely associated with ANA-positive patients afflicted by 
SLE [26]. SHAP summary plots facilitated the visual representation of the relationship 
between feature values and the probability of the outcome. In order to robustly evaluate 
the performance of the ML algorithms in the context of binary classification with class 
imbalance, a set of metrics was employed. These metrics included accuracy, precision, 
sensitivity (recall), specificity, F1 score, Area Under the Receiver Operating Characteris-
tic curve (AUROC), and Area Under the Precision-Recall curve (AUPRC). These metrics 
collectively gauged the efficacy of each classifier model [12]. To evaluate the robustness 
of the proposed algorithms, the statistical technique of bootstrapping-based resampling 
is employed to reconstruct the training dataset. Subsequently, these reconstructed sets 
are repeatedly trained by six ML models within a total of 500 iterations proposed in 
the phase. The average of 500-iteration training and validation is as quantified as the 
AUROC. The whole procedure consists of the predictive process and ML methodology, 
as illustrated in Supplementary Fig. 1.

Statistical analysis

Continuous features are summarized as medians and their corresponding IQR, and their 
distributions were evaluated using a Wilcoxon rank-sum test. Binary features are rep-
resented as counts and percentages, and their associations were examined using either 
a Chi-square test or Fisher’s exact test, as appropriate. To uncover the relationships 
between ANA-positive patients and specific SNPs, as well as to elucidate the reasons for 
the absence of SLE development in patients with high-tier ANA (≥ 1:640), an associa-
tion test was conducted. This test involved logistic regression analysis of SLE disease and 
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SNPs in patients with an ANA titer equal to or exceeding 1:640. Univariate and multi-
variate logistic regression methods were employed to estimate the crude and adjusted 
odds ratios (aOR), accompanied by their corresponding 95% confidence intervals (CI). 
The data preprocessing and statistical analyses were executed using the R programming 
language (version 4.2.2), while the development of the ML models was carried out using 
Python (version 3.9.7). All statistical tests adhered to a two-sided configuration, with 
statistical significance set at p-values less than 0.05.

Results
Selection of candidate SNPs associated with SLE and non‑SLE controls

Of the 686,438 imputed SNPs, the GWAS analysis identified a specific subset associated 
with SLE and non-SLE patients, as represented in the Manhattan plot (Fig. 1). Given the 
excessively stringent threshold of 1 ×  10–5 (red line), the p-value threshold for selecting 
candidate genetic variants was adjusted to 1 ×  10–3 (blue line), culminating in the selec-
tion of 684 SNPs. These SNPs were subsequently incorporated into the PRS calculation 
and ML model construction.

Baseline characteristics of the study population

A total of 2,838 adults with available clinical data, SNP information, and ANA titers 
equal to or exceeding 1:80 was recruited for this study. Among them, 946 patients 
were diagnosed with SLE within one year following the index date (Table  1). The 
median age for the non-SLE and SLE patients was 45.3 and 42.6 years, respectively. 
Comparing the SLE and non-SLE patients, notable distinctions were observed. The 
SLE group exhibited a significantly lower prevalence of diabetes mellitus (p < 0.001), 
hypertension (p < 0.001), and hyperlipidemia (p < 0.001). Analysis of laboratory pro-
files revealed that the SLE patients had elevated levels of anti-dsDNA antibody, 

Fig. 1 Manhattan plot for SLE obtained from GWAS results
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Table 1 Baseline demographic and clinical characteristics of the study population

Anti‑dsDNA ab: anti‑dsDNA antibody; WBC: white blood cell; eGFR: estimated glomerular filtration rate; PRS: polygenic 
risk score; PRSw+ and PRSw‑: modified PRS weighted by the p‑value from SNPs among the top‑50% positive and negative 
effect, respectively
a p‑values were calculated by Wilcoxon rank‑sum test for continuous variables and Chi‑square test (or Fisher’s exact test as 

Variables ALL (n = 2838) Non‑SLE (n = 1892) SLE (n = 946) p‑valuea

Age at index date (year) 44.5 (33.7, 56.4) 45.3 (34.6, 57.3) 42.6 (31.9, 55.2)  < 0.001

Male, n (%) 348 (12.3) 232 (12.3) 116 (12.3) 1

Comorbidity, n (%)

 Diabetes mellitus 235 (8.3) 186 (9.8) 49 (5.2)  < 0.001

 Hypertension 415 (14.6) 321 (17.0) 94 (9.9)  < 0.001

 Hyperlipidemia 331 (11.7) 261 (13.8) 70 (7.4)  < 0.001

Laboratory profiles, median (IQR)

 Anti‑dsDNA ab (WHO unit/ml) 47.7 (22.1, 131.1) 32.9 (16.3, 66.3) 123.5 (42.1, 450.3)  < 0.001

 C3 (mg/dl) 110.2 (93.3, 128.0) 115.9 (100.4, 132.0) 97.6 (78.0, 114.9)  < 0.001

 C4 (mg/dl) 25.1 (18.5, 32.3) 27.4 (21.3, 34.3) 19.2 (12.7, 26.3)  < 0.001

 WBC (/mm3) 6200 (5010, 7900) 6430 (5260, 8063) 5680 (4500, 7445)  < 0.001

 Neutrophils (%) 63.8 (56.5, 72.0) 63.4 (56.5, 71.5) 64.6 (56.3, 73.3) 0.131

 Basophils (%) 0.5 (0.3, 0.7) 0.5 (0.3, 0.7) 0.4 (0.3, 0.6)  < 0.001

 Monocytes (%) 6.0 (4.8, 7.7) 5.9 (4.8, 7.2) 6.5 (5.0, 8.7)  < 0.001

 Eosinophils (%) 1.5 (0.7, 2.7) 1.7 (0.9, 2.9) 1.2 (0.5, 2.4)  < 0.001

 Hemoglobin (g/dl) 12.7 (11.6, 13.7) 12.9 (11.8, 13.8) 12.4 (11.3, 13.5)  < 0.001

 Erythrocyte  (106/μL) 4.3 (3.9, 4.7) 4.3 (4.0, 4.7) 4.2 (3.8, 4.6)  < 0.001

 Hematocrit 38.4 (35.0, 41.0) 38.7 (35.5, 41.2) 37.3 (34.0, 40.2)  < 0.001

 Mean corpuscular volume 89.8 (85.8, 93.1) 89.9 (85.9, 93.1) 89.5 (85.3, 93.0) 0.531

 Mean corpuscular hemoglobin 30.0 (28.4, 31.3) 30.0 (28.4, 31.2) 30.0 (28.4, 31.5) 0.189

 Mean corpuscular hemoglobin 
concentration

33.3 (32.4, 34.0) 33.2 (32.3, 33.9) 33.3 (32.5, 34.1) 0.001

 Erythrocyte distribution width 13.2 (12.5, 14.4) 13.2 (12.5, 14.3) 13.5 (12.7, 14.7)  < 0.001

 Platelets (/mm3) 250 (202, 301) 259 (210, 310) 233 (185, 284)  < 0.001

 Creatinine (mg/dL) 0.7 (0.6, 0.9) 0.7 (0.7, 0.9) 0.7 (0.6, 0.9) 0.129

 eGFR (mL/min/1.73  m2) 77.5 (65.3, 90.8) 77.2 (65.1, 90.2) 78.4 (65.4, 92.8) 0.018

Medication profiles, n (%)

 Glucocorticoid 1616 (56.9) 970 (51.3) 646 (68.3)  < 0.001

 Hydroxychloroquine 1714 (60.4) 960 (50.7) 754 (79.7)  < 0.001

 Cyclophosphamide 98 (3.5) 71 (3.8) 27 (2.9) 0.217

 Cyclosporin 153 (5.4) 114 (6.0) 39 (4.1) 0.034

 Mycophenolate mofetil 74 (2.6) 56 (3.0) 18 (1.9) 0.096

 Azathioprine 322 (11.3) 163 (8.6) 159 (16.8)  < 0.001

ANA titer at index date, n (%)

 1:80 845 (29.8) 731 (38.6) 114 (12.1)  < 0.001

 1:160 & 1:320 1224 (43.1) 855 (45.2) 369 (39.0) 0.002

  ≥ 1:640 769 (27.1) 306 (16.2) 463 (48.9)  < 0.001

ANA pattern profiles, n (%)

 AC1 1114 (39.3) 799 (42.2) 315 (33.3)  < 0.001

 AC4 1824 (64.3) 1374 (72.6) 450 (47.6)  < 0.001

 AC5 124 (4.4) 60 (3.2) 64 (6.8)  < 0.001

 AC19 110 (3.9) 72 (3.8) 38 (4.0) 0.783

 AC24 91 (3.2) 86 (4.5) 5 (0.5)  < 0.001

Polygenic risk profiles, median (IQR)

 PRS ‑2.6 (‑18.1, 12.3) ‑7.7 (‑21.7, 6.4) 8.6 (‑7.6, 22.7)  < 0.001

 PRSw + 70.2 (48.2, 102.9) 64.3 (44.8, 93.0) 85.3 (59.9, 118.5)  < 0.001

 PRSw‑ ‑71.3 (‑100.5, ‑51.5) ‑77.7 (‑105.1, ‑56.7) ‑57.2 (‑90.2, ‑42.5)  < 0.001
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monocytes, mean corpuscular hemoglobin concentration, erythrocyte distribu-
tion width, and eGFR. Conversely, levels of C3, C4, WBC, basophils, eosinophils, 
hemoglobin, erythrocyte count, hematocrit, and platelets were notably higher in 
the non-SLE group. Regarding medication profiles, SLE patients had significantly 
higher usage rates of glucocorticoids, hydroxychloroquine, and azathioprine. How-
ever, the proportion of patients using cyclosporin was significantly lower in the SLE 
group than in the non-SLE group. Assessing the ANA titer results at the index date. 
The non-SLE group had a significantly greater proportion of ANA titers at 1:80 
(p < 0.001) and at 1:160 and 1:320 (p = 0.002) compared with the SLE group. None-
theless, the contrast between the non-SLE and SLE groups was evident in patients 
with ANA titers equal to or exceeding 1:640, with respective counts of 306 (16.2%) 
and 463 (48.9%). Analyzing the ANA pattern profiles, the non-SLE patients dem-
onstrated higher proportions for AC1, AC4, and AC24, whereas AC5 exhibited an 
inverse trend. Additionally, when examining the median values of the PRS, PRSw + , 
and PRSw-, all three were significantly higher in the SLE group compared with the 
non-SLE group: PRS (8.6, IQR: -7.6 to 22.7), PRSw + (85.3, IQR: 59.9 to 118.5), and 
PRSw- (-57.2, IQR: -90.2 to -42.5).

Comparison of model performance on the unseen testing set

Table 2 presents the evaluation of the performance of six distinct ML algorithms on 
the unseen testing set using various metrics. Given the class imbalance within this 
study, particular attention was directed toward the assessment metrics of F1 score, 
AUROC, and AUPRC. The computed AUROC values consistently exceeded 0.8 across 
all six models, indicating favorable discrimination ability. Notably, the XGB and RF 
methodologies exhibited superior performance in the F1 score and AUPRC met-
rics. For a comprehensive depiction, the ROC and PR curves are presented in Fig. 2. 
Impressively, the XGB model had the highest performance, with an AUROC of 0.8748 
and an AUPRC of 0.8303. The RF model was also noteworthy and yielded commend-
able results with an AUROC of 0.8637 and an AUPRC of 0.8124. Both the five-fold 
cross-validation and bootstrapping validation methods reach similar results, with a 
95% CI for the AUROC, as shown in Supplementary Table 2.

appropriate) for categorical variables

Table 1 (continued)

Table 2 Model Performance of the proposed ML models on the unseen testing set

Classifier Accuracy Precision Sensitivity Specificity F1 score AUROC AUPRC

LR 0.7887 0.6949 0.6508 0.8575 0.6721 0.8456 0.7806

RF 0.8345 0.7746 0.7090 0.8971 0.7403 0.8637 0.8124

SVM 0.7729 0.6429 0.7143 0.8021 0.6767 0.8336 0.7740

LGBM 0.7993 0.7193 0.6508 0.8734 0.6833 0.8568 0.7834

GTB 0.7975 0.7033 0.6772 0.8575 0.6900 0.8584 0.7786

XGB 0.8345 0.7684 0.7196 0.8918 0.7432 0.8748 0.8303
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Interpretation of the risk factors associated with SLE in the ML models

To illuminate the contributions of features to the proposed ML models, the SHAP sum-
mary plot was employed, displaying the top 20 risk factors (Fig.  3). An upward trend 
in the SHAP value of a feature corresponds to an increased likelihood of developing 
SLE within one year. Notably, the features anti-dsDNA ab, AC4, PRS, and ANA titer 
1:80 exhibited similar trends and had the highest importance within the XGB and RF 
models. Furthermore, the SHAP summary values provide novel insights into the signif-
icance of individual SNP features. For instance, ANA-positive patients had a compara-
tively elevated risk of developing SLE within one year when their SNP features, such as 
rs9547929, rs2243430, and rs16856933, carried genotypes of 0/1 or 1/1. This information 

Fig. 2 Performance evaluation of the six proposed ML models. (A) ROC curve and (B) PR curve

Fig. 3 SHAP values of the top 20 features for identifying ANA‑positive patients with SLE. (A) XGB model and 
(B) RF model
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offers valuable understanding regarding the genetic factors associated with the develop-
ment of SLE in ANA-positive patients.

Association between SLE and SNPs among patients with high titer ANA

Clinically high-titer ANA (≥ 1:640) is associated with a diagnosis of SLE. Further logistic 
regression analyses were conducted on SNPs that showed positive and negative correla-
tions with SLE in the subgroup of participants with high-titer ANA (Table 3). Six SNPs 
(rs13029062, rs71909377, rs62175694, rs13268741, rs6971633, and rs16905611) posi-
tively correlated with an SLE outcome were identified. In addition, five SNPs (rs6455889, 
rs9910586, rs712735, rs5020365, and rs4346053) were discovered as protective factors 
against SLE in the high-titer ANA group.

Table 3 Association between SLE and SNPs among patients with high‑titer ANA (≥ 1:640) at index 
date

a Adjusted for age, sex, diabetes, hypertension, and hyperlipidemia; * p < 0.05, ** p < 0.01, *** p < 0.001

Gene SNP SNP value n Crude OR (95% CI) Adjusted OR (95% CI)a

VIT rs13029062 0 429 Reference Reference

1 285 1.24 (0.91, 1.68) 1.32 (0.95, 1.82)

2 55 3.06 (1.59, 6.38)** 3.00 (1.52, 6.39)**

rs71909377 0 343 Reference Reference

1 342 1.38 (1.02, 1.87)* 1.49 (1.08, 2.06)*

2 84 2.19 (1.31, 3.76)** 2.53 (1.49, 4.44)***

rs62175694 0 550 Reference Reference

1 201 1.54 (1.10, 2.17)* 1.54 (1.08, 2.21)*

2 18 2.63 (0.93, 9.37) 2.47 (0.82, 9.42)

SLC7A2 rs13268741 0 232 Reference Reference

1 388 1.41 (1.01, 1.95)* 1.43 (1.01, 2.02)*

2 149 1.92 (1.25, 2.97)** 1.94 (1.24, 3.06)**

AUTS2 rs6971633 0 259 Reference Reference

1 382 1.53 (1.11, 2.11)** 1.64 (1.17, 2.31)**

2 128 1.44 (0.94, 2.23) 1.49 (0.95, 2.36)

rs16905611 0 335 Reference Reference

1 344 1.57 (1.15, 2.14)** 1.58 (1.15, 2.19)**

2 90 1.45 (0.90, 2.36) 1.35 (0.82, 2.25)

PACRG rs6455889 0 324 Reference Reference

1 357 0.92 (0.68, 1.26) 0.97 (0.70, 1.34)

2 88 0.51 (0.32, 0.82)** 0.53 (0.32, 0.88)*

rs9910586 0 438 Reference Reference

1 289 0.81 (0.60, 1.10) 0.81 (0.59, 1.11)

2 42 0.48 (0.25, 0.92)* 0.49 (0.25, 0.95)*

rs712735 0 324 Reference Reference

1 353 0.85 (0.62, 1.16) 0.78 (0.56, 1.08)

2 92 0.63 (0.40, 1.01) 0.59 (0.36, 0.97)*

rs5020365 0 245 Reference Reference

1 365 0.74 (0.53, 1.04) 0.76 (0.53, 1.08)

2 159 0.50 (0.33, 0.75)*** 0.50 (0.32, 0.77)**

rs4346053 0 414 Reference Reference

1 296 0.69 (0.51, 0.94)* 0.72 (0.52, 0.99)*

2 59 0.71 (0.41, 1.23) 0.72 (0.40, 1.29)
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Prediction of SLE in selected patient populations by ML algorithm

Figure  4 delineates the efficacy of the ML model in stratifying selected patients into   
those with and without SLE based on ANA titers, ANA patterns, SNPs, PRS, and rel-
evant clinical features. As evident in Fig. 4 (A) and (D), patients with ANA titers of 1:80 
and 1:640 manifest predicted probabilities of SLE at 0.009 and 0.977, respectively, when 
factoring in the cumulative influence of ANA patterns, SNPs, PRS, and clinical fea-
tures that are either suggestive or contraindicative of SLE diagnosis. Conversely, Fig. 4 
(B) showcases the capacity of the ML model to accurately negate the diagnosis of SLE 
in patients presenting with high-titer ANA (1:640), taking into account corresponding 
ANA patterns, SNPs, PRSw, and clinical features. Similarly, Fig. 4 (C) depicts a scenario 
where the ML model correctly identified a patient with a low-titer ANA (1:80) as having 
SLE, based on ANA patterns, SNPs, PRS, PRSw, and pertinent clinical features.

Discussion
This study is the first to construct ML models for the identification of SLE patients 
from a cohort with positive ANA tests, incorporating genome-wide SNPs, PRS, and 
clinical features. Autoantibody profiles, ANA patterns, complement levels, and genetic 

Fig. 4 Predicted probability of SLE in selected patient populations with low titer (1:80, A and C) and high titer 
(1:640, B and D) ANA by XGB model



Page 12 of 15Chung et al. BioData Mining            (2024) 17:1 

variations were ascertained as principal contributing factors for SLE. Concurrently, in 
the subgroup with high-titer ANA, a characteristic indicative of SLE diagnosis, SNPs 
positively and negatively associated with SLE were discerned. These results shed light on 
the potential for integrating ML models into the diagnostic workflow for systemic auto-
immune disease, fostering a more precise, comprehensive, and data-informed approach 
to patient diagnosis and care.

ML models have been extensively explored for diagnosing SLE, defining clinical phe-
notypes, determining outcomes, and informing therapeutic decisions [23]. Previous 
studies utilizing ML to facilitate SLE diagnosis have employed diverse input data, includ-
ing EHRs, genetic biomarkers, proteomics, lipidomes, or a combination of these data 
types [23, 24, 27–32]. This study is the first to incorporate genome-wide SNPs, PRS, and 
EHRs in an ML analysis. Moreover, ML algorithms for diagnostic purposes in previous 
studies included RF, LASSO, SVM, LR, XGB, and Partial Least Square [23, 24, 27–32]. 
This study is the first to attempt to compare the diagnostic accuracy among six ML 
models. In line with the classification criteria proposed by EULAR/ACR, this study is 
novel in integrating the ANA test as the primary criterion for cohort enrollment. This 
study also included the ANA titer and ANA pattern in the input data for the ML models. 
These innovative aspects of this research pave the way for potential clinical applications, 
particularly for rheumatologists encountering patients presenting with autoimmune 
features and a positive ANA test. We postulate that ANA patterns, PRS, SNPs, and 
autoantibody profiles could provide additional diagnostic insights for SLE. Future inves-
tigations are necessary to validate these findings and further explore the potential of this 
integrated ML approach in diagnosing and managing SLE.

This study identified six SNPs positively associated with SLE and five SNPs nega-
tively associated with SLE in participants with high-titer ANAs. The VIT gene, which 
is involved in iron transportation, metabolism, and antioxidant protein catalase activ-
ity, was among these [33]. Another gene, SLC7A2, encodes a cationic amino acid trans-
porter and has been reported to be associated with inflammatory responses in asthma 
[34]. The AUTS2 gene, implicated in the neurodevelopmental process and acute lymph-
oblastic leukemia, was also noted [35, 36]. Lastly, the PACRG  gene, linked with Parkin-
son’s disease and increased susceptibility to leprosy, was identified [37, 38]. Notably, 
none of these genes have been previously reported in relation to SLE. This study, there-
fore, presents a potential approach to discovering novel genetic variants associated with 
autoimmune diseases. Future research is needed to clarify the mechanistic associations 
between these genes and autoimmunity, further enhancing the understanding of the 
genetic underpinnings of such diseases.

To delve into potential risk factors and achieve optimal performance, particularly 
within the context of an imbalanced dataset, the employment of an advanced ensem-
ble ML framework was a judicious choice. Additionally, XAI was applied to assess SLE 
disease risk and select pivotal SNP features for predictive modeling. Prior research 
has demonstrated that incorporating SNP and PRS features can substantially enhance 
disease prediction accuracy [12]. The notion of PRS, encompassing the cumulative 
effects of numerous candidate SNP features, offers invaluable insights for detecting 
complex diseases and identifying high-risk patients [21]. However, traditional com-
putation methods of PRS [21, 39, 40] neglect variations of significance of p-value and 
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directional attributes of SNP features [41, 42]. By integrating potential SNPs, the PRS 
makes the importance of cumulative effect sizes specific. Based on the magnitude of 
PRS, such as high or low quartiles, we can establish an association with disease pro-
gression [42, 43]. Consequently, two novel features resulted from the adjusted PRS 
are formulated; by the features, the accuracy of predicts for case group and control 
group can be greatly enhanced. Figure 3 illustrates the outcomes, revealing that con-
trol and case patients can be discerned by the PRSw + and PRSw- features, respec-
tively. Notably, this distinction holds even in the context of enrolling ANA-positive 
patients, which might lead to a somewhat homogenous population within the study.

Despite being the first study to integrate the ANA test and SLE classification work-
flow as enrollment criteria, this research has several limitations. First, the study 
design is retrospective, which inevitably leads to incomplete data in the EHRs. Addi-
tionally, structured assessments for autoimmune clinical features were not prospec-
tively collected, which might have affected the richness of the input data. Secondly, 
the input data for the ML models did not encompass cytokine, transcriptomic, or 
proteomic datasets, thereby possibly limiting the breadth of these mechanistic inter-
pretations. Lastly, the study cohort was exclusively composed of Taiwanese-ethnic 
Chinese participants. As such, the results may not be universally applicable, restrict-
ing their extrapolation to populations of other ancestries.

In conclusion, this study establishes a novel application of ML models for the diag-
nosis of SLE using genomic and clinical data. The integration of ANA tests, genomic 
data of SNPs and PRS, and clinical features offer a promising approach for identifying 
patients with SLE, thereby potentially improving diagnostic precision. Moreover, this 
research introduces a possible method for discovering novel genetic variants associ-
ated with autoimmune diseases. This study offers an encouraging step toward inte-
grating ML into the diagnostic workflow for systemic autoimmune diseases.
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