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Abstract 

Background and objective: The classification of glioma subtypes is essential for pre-
cision therapy. Due to the heterogeneity of gliomas, the subtype-specific molecular 
pattern can be captured by integrating and analyzing high-throughput omics data 
from different genomic layers. The development of a deep-learning framework enables 
the integration of multi-omics data to classify the glioma subtypes to support the clini-
cal diagnosis.

Results: Transcriptome and methylome data of glioma patients were preproc-
essed, and differentially expressed features from both datasets were identified. 
Subsequently, a Cox regression analysis determined genes and CpGs associated 
with survival. Gene set enrichment analysis was carried out to examine the biological 
significance of the features. Further, we identified CpG and gene pairs by mapping 
them in the promoter region of corresponding genes. The methylation and gene 
expression levels of these CpGs and genes were embedded in a lower-dimensional 
space with an autoencoder. Next, ANN and CNN were used to classify subtypes using 
the latent features from embedding space. CNN performs better than ANN for subtyp-
ing lower-grade gliomas (LGG) and glioblastoma multiforme (GBM). The subtyping 
accuracy of CNN was 98.03% (± 0.06) and 94.07% (± 0.01) in LGG and GBM, respectively. 
The precision of the models was 97.67% in LGG and 90.40% in GBM. The model sensi-
tivity was 96.96% in LGG and 91.18% in GBM. Additionally, we observed the superior 
performance of CNN with external datasets. The genes and CpGs pairs used to develop 
the model showed better performance than the random CpGs-gene pairs, preproc-
essed data, and single omics data.

Conclusions: The current study showed that a novel feature selection and data inte-
gration strategy led to the development of DeepAutoGlioma, an effective framework 
for diagnosing glioma subtypes.
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Introduction
The accurate classification of brain tumors is crucial in modern clinical practice. For 
clinical decision-making, it is vital to distinguish various types of brain tumors, such as 
subtypes and primary gliomas, from metastases. Presently, the characterization of brain 
tumors is mainly performed based on imaging and histopathology [1–3]. Due to the het-
erogeneity of neoplastic brain tissue and the mixed characteristics of gliomas, it is often 
difficult to separate the subtype by imaging. Furthermore, most histopathology-based 
procedures suffer from intraobserver and interobserver variability, resulting in subopti-
mal clinical outcomes [4, 5]. As a result, new clinical variables are required for the strati-
fication of gliomas for precision therapy. Gliomas are the most prevalent type of brain 
tumor, accounting for approximately 33% of all cases. Gliomas are classified according to 
how rapidly or slowly the cells divide. Slower-growing gliomas are known as lower-grade 
gliomas (LGG), whereas more aggressive gliomas are named glioblastoma multiforme 
(GBM), a Grade IV cancer. LGG is more common in younger people; instead, GBM is 
more frequently diagnosed in older patients. The LGG is a grade II and III tumor classi-
fied into three subtypes: astrocytoma, oligodendroglioma, and oligoastrocytoma. Some 
of these LGGs develop into GBM, while others remain in the same stage for an extended 
period [6, 7]. Similarly, there are three subtypes of GBM, i.e., classical, proneural, and 
mesenchymal [8]. Due to the diverse subtypes of lower and higher-grade gliomas, an 
effective stratification methodology is required for improved diagnosis. Perturbations at 
various molecular layers (such as gene expression, methylation, etc.) result in the emer-
gence of all types of human cancer. Moreover, in gliomas, the quantum of molecular het-
erogeneity is too high, posing a further challenge to early detection and understanding 
of disease etiology. In this aspect, analysis of high-throughput omics data from different 
molecular layers can decipher the link between molecular signatures and cancer phe-
notypes. Indeed, multi-omics data integration can elucidate how the molecular altera-
tions at different layers contribute to disease formation and provide a global view of the 
molecular signature of disease. Previous studies have primarily relied on mono-omics 
data, specifically gene expression data, to develop a model for classifying glioma sub-
types. Consequently, these models fail to account for other molecular changes in glioma, 
such as epigenetic modifications, which play a significant role in the development of 
cancer [9–11]. The epigenetic modifications (or methylations) directly regulate the tran-
scriptomic landscape of the cell. Hypermethylation of CpG sites on promoter regions 
generally reduces gene expression, whereas hypomethylation elevates gene expression 
[12, 13]. Therefore, the biologically relevant diagnostic model can be developed by inte-
grating these two interlinked biological phenomena. The integration of multi-omics data 
is a great challenge, and powerful integration methods can provide an efficient diagnos-
tic tool to support the clinician [14]. Recently, deep learning (DL) models have been suc-
cessfully applied to integrate high-dimensional genomics and epigenomics data. When 
analyzing such data, a common approach is to find data embedded in a lower-dimen-
sional space. The compressed features from embedding space can be good predictors in 
predictive models. Autoencoder is a deep learning-based nonlinear embedding approach 
recently implemented to integrate multi-omics data to develop diagnostic and predic-
tive models [15–17]. In the present study, we developed an autoencoder and deep-neural 
network-based, biologically relevant novel approach for integrating the transcriptome 
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and methylome and subsequently classified the subtypes of LGG and GBM. To this end, 
we first identified the differentially expressed genes (DEGs) and differentially methylated 
regions (DMRs). Then we performed the univariate Cox regression analysis to determine 
the DEGs and DMRs associated with patient survival. Next, we mapped the DMR to 
the DEG through the promoter regions to find the altered methylation affecting gene 
expression. Finally, we implemented an autoencoder with concatenated inputs to inte-
grate the survival-linked genes and CpGs into promoters. The autoencoder reduces the 
dimensionality of the corresponding gene expression and methylation matrices. Then, 
the new feature from the autoencoder was used to make DL-based models for subtyp-
ing. The current framework achieves a superior accuracy of > 94% for subtyping LGG 
and GBM. The framework is called DeepAutoGlioma. The present work introduces a 
new way for subtyping brain cancer, and we think this research will shed light on the 
DL-based clinical support system for accurate disease prediction using multi-omic data.

Results
Identification of biologically relevant features for classification of LGG and GBM subtypes

Deregulated gene expression and aberrant methylation are the hallmarks of human 
cancer [18]. Methylation status in the promoter region determines the level of gene 
expression. Therefore, linking the methylome and transcriptome is crucial in find-
ing the genetic and epigenetic features that cause cancer, which is also important 
for making biologically relevant models. To connect the methylome and transcrip-
tome, patients with transcriptome and methylome profiles were chosen to identify 
the upregulated and downregulated genes (DEGs); and hypomethylated and hyper-
methylated CpGs (DMRs). We used a z-score to screen the DEGs and DMRs (see 
“Materials and methods” section). A z-score greater than 1 or less than − 1 indi-
cates the gene expression and methylation are greater or less than the population 
mean, respectively. We identified the DEGs and DMRs for each subtype of LGG and 
GBM. In LGG, we found a total of 3972, 4024, and 4088 DEGs (Fig. 1A) and 177,458, 
181,957, and 181,163 DMRs (Fig.  1B) in astrocytoma, oligoastrocytoma, and oligo-
dendroglioma, respectively. In subtypes of GBM, we found a total of 3910, 3767, and 
3745 DEGs (Fig. 1C), and 211,764, 208,111, and 190,743 DMRs (Fig. 1D) in classical, 
mesenchymal, and proneural, respectively. We also found that differences in average 
expression and methylation level between z > 1 and z <- 1 are statistically significant 
(p-value < 0.001) in all subtypes (Fig.  1A-D). Next, we performed a univariate Cox 
regression analysis to find the correlation between patient prognosis with DEGs and 
DMRs. We separately generated the univariate prognostic models for each DEG and 
DMR. Next, we screened the survival-associated genes and CpG sites based on the 
p-value < 0.05. Our results showed that, in LGG, a total of 2295 DEGs and 18,068 
DMRs, and in GBM, a total of 1055 DEGs and 5033 DMRs were linked to the patient’s 
survival. We found that a total of 50.83% of DEGs and 20.35% of DMR in LGG; and 
23.30% of DEGs and 5.41% of DMR in GBM were linked with patient survival. This 
indicates that a higher percentage of genes, or CpGs, are not linked with LGG or 
GBM. Therefore, univariate Cox analysis facilitates identifying the biologically impor-
tant and cancer-associated features, which can lead to the development of a clini-
cally relevant DL model while reducing the dimension of the data to build better-fit 
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prediction models. Subsequently, we mapped the survival-associated CpGs in pro-
moters (TSS1500, TSS200, the first exon, and the 5′ UTR) and their corresponding 
survival-associated genes. The linking of these two layers of genomic data identifies 
the CpG-gene pairs, which are involved in cancer progression. We found that in LGG, 
a total of 1110 genes (DEGs) and 3204 CpGs (DMRs) in the promoter, and in GBM, 
268 genes (DEGs) and their 447 CpGs (DMRs) in the promoter are linked to patient 
survival (Supplementary Table  1). If a gene is involved in patient survival and if its 
methylation level in the promoter, which regulates its expression, is also linked to sur-
vival, this indicates an additive impact of methylation and gene expression on patient 
prognosis. We believe that integrating methylation levels with gene expression data 
will be more biologically valid for diagnostic model development. We also found that 
these genes (prognostic genes) are involved in biological processes and pathways that 
are linked to cancer (Fig.  1E and F), such as signaling by ALK in cancer [19], cell-
cell adhesion [20], signaling by receptor tyrosine kinase [21], PID INTEGRIN A4B1 
pathway [22], gliogenesis [23], positive regulation of cell adhesion [24] and VEGFA-
VEGFR2 signaling pathways [25, 26]. Therefore, these prognostic genes and CpGs 
were used for autoencoder-based data integration and model building.

Fig. 1 Boxplots show the difference in gene expression and methylation level between Z > 1 and 
Z < − 1. A DEGs and B DMRs in each LGG subtype; C DEGs and D DMRs in each GBM subtype; E and F Bar 
plots represent significantly enriched Biological processes and pathways of genes used as input in the 
autoencoder (***p < 0.001). DEGs: differentially expressed genes, DMRs: differentially methylated CpGs
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Integration of gene expression and its promoter methylation level by autoencoders shows 

superior accuracy in subtyping

In the previous section, we derived the list of genes and their CpG sites in promoters 
linked to patient survival using univariate Cox regression analysis. Next, we extracted 
the gene expression and methylation matrix. We divided these datasets into training 
(70%) and validation (30%) sets. 70% of the data was utilized to optimize the model’s 
parameters and evaluate the performance of each model, and the remaining 30% of 
the data was employed as independent predictors. The gene expression and methyla-
tion matrices were fed into the autoencoder with concatenated inputs (CNC-AE). The 
methylation and gene expression levels are combined and compressed in the latent space 
or bottleneck layer learned by the autoencoder [14, 17, 27–29]. All the dimensions and 
parameters of the different layers in the autoencoder were optimized. The autoencoder 
consists of two parts: an encoder and a decoder network. In the encoder network, gene 
expression and DNA methylation profiles of LGG and GBM are first encoded into two 
4314 and 715-dimensional vectors separately through hidden layers, respectively. Next, 
we set the dimensions of the bottleneck layers at 400 and 100 for LGG and GBM. In 
the decoder network, the latent variables were again used to decode the original input 
data, and this was used to measure the reconstruction loss, which indicates the perfor-
mance of the autoencoder. The network structure of the decoder is similar to the mirror 
image of the encoder network (Fig. 2). If a latent variable captures the actual data pat-
tern, i.e., intrinsic relationships between the variables, then the difference between the 
encoded and decoded vectors will be less. We measured the reconstruction loss using 
the mean squared error (MSE). We found that MSE was significantly lower, i.e., 0.04 in 
LGG and 0.04 in GBM. This shows that the autoencoder efficiently learned the pattern 
in gene expression and methylation and encoded it in the latent space. Then these latent 
variables were used to develop the DL models for the classification of LGG and GBM 
subtypes.

We implemented two DL algorithms, i.e., artificial neural networks (ANN) and con-
volutional neural networks (CNN), and compared their performance for subtype clas-
sification. During the model training step, we used the grid search method to find the 
best combination of hyperparameters (see material and methods). Then, using these 
optimal hyperparameters, we performed stratified k-fold cross-validation (k = 10) on the 
latent variables and computed the average performance measures for each DL model 
(Table  1). Average accuracy, recall, precision, F1-score, false positive rate (FPR), geo-
metric mean (GM), and Matthew’s correlation coefficient (MCC) were used to assess 
the model’s performance (see materials and methods). We found that CNN models had 
higher prediction accuracy in subtyping, i.e., 98.03% (95% CI, 98.02–98.038) and 94.07% 
(95% CI, 94.04–94.10) for LGG and GBM, respectively, than the ANN models. We 
found that FPR, 0.01 (95% CI, 0.005–0.015), and 0.02 (95% CI, 0.01–0.03) were minimal, 
and the MCC scores were high,i.e., 0.96 (95% CI, 0.95–0.97) and 0.93 (95% CI, 0.89–
0.97) in the case of CNN (Table 1). The higher MCC score represents a good correla-
tion between the observed and predicted classes. Next, we performed the classification 
using validation datasets to check the reproducibility of the DL framework. We found 
the accuracy of subtype classification [for LGG 95.23% (95% CI, 95.22–95.24) and GBM 
90.26% (95% CI, 90.20–90.32)] of CNN was superior, and the MCC score was 0.90 (95% 
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CI, 0.86–0.94) and 0.92 (95% CI, 0.84–1) (Table 2). The accuracy of the current frame-
work for subtyping LGG and GBM outperforms that of earlier machine learning (ML) 
and deep learning (DL) models [11, 30]. We named this framework DeepAutoGlioma 
(Fig.  3). We also observed the superior performance of DeepAutoGlioma using exter-
nal GEO datasets (Table  3). The combination of feature genes and CpG sites in the 
model construction likely accounts for the impressive performance of DeepAutoGlioma. 
In most cases, feature selection approaches that rely on ML or DL ignore the biologi-
cal relevance of features [31–33]. However, here we screened the DEGs and DMRs in 
each subtype, which were associated with LGG and GBM patients’ survival. Also, the 
genes and methylation sites used as inputs into the autoencoder are linked through their 
genomic locations. Together, these approaches reduce the dimension of the data, which 
significantly influences the model’s performance. There are very limited studies avail-
able on glioma subtype classification using multi-omics data. The study conducted by Xu 

Table 1 Performance evaluation of LGG and GBM subtypes classification

Methods Performance measures (Average of 10 fold cross-validation)

Accuracy 
[95% CI]

Precision 
[95% CI]

Recall 
[95% CI]

F1-score 
[95% CI]

FPR [95% 
CI]

Gmean 
[95% CI]

MCC [95% 
CI]

LGG ANN 95.40% 92.50% 92.73% 92.45% 0.03 95.28% 0.89

[95.39–
95.41]

[92.48–
92.52]

[92.72–
92.74]

[92.33–
92.57]

[0.02–
0.038]

[95.27–
95.29]

[0.87–0.91]

CNN 98.03% 97.67% 96.96% 96.97% 0.01 97.99% 0.96

[98.02–
98.038]

[97.66–
97.679]

[96.95–
96.97]

[96.96–
96.98]

[0.005–
0.015]

[97.98–
97.998]

[0.95–0.97]

GBM ANN 92.19% 88.05% 89.77% 87.75% 0.03 94.76% 0.9

[92.16–
92.22]

[88.00- 
88.10]

[89.73–
89.81]

[87.70–
87.80]

[0.02–0.04] [94.74–
94.78]

[0.86–0.94]

CNN 94.07% 90.40% 91.18% 90.25% 0.02 96.51% 0.93

[94.04–
94.10]

[90.35–
90.45]

[91.13–
91.23]

[90.20–
90.30]

[0.01–0.03] [96.49–
96.53]

[0.89–0.97]

Table 2 Classification performance of deep learning algorithms on LGG and GBM subtypes for 
validation set

Methods Performance measures (Average of 10 fold cross-validation on test datset)

Accuracy 
[95% CI]

Precision 
[95% CI]

Recall 
[95% CI]

F1-score 
[95% CI]

FPR [95% 
CI]

Gmean 
[95% CI]

MCC [95% 
CI]

LGG ANN 90.18% 82.40% 84.23% 82.42% 0.07 90.06% 0.8

[98.16–
98.20]

[82.35–
82.45]

[84.19–
84.27]

[82.37–
82.47]

[0.05–0.09] [90.04–
90.08]

[0.75–0.85]

CNN 95.23% 92.08% 92.63% 91.84% 0.03 95.30% 0.9

[95.22–
95.24]

[92.05–
92.11]

[92.60- 
92.66]

[91.83–
91.87]

[0.02–0.04] [95.29–
95.31]

[0.86–0.94]

GBM ANN 93.85% 93.85% 93.85% 93.85% 0 1 1

[93.79–
93.91]

[93.79–
93.91]

[93.79–
93.91]

[93.79–
93.91]

[0–0] [1–1] [1–1]

CNN 90.26% 85.38% 87.69% 86.15% 0.02 95.26% 0.92

[90.20–
90.32]

[85.29–
85.47]

[87.62–
87.76]

[86.06–
86.24]

[0–0.04] [95.21–
95.31]

[0.84–1]
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Fig. 3 Subtype classification framework of the DeepAutoGlioma. Methylome and transcriptome data 
are preprocessed, differentially expressed genes (DEGs) and differentially methylated regions (DMRs) are 
identified, and clinically significant features are extracted. Further, these features are mapped according to 
the genomic region to integrate the CpG-gene pair. Then, clinically relevant methylation (CpGs) and gene 
expression data are fed into the autoencoder, and latent variables are extracted to build deep learning 
models for subtyping brain cancer

Table 3 Classification performance of DeepAutoGlioma on external datasets

Methods Performance measures (Average of 10 fold cross-validation)

Accuracy 
[95% CI]

Precision 
[95% CI]

Recall 
[95% CI]

F1-score 
[95% CI]

FPR [95% 
CI]

Gmean 
[95% CI]

MCC [95% 
CI]

LGG ANN 91.89% 91.20% 88.00% 86.90% 0.06 92.13% 0.83

[91.85–
91.93]

[91.15–
91.25]

[87.94–
88.06]

[86.83–
86.97]

[0.02–0.10] [92.09–
92.17]

[0.74–0.92]

CNN 91.38% 91.38% 91.38% 91.38% 0 1 1

[91.34–
91.40]

[91.34–
91.40]

[91.34–
91.40]

[91.34–
91.40]

[0–0] [1–1] [1–1]

GBM ANN 84.10% 74.48% 79.48% 76.15% 0.06 90.55% 0.72

[84.01–
84.18]

[74.35–
74.60]

[79.37–
79.58]

[76.03–
76.26]

[0.02–0.10] [90.49–
90.60]

[0.58–0.86]

CNN 86.41% 79.87% 83.33% 81.02% 0.05 92.92% 0.76

[86.33–
86.49]

[79.75–
79.99]

[83.23–
83.43]

[80.90–
81.13]

[0.01–0.09] [92.87–
92.97]

[0.62–0.90]
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et al. [34] demonstrates that the integration of multi-omics data leads to enhanced accu-
racy (88.50% accuracy) in the classification of glioblastoma subtypes as compared to the 
mono-omics data alone. However, DeepAutoGlioma exhibits a higher level of accuracy 
in subtype classification for both LGG and GBM. In our opinion, biologically relevant 
inputs to the autoencoder provided superior accuracy (95–98%) in the subtype classifi-
cation achieved with CNN.

DL models with a random feature set, preprocessed data and single omics data

To validate our findings and better understand the role of feature selection in model 
performance, we extended the DL-based model by feeding different sets of inputs (fea-
tures) to the autoencoder and compared their performance to that of DeepAutoGlioma. 
First, we compared the performance of mapped CpGs and gene expression with rand-
omized CpG-gene pairs as input into the autoencoder. We randomly selected the CpGs 
(n = 3204 for LGG and n = 447 for GBM) and genes (n = 1110 for LGG and n = 268 for 
GBM) from preprocessed data. Then this unmapped, randomly selected methylation and 
gene expression data were fed into the autoencoder. Then, ANN and CNN were used to 
classify the subtypes using the latent features from random datasets. We repeated the 
process ten times, and the accuracy varied from 60.68 to 71.43% in LGG and 62.42 to 
72.14% in GBM in all iterations (Supplementary Tables 2 and 3). And the average accu-
racy of all iterations in CNN was 66.12 and 66.59% in LGG and GBM, respectively. 
When compared to DeepAutoGlioma, the average accuracy of all ten iterations in CNN 
is significantly less (p-value < 0.001, Fig. 4). Not only the accuracy, but other parameters 
such as precision, MCC, and FPR are very low compared to DeepAutoGlioma. This find-
ing confirms that mapping the promoter methylation region to the gene has aided in 
predicting LGG and GBM subtypes with greater accuracy and precision.

To better understand the significance of biologically relevant features, such as DEGs 
and DMRs, as well as univariate Cox regression analysis for feature selection, we run 
the autoencoder on preprocessed data and then classify using ANN and CNN. LGG and 
GBM gene expression and methylation data matrices contain 14,517 and 14,125 genes, 
respectively, as well as 139,403 and 141,672 CpGs. The autoencoder was then run on 
these preprocessed datasets, and the accuracy of prediction, as well as other model eval-
uation parameters, were measured (Supplementary Table 4). When compared to Deep-
AutoGlioma, the prediction accuracy is significantly (p-value < 0.001) lower (Fig. 4). The 
subtype classification accuracy of LGG was 83.73% (95% CI, 83.71–83.74) in CNN and 
69.86% (95% CI, 69.852–69.868) in ANN. Whereas in GBM classification, accuracy was 
61.54% (95% CI, 61.53–61.55) in CNN and 67.57% (95% CI, 67.53–67.61) in ANN. Fur-
thermore, the results of other evaluation parameters were too low to be considered. This 
unequivocally demonstrates that cancer-associated features or features that are biologi-
cally relevant played a crucial role in achieving higher classification accuracy.

Furthermore, we compared classification accuracy between di-omics and mono-
omics data. The mono-omics data, i.e., methylation or gene expression matrix, was used 
as input to the autoencoder. As previously stated, we extracted compressed features 
from latent space, used DL algorithms, and calculated average performance metrics for 
each DL model. We observed that in the case of LGG, the single omics data showed 
good accuracy of prediction, i.e., 96.26% (95% CI, 96.25–96.27) and 96.54% (95% CI, 
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96.53–96.55) using gene expression and methylation data, respectively (Supplementary 
Table  5). However, these accuracies are lower in comparison to the DeepAutoGlioma 
(98.03%). However, the accuracy of prediction using test and external gene expres-
sion was 66.07% (95% CI, 66.06–66.08) and 63.81% (95% CI, 63.77–63.85), and meth-
ylation was 66.51% (95% CI, 66.50–66.52) and 74.79% (95% CI, 74.77–74.81), which is 
considerably less. Whereas in the case of GBM subtype prediction accuracy using gene 
expression and methylation data was 91.54% (95% CI, 91.53–91.57) and 43.89% (95% 
CI, 43.87–43.91), respectively (Supplementary Table 5). Although gene expression data 
showed higher accuracy, however, in the test and external datasets, the accuracy was 
85.48% (95% CI, 85.37–85.59) and 72.68% (95% CI, 72.63–72.73). We saw good predic-
tion accuracy in LGG and GBM utilizing mono-omics data, particularly gene expression, 
but models were unable to accurately predict subtypes using test and external datasets. 
This demonstrated that the individual omics data were inadequate for cancer subtype 
classification with superior accuracy. The models trained on multi-omics data outper-
formed those trained on single-omics data, owing to the fact that multi-omics data con-
tains a wealth of information not found in a single type of omics data alone.

Discussion
It is well established that molecular perturbations in different genomic layers cause 
cancer occurrence and progression. Therefore, it is crucial to perform integrative 
approaches that combine multi-omics data to comprehend the disease mechanism 
and develop novel diagnostic tools for brain cancer detection. The integration of high-
throughput omics data from distinct genome layers can capture the interrelationships of 
biomolecules and facilitate interpreting their function in disease onset. Transcriptom-
ics and epigenomics data are unpaired because they are usually measured in separate 
experiments, which demands effective and efficient in-silico multi-omics integration 
[28]. In the present study, we designed the deep autoencoder and deep learning (ANN 
and CNN)-based clinically relevant framework for integrating the methylome and tran-
scriptome to classify the glioma subtype with superior accuracy. To strengthen the 
biological relevance, we screened patient samples with transcriptome and methylome 
profiles and measured the DEGs and DMRs in each subtype of LGG and GBM cancer. 
Further, we performed a univariate Cox regression analysis to identify the DEGs and 
DMRs associated with the patient’s survival. The univariate Cox regression approach 
helps to determine clinically relevant feature genes and CpG sites based on the patient’s 
overall survival information; further, it also decreases the data dimension. Next, we map 
the CpGs and genes based on the promoter regions. The linked CpGs and genes were 
used as input in the autoencoder. As a result, the input features in the autoencoder were 
biologically and clinically relevant in three ways: first, they are differentially regulated; 
second, they are linked to the patient’s survival; and third, methylation in the promoter 
is linked to gene expression. We found that using latent variables learned by the autoen-
coder as an input in deep learning models (ANN and CNN), we were able to predict 
the subtypes of LGG and GBM with an accuracy of 98.03% (95% CI, 98.02–98.038) and 
94.07% (95% CI, 94.04–94.10), respectively, using CNN. Furthermore, the current frame-
work classifies the GBM and LGG subtypes using the external datasets with 86.41% 
(95% CI, 86.33–86.49) and 91.89% (95% CI, 91.85–91.93) accuracy, respectively. On the 
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other hand, autoencoder-based deep learning with omics data, randomized CpG-gene 
pair, and preprocessed dataset did not perform well compared to DeepAutoGlioma. We 
believe that feature screening using various statistical methods and integration of di-
omics data using autoencoders play an essential role in achieving higher subtyping accu-
racy. The current study demonstrated how data integration could lead to the discovery 
of novel patterns in transcriptomics and epigenomics data and aid in developing efficient 
diagnostic tools. It is anticipated that multimodal learning approaches for multi-omics 
data analysis will become more prevalent in cancer diagnosis, allowing physicians to 
more accurately determine the most effective line of therapy. We hope the current DL 
framework will assist clinicians in personalizing treatment for brain cancer patients, 
which could lead to better treatment outcomes.

Conclusions
The accurate subtyping of gliomas is crucial for precision therapy. A DL-based model 
can improve the overall precision and efficacy of diagnostic processes using large-scale 
omics data. However, clinical diagnosis still raises questions about the validity and inter-
pretability of DL- or AI-based diagnostic models. Therefore, it is essential to design a 
biologically and clinically relevant AI-based diagnostic model to increase the reliability 
of diagnosis. Here we design the AI-based diagnostic tool, i.e., DeepAutoGlioma, for 
subtyping the glioma. The transcriptome and methylome data of glioma patients were 
used to extract biologically and clinically relevant features for model development. The 
features from two levels of genomic layers were integrated to capture cancer-specific 
patterns for accurate subtyping. Integration of omics data enables us to achieve greater 
model performance because it provides a wealth of information from different genomic 
layers. The model developed based on multi-omics data can greatly support the clinician 
in personalizing treatment.

Materials and methods
Data collection and preprocessing

We retrieved methylome (Illumina Infinium HumanMethylation450 platform) and 
transcriptome (RNA-seq) data of TCGA from UCSC Xena (https:// xena. ucsc. edu) 
[35] log2 (RSEM + 1) values for gene expression and beta-values for methylation levels 
were considered for analysis. Here, RSEM stands for RNA-Seq by Expectation Maxi-
mization. Next, low-expressed genes were filtered out of the transcriptome data [log2 
(RSEM + 1) < 0.1 in the 90% sample]. Patients with both transcriptome and methylome 
profiles were considered for analysis. GBM patients (n = 52) were divided into three 
groups based on their clinical information: classical (n = 16), mesenchymal (n = 22), and 
proneural (n = 14). Similarly, the LGG patients (n = 281) were divided into three groups 
based on cancer subtype, i.e., astrocytoma (n = 96), oligoastrocytoma (n = 75), and oli-
godendroglioma (n = 110). We obtained the external data set from the Gene Expres-
sion Omnibus (GEO) repository. The subtyping of LGG was validated using GSE74462, 
GSE43378 (gene expression data), and GSE129477 (DNA methylation data). The subtyp-
ing of GBM was validated using the gene expression data from GSE145645 and the DNA 
methylation data from GSE128654.

https://xena.ucsc.edu
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Identification of differentially expressed genes and differentially methylated regions

DEGs and DMRs were identified by z-score. We classified high- and low-expressed 
genes as well as hyper- and hypo-methylated CpG sites using the Z-score because 
healthy patient data for the transcriptome and methylome were unavailable. The fol-
lowing formula was used to determine the Z-score for each gene or CpG site in a 
certain subtype:

Here, x
_
denotes the subtype-specific average gene expression or methylation level, 

whereas µ and σ stand for the population mean and population standard deviation, 
respectively. For each subtype of LGG and GBM, we used Z-score > 1 for higher expres-
sion and hypermethylation and Z-score < -1 for lower expression and hypomethylation. 
Then, considering that differential methylation in the promoter regions may affect the 
related gene’s expression, we screened the higher- and lower-expressed genes whose 
promoter regions were differentially methylated. Finally, genes with differential expres-
sion and methylated promoter regions were used for further analysis.

Construction of univariate cox regression models and survival analysis

Univariate Cox regression analysis was implemented to build the prognostic risk-score 
model for a particular gene and CpG site [36]. Univariate Cox regression analysis was 
performed using the survminer and survival package in R. The p-value < 0.05 was con-
sidered the significant association of a gene or CpG site with patients’ overall survival 
(OS).

Where t is survival time, h(t) is the hazard function determined by a set of covari-
ates ( x1 , x2 , ……., xp ) for genes or methylation sites,b1 , b2 , ……., bp are the coefficients of 
regression, h1 is a baseline hazard.

Mapping and integration of methylation and gene expression data

CpG IDs and genes were mapped through the promoter region. The TSS1500, TSS200, 
the first exon, and the 5′ UTR were considered promoters of a gene. If both gene expres-
sion and methylation levels at the promoter alter (i.e., DEGs and DMRs), then we 
screened those CpG-gene pairs. Next, we constructed methylation and gene expression 
matrices using these CpGs and genes fed in an autoencoder using two separate layers.

Biological processes and pathway enrichment analysis

We analyzed biological processes and pathway enrichment using the Metascape tool 
[37]. Enrichment analysis was performed using the following ontology sources: Gene 
Ontology (GO) Biological Processes, KEGG Pathway and Reactome Gene Sets, and the 

Z − score =
−
x − µ

σ

h(t) = h0(t)× exp b1x1 + b2x2 + ........+ bpxp
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Kyoto Encyclopedia of Genes and Genomes (KEGG). If the adjusted p-value < 0.05, the 
biological process or pathway was considered significantly enriched.

Autoencoder implementation

Autoencoders are feed-forward neural networks that aim to copy the input variable to 
the output variable with the minimum loss of information. It compresses the inputs into 
latent variables in the bottleneck layer’s embedding space and then reconstructs the out-
put from the embedding space. The autoencoder is composed of two parts: the encoder 
and the decoder. The encoder maps the high dimensional input data into latent vari-
ables in embedding space, and the decoder reconstructs the input data from the embed-
ding. Here, we used one concatenated layer, one hidden layer, and a bottleneck layer in 
the encoding part. We used a concatenated autoencoder to integrate the gene expres-
sion and methylation data. We used the Keras library with TensorFlow [38] to imple-
ment the concatenated autoencoder. To integrate the gene expression and methylation 
level of LGG in the hidden layer of the autoencoder, a rectified linear activation function 
(ReLU) was used. In the bottleneck layer, a uniform kernel initializer and a linear activa-
tion function were implemented. Similarly, in the decoding layer, one hidden layer and a 
concatenated layer were also used. ReLU activation function was applied to the decoder 
layer. The same architecture we have followed in the GBM dataset for integrating the 
gene expression and methylation data. In the GBM dataset, the Exponential Linear Unit 
(ELU) activation function was used in the hidden layers. Linear activation function and 
a uniform kernel initializer were employed at the bottleneck layer. Further, the ELU acti-
vation function is applied to the decoder layer. Epoch size and batch size were 1500 and 
16, respectively, in each dataset. The architecture of the autoencoder is shown in Fig. 2. 
We selected 1110 features from gene expression and 3204 features from DNA methyla-
tion in the LGG dataset, while in the GBM dataset, 268 features from gene expression, 
447 features from DNA methylation were selected for the input layer. For the autoen-
coder, we set a concatenate layer, hidden layers, and a bottleneck layer, respectively. We 
obtained the 400 and 100 features from the bottleneck in the LGG and GBM datasets, 
respectively.

Deep learning classifier

ANNs, which imitate the human brain, are feed-forward neural networks. ANNs are repre-
sented by a weighted, directed graph connecting inputs to a series of interconnected “hid-
den” layers that are composed of multiple nodes called “neurons” that are in turn connected 
to an output layer [39]. ANNs are trained to recognize and categorize complex patterns. 
There is one input layer, one output layer, and one hidden layer in the network. The hid-
den layers lie between the input and output layers. The number of output neurons var-
ies depending on the specific application, while the number of input neurons is equal to 
the number of attributes. Here, latent variables obtained from the bottleneck layer of the 
autoencoder were used as input. The parameters were optimized on training datasets with 
the grid search method using the GridSearchCV package in Python used for classifying 
the LGG and GBM by implementing ANN method: for LGG the parameters are, activa-
tion = relu, batch size = 32, epochs = 100, and optimizer = adam; for GBM, the parameters 
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are activation = linear, batch size = 30, epochs = 50, and optimizer = RMSprop. We have 
used Keras library to build ANN deep-learning classifiers on the Python platform.

CNN is a type of deep learning method that directly learns from the data. CNN consists 
of three layers: convolutional, pooling and fully connected (FC) layers [40]. The convolu-
tional layer is the first layer, while the FC layer is the last. In the first layer, i.e., the convolu-
tional layer, where filters are applied to raw data or feature maps in deep CNN, convolution 
is one linear operation utilized in place of generic matrix multiplication. The convolution 
operation (denoted by an asterisk) is defined by:

where the function x(t) is referred to as input, K (t) is referred to as kernel, and the f (t) 
is referred to as output. After the convolutional layer, the input data is downscaled by 
the pooling layer to save computation, and the final prediction is made by the fully con-
nected layer. Since every node in a single layer is fully connected to every node in the 
subsequent layer, it represents a network that is fully connected. Keras library was used 
to construct the model architecture for CNN. Eight convolutional layers were used to 
obtain the best result. Furthermore, parameters were optimized with the grid search 
method using the GridSearchCV package in Python. The parameters were used for clas-
sifying the LGG and GBM by implementing CNN are: for LGG the parameter are, activa-
tion = relu, batch size = 64, dropout rate = 0.2, epochs = 2000, filters = 1, kernel size = 3, 
optimizer = RMSprop; for GBM the parameters are, activation = elu, batch size = 64, 
dropout rate = 0.2, epochs = 2000, filters = 1, kernel size = 3, optimizer = RMSprop. 
Using a stratified k-fold CV, the 70% training dataset was used to calculate the average 
performance of the model using the optimal parameters. In a stratified k-fold CV, the 
dataset is split into k different folds, of which k-1 was utilized to train the network, and 
the final fold was set aside for testing. This procedure is then repeated until all folds are 
used once as a test set. The final output is then computed by averaging the performance 
parameters obtained from each test set.

Performance evaluation

The performance of the DL model was evaluated based on the eight criteria: accuracy, sen-
sitivity, specificity, precision, F1-score, FPR, geometric mean, and MCC. A true positive 
(TP) would indicate that the cancerous cell is identified correctly, while a false positive (FP) 
indicates that the cancerous cell is identified as healthy. Conversely, true negatives (TN) 
and false negatives (FN) are calculated for healthy cells. The following equations define the 
metrics:

f (t) = (x ∗ K )(t)

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
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We used the sklearn.metrics library in Python to calculate the above score by import-
ing functions such as confusion_matrix and classification_performance.

Statistical analysis

Pairwise comparison was done using the Mann-Whitney U test using Sigma Plot 11.0.
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