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Abstract 

There are not currently any univariate outlier detection algorithms that transform 
and model arbitrarily shaped distributions to remove univariate outliers. Some algo-
rithms model skew, even fewer model kurtosis, and none of them model bimodality 
and monotonicity. To overcome these challenges, we have implemented an algorithm 
for Skew and Tail-heaviness Adjusted Removal of Outliers (STAR_outliers) that robustly 
removes univariate outliers from distributions with many different shape profiles, 
including extreme skew, extreme kurtosis, bimodality, and monotonicity. We show 
that STAR_outliers removes simulated outliers with greater recall and precision 
than several general algorithms, and it also models the outlier bounds of real data 
distributions with greater accuracy.

Background Reliably removing univariate outliers from arbitrarily shaped distributions 
is a difficult task. Incorrectly assuming unimodality or overestimating tail heaviness fails 
to remove outliers, while underestimating tail heaviness incorrectly removes regu-
lar data from the tails. Skew often produces one heavy tail and one light tail, and we 
show that several sophisticated outlier removal algorithms often fail to remove outliers 
from the light tail. Multivariate outlier detection algorithms have recently become popu-
lar, but having tested PyOD’s multivariate outlier removal algorithms, we found them 
to be inadequate for univariate outlier removal. They usually do not allow for univariate 
input, and they do not fit their distributions of outliership scores with a model on which 
an outlier threshold can be accurately established. Thus, there is a need for a flexible 
outlier removal algorithm that can model arbitrarily shaped univariate distributions.

Results In order to effectively model arbitrarily shaped univariate distributions, we 
have combined several well-established algorithms into a new algorithm called STAR_
outliers. STAR_outliers removes more simulated true outliers and fewer non-outliers 
than several other univariate algorithms. These include several normality-assuming 
outlier removal methods, PyOD’s isolation forest (IF) outlier removal algorithm (ACM 
Transactions on Knowledge Discovery from Data (TKDD) 6:3, 2012) with default set-
tings, and an IQR based algorithm by Verardi and Vermandele that removes outliers 
while accounting for skew and kurtosis (Verardi and Vermandele, Journal de la Société 
Française de Statistique 157:90–114, 2016). Since the IF algorithm’s default model 
poorly fit the outliership scores, we also compared the isolation forest algorithm 
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with a model that entails removing as many datapoints as STAR_outliers does in order 
of decreasing outliership scores. We also compared these algorithms on the publicly 
available 2018 National Health and Nutrition Examination Survey (NHANES) data  
by setting the outlier threshold to keep values falling within the main 99.3 percent 
of the fitted model’s domain. We show that our STAR_outliers algorithm removes  
significantly closer to 0.7 percent of values from these features than other outlier 
removal methods on average.

Conclusions STAR_outliers is an easily implemented python package for removing out-
liers that outperforms multiple commonly used methods of univariate outlier removal.

Keywords: Outliers, Statistics, Software

Background
Outlier removal as a process

Outliers are defined as datapoints that 1) arise from a stochastic process that the researcher 
does not want to measure and 2) reside discernibly far from the body of the main distribu-
tion [1]. Researchers tend to assume that (1) is true if (2) is true, the idea being that such 
rare and extreme values distort parameter estimates if they are true outliers while contrib-
uting relatively little otherwise [1]. The process of removing outliers includes two steps. 
The first step is to transform the data, sometimes referring to the transformed values as 
outlier scores. The second step is one of two options. The first option is to label known 
outliers and train a model to predict outlier status from the outlier scores, which is beyond 
the scope of this paper because it requires knowing outlier statuses for a subset of the data.

The second option, which this paper will consider, is to fit a distributional model to 
those outlier scores and remove scores beyond a certain percentile of a fitted model. 
Assuming that non-outliers in the data follow the chosen model, measured values 
beyond a certain percentile of the fitted model are removed from the analysis because 
they are especially likely to be outliers. Researchers sometimes remove the outermost 
percentiles of outlier scores instead of using a fitted model’s percentile threshold, but 
such data truncation introduces bias into downstream analyses. For this reason, our 
results primarily analyze existing outlier detection methods that specifically remove out-
liership scores beyond some threshold of a fitted model, though we also review the ben-
efits and drawbacks of PyOD’s multivariate outlier removal algorithms.

Nonparametric univariate outlier removal methods

Nonparametric outlier detection methods compute outliership scores without using a 
parametric model, though the distribution of outliership scores usually still needs to 
be fitted with a model to provide the reference quantile cutoff. This may be the reason 
that we could find few complete nonparametric outlier removal algorithms with estab-
lished code. Unlike the majority of algorithms in the PyOD library [2], the IF method 
does contain a default model to estimate datapoints’ univariate outliership statuses 
[3]. Briefly, isolation forests repeatedly split the distribution into subsets at randomly 
chosen domain values and count how many splits are required to isolate each point. 
Points that require fewer splits to isolate are more likely to be outliers. The number of 
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splits required for this to occur, or possibly some function of the output from several 
repetitions of this procedure, comprises the outliership score.

Multivariate outlier removal methods

In general, multivariate outlier detection methods search for vector values that are, by 
some multivariate metric, atypically distant from their distributions. To summarize 
a few examples, consider n random vector variables {Xi∀i ∈ [N ]} , where Xi

j is the jth  
scalar component of the ith vector variable. ECOD [4] and COPOD [5] both define their 
outliership scores with a distance metric of −

∑

j log(F
j
(Xi

j)), where Fj is the probability 
of observing a scalar value more extreme than that of Xi

j . Instead of considering the 
explicit distance of Xi  from the other datapoints, ABOD’s [6] outliership score computes 
the variance of all inverse distance weighted angles formed with Xi at the apex. This  
metric is sensible because three point angles with Xi at the apex tend to be smaller  
when Xi is farther from the distribution, which corresponds to smaller variance between 
those angles.

As demonstrated by the above examples, multivariate outlier removal considers total 
multidimensional distance without considering the univariate distances of individual 
features. It is therefore important to remove univariate and multivariate outliers from 
your data with separate procedures. If you input a 20 dimensional vector with 19 scalar 
components close to their respective medians and one scalar component 4 standard 
deviations away from its median, then the function − j log(F

j(Xi
j)) could fail to dis-

cern the scalar outlier in the 20th component because the sum of univariate distances 
wouldn’t be much different than what you expect by chance. ABOD will also suffer from 
this problem with 3 or higher dimensional data because the computed angles reside 
within two-dimensional slices of a higher dimensional space. This means that any single 
dimension in which one Xi

j is a univariate outlier contributes minimally to each angular 
distance with Xi

j as the apex. Points that are more distant from the distribution in all 
other dimensions by chance could have greater outlier scores.

We demonstrate that the above conjecture is true in Table  1 below. Data ( D ) was 
simulated from a standard 20 dimensional normal distribution and also a 20 dimen-
sional uniform distribution. Column-wise univariate outliers were simulated by 
randomly replacing 1% of all scalar values with uniformly selected values from 
[±max(abs(D)),±(max(abs(D))+ 0.5)] , thereby ensuring that all univariate outliers are 
more extreme than all non-outlier scalar values. We then computed the percentage of 
rows containing univariate outliers that PyOD’s multivariate outlier removal algorithms 
have assigned top outliership scores. Each multivariate outlier removal algorithm was 
allowed to remove as many top outliership scores as there were outliers, so the true posi-
tive rate (TPR) is the percentage of rows with scalar outliers that were assigned a top 
multivariate outliership score. Note that any univariate outlier removal algorithm would 
have a 100% TPR under these circumstances.

Table 1 shows that several different multivariate outliership score transformations fail 
to detect at least 8.7% of rows containing outliers from the simulated 20 dimensional 
normal data points, and they fail to detect at least 84.4% of such rows from 20 dimen-
sional uniform data points. This performance disparity between the two distributions is 
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expected because the uniform distribution has a higher probability of drawing data rows 
that are extreme in most dimensions by chance, which means that multivariate outlier 
detection will invariably assign a greater number of non-outliers particularly high outli-
ership scores by chance.

Multivariate outlier detection can only notice when a single point has extreme values 
in most or all of its dimensions. An example where multivariate outlier detection would 
outperform univariate outlier detection is if a datapoint (presumably) from a standard 
normal distribution equaled 2.9 in all 20 dimensions. Each dimension could reasonably 
be that extreme individually, but all 20 of them being so extreme is profoundly unlikely 
to occur by chance. Multivariate outlier removal would rightly classify this datapoint as 
an outlier, and univariate outlier removal would not. Since the majority of PyOD’s multi-
variate outlier detection algorithms neither accept one dimensional input nor fit models 
to their outliership score distributions, these results demonstrate a specific and unmet 
need for univariate outlier removal algorithms.

IQR based methods

IQR based tests model data as a normal distribution that was transformed in some 
way. The most basic IQR test is very popular, even though it inflexibly assumes nor-
mality and gives wrong results when this assumption is violated. Let pm , QN  and IQR 

Table 1 Multivariate outlier removal via PyOD’s algorithms cannot reliably identify data rows that 
contain a single univariate outlier. Since all of the scalar outliers were simulated to be more extreme 
than the most extreme non-outlying scalar value across all features, most univariate outlier removal 
algorithms would have a 100% TPR in this test because they transform scalars to outliership scores 
monotonically

Model name Normal TPR Uniform TPR

ECOD 0.15519 0.15579

COPOD 0.14678 0.13375

KDE 0.84530 0.08795

Sampling 0.72556 0.04861

PCA 0.90761 0.09117

MCD 0.91285 0.09237

OCSVM 0.91123 0.09197

LOF 0.81315 0.10645

COF 0.61499 0.08274

CBLOF 0.88351 0.07951

HBOS 0.04058 0.11448

KNN 0.87467 0.10404

ABOD 0.37622 0.05142

LODA 0.38063 0.05584

SUOD 0.24724 0.12328

VAE 0.91324 0.09037

SO_GAAL 0.02852 0.01365

DeepSVDD 0.15032 0.00081

INNE 0.84045 0.09600

FB 0.76853 0.15307

AutoEncoder 0.91324 0.08997
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refer to the mth percentile, the Nth quartile, and Q3− Q1 respectively. The IQR test 
asserts that lower and upper outliership cutoffs exist at  p0.35 ≈ Q1− 1.5IQR and 
p99.65 ≈ Q3+ 1.5IQR respectively. This outliership test can be explained by substi-
tuting in the normal distribution’s approximate quartile values, Q1 ≈ −0.675σ . and 
Q3 ≈ 0.675σ . The expressions then condense to p0.35 ≈ −2.7σ and p99..65 ≈ 2.7σ , which 
is false if the distribution is not normal. Therefore, if the goal is to remove points out-
side of the percentile range 

[

p0.35, p99.65
]

 of a fitted model distribution because those 
points are likely to be outliers, then the IQR test is wrong when the underlying distribu-
tion is not normal. A desire to improve upon this method has led to many numerical 
corrections. For example, Hubert and Vanderviere adjust the standard IQR cutoffs as 
[Q1− 1.5e(aMC)IQR,Q3+ 1.5e(bMC)IQR] , where MC is the medcouple and (a =  − 3.79, 
b = 3.87) are empirically fitted coefficients [7]. There are also methods that reduce skew 
by iteratively removing outliers and refitting the model’s outlier bounds [8, 9], though 
they still assume that the input outliership scores are normally distributed.

We decided to base our own method upon a generalized IQR based method created 
by Verardi and Vermandele [10]. Each scalar datapoint is transformed by subtracting 
from the median and dividing by the inner quartile range of the datapoint’s side, which 
is defined as the asymmetrical outlyingness (ASO) in Sect. 4.2 of [10]. Then the ASOs 
are probit-transformed, which results in a normal distribution if the ASO is uniformly 
distributed; otherwise, it results in an unknown transformation of a normal distribu-
tion that introduces both skew and tail heaviness [10]. The authors of [10] compare such 
ASO-probit transformed normal distributions to the four parameter Tukey-gh distribu-
tion, which also transforms normal distributions in a way that introduces skew and kur-
tosis with reasonable generality. Taylor series analysis of the Tukey-gh transformation’s 
multiplicative components show that the g and h parameters independently control the 
transformed distribution’s odd and even moments respectively [11, 12]. Giving each pol-
ynomial component an independent regression coefficient could theoretically improve 
model flexibility until full generality is reached [11, 12], but this appears to be unneces-
sary most of the time [10].

Methods
The inability of [10] to handle multimodality is one of its few notable weaknesses, though 
this is discussed by the authors only briefly. To examine the consequences of ignoring 
this weakness, we simulated outliers on 50 gaussian mixture tri-modal distributions 
with fixed intermodal distances of 5, 5.6, …, 33. We show that the proportion of outliers 
detected decreases steadily as the gap between peaks increases. Our results demonstrate 
that this occurs simply because [10] cannot correctly model multimodal data. More seri-
ous problems may occur in real mixture model data with distributions of different sizes 
and moments, which highlights the need to model multimodality.

Despite the ASO-probit transformation’s attempt to account for skew, we show that 
it fails to detect outliers from the thin tailed side of sufficiently skewed distributions. 
It is simply the case that outliers on the thin tailed side don’t score as highly as non-
outliers on the fat tailed side, which necessitates an alternative way to account for skew. 
We demonstrate this problem by simulating outliers on fifty Tukey-gh distributions 
with h = 0 and g = 0.015, 0.03, …, 0.75. We show that the proportion of outliers detected 
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decreases steadily with increasing skew until the TPR remains near 0.5 for distributions 
with greater skew because the transformation itself fails to capture outlyingness in the 
thin tail. Our results demonstrate how the ASO-probit transformation alone places half 
of all outliers (i.e. all of the light tail’s outliers) noticeably before the 99.3rd percentile 
cutoff.

Additionally, although the authors of [10] show one figure where their model appears 
to fit an exponential distribution, we have found that it usually fails to fit monotonic 
distributions. We tested this apparent discrepancy by simulating outliers for fifty mono-
tonic distributions that were created by transforming standard exponential random var-
iables X via Xtransformed = Xa for a = 1.03, 1.06, …, 2.5. We show that the ASO-probit 
transformation does not smoothly transform such exponentially shaped distributions, 
and that the TPR decreases to 0 as a increases. This seems to happen because [10] simply 
cannot fit certain monotonic distributions.

We then compare the efficacy of STAR_outliers to that of other algorithms (Table 2) on 
different simulated distributions (Table 3). We simulated 100,000 datapoints from 10 types 
of distributions, each of which was simulated for 10 different parameter values, for a total of 
100 distributions. We randomly replaced three hundred datapoints from each distribution 
with outliers to measure each algorithm’s efficacy at detecting and removing outliers. For 

Table 2 A list of algorithms compared to STAR_outliers. Algorithms are detailed in the figure 
generation repository

Algorithm Algorithm type Description

IF IF IF out of the box model

IF-calibrated IF IF calibrated to remove as many outliers as STAR_outliers

STAR STAR_outliers STAR_outliers

[3] (p = 90) [3] [3] using percentiles 90 and 10 to estimate Tukey-gh parameters

[3] (p = 91) [3] [3] using percentiles 91 and 9 to estimate Tukey-gh parameters

[3] (p = 92) [3] [3] using percentiles 92 and 8 to estimate Tukey-gh parameters

[3] (p = 93) [3] [3] using percentiles 93 and 7 to estimate Tukey-gh parameters

[3] (p = 94) [3] [3] using percentiles 94 and 6 to estimate Tukey-gh parameters

[3] (p = 95) [3] [3] using percentiles 95 and 5 to estimate Tukey-gh parameters

[3] (p = 96) [3] [3] using percentiles 96 and 4 to estimate Tukey-gh parameters

[3] (p = 97) [3] [3] using percentiles 97 and 3 to estimate Tukey-gh parameters

[3] (p = 98) [3] [3] using percentiles 98 and 2 to estimate Tukey-gh parameters

[3] (p = 99) [3] [3] using percentiles 99 and 1 to estimate Tukey-gh parameters

T2 [9] T2 with 2 iterations

T2_yj [9] T2 with 2 iterations for yj transformed data

T3 [9] T2 with 3 iterations

T3_yj [9] T2 with 3 iterations for yj transformed data

T4 [9] T2 with 4 iterations

T4_yj [9] T2 with 4 iterations for yj transformed data

3SD normal standard 3SD cutoff

3SD_yj normal 3SD cutoff for yj transformed data

IQR normal standard IQR cutoff

IQR_yj normal standard IQR cutoff for yj transformed data

MAD normal standard MAD cutoff

MAD_yj normal standard MAD cutoff for yj transformed data
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one sided distributions, each outlier was drawn from p99.5 + ǫ : ǫ ∼ Uniform(0.5σ , 2σ) , 
where σ is the respective distribution’s standard deviation. For two sided distributions, half 
of all selected values were converted to p99.75 + ǫ , while the other half were converted to 
p0.25 − ǫ.

For each type of algorithm, the F1 scores for algorithms of that type were compared, and 
the algorithm with the highest F1 score was selected for followup testing (step 7 in the fig-
ure generation repository). TPRs and FPRs (false positive rates) were determined for the 
selected algorithms’ performances on all 100 distributions, which is possible because the 
ground truth is known. We have observed that the IF algorithm’s default outliership score 
model in PyOD usually has an excessively high false positive rate (FPR). We compensated 
for this with an alternative method that simply removes as many outliers as STAR_outliers 
detected in order of decreasing IF outliership score. This method (IF-calibrated) gives the IF 
method an equal number of opportunities to remove the correct outliers as STAR_outliers, 
thus ensuring that their comparison is fair.

Finally, we compared the selected algorithms’ performances on the real 2018 NHANES 
Demographics, Dietary, Laboratory, Examination and Questionnaire data subsets [13]. In 
this test, an ideal outlier removal algorithm would remove an average of 0.7% of all data 
points plus any outliers in the data. Assuming that the data contains relatively few outli-
ers, we assume that about 0.7% of all datapoints should be removed from every univariate 
distribution. Therefore, for each outlier removal algorithm, we compute the mean absolute 
difference from 0.7% of outliers removed across 208 features in NHANES dataset that have 
at least 10 unique numerical (i.e. noncategorical) values. Note that we cannot include the 
IF-calibrated method in this test because it relies on STAR_outliers to remove the expected 
number of datapoints.

Implementation
Our objective was to implement an IQR-based algorithm that can robustly remove 
outliers in an unsupervised manner from most distribution types, including dis-
crete, multimodal, skewed, and monotonic distributions. We do this by modifying 

Table 3 A list of distributions with simulated outliers analyzed by the algorithms in Table 2. 
Nonstandard distributions include uniform distributions, triangular distributions, multimodal normal 
distributions, and different mixtures thereof. They are defined in step1 of the figure generation 
repository

distribution Type Description

lognormal lognormal distribution: 10 spread parameter values

exponential exponential random variables drawn and then raised 
to a power: 10 power values

power power distribution: 10 power values

poisson poisson distribution: 10 parameter values

negative binomial negative binomial distribution: 10 success probabilities

Tukey-g tukey-gh distribution: 10 g values, h = 0

Tukey-h tukey-gh distribution: 10 h values, g = 0

Tukey-gh tukey-gh distribution: 10 values, g = h

beta beta distribution: 10 beta values, alpha = 2

non-standard various non-smooth and/or multimodal distributions: 
10 different shapes
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an existing algorithm [10] with several other well-tested algorithms to correctly 
compensate for the weakness described in the methods. Figure 1 displays summary 
descriptions of these algorithms, and their applications are detailed in Fig. 2. Prior 
to removing outliers with [10] at any point, both the original and transformed dis-
tributions with at least 60 unique values are tested for multimodality with Harti-
gan’s dip test [14]. Briefly, the empirical CDF is compared to the non-intersecting 
unimodal CDF with the lowest maximum vertical distance. This distance is the test 
statistic, which is bootstrapped by resampling data from the unimodal CDF 30 times 
to compute 30 null test statistics. The distribution is determined to be multimodal if 
the real statistic exceeds all test statistics and exceeds 0.0001, which corresponds to 
multimodality that is barely visible upon inspection.

If the original distribution is not determined to be multimodal, then STAR_outliers 
concatenates the broad sides of the distribution and its mirror image (a mirror trans-
form) and tests the resulting concatenation for multimodality. Mirror transformed 
monotonic distributions will test negative for multimodality, while non-monotonic 
distributions will test positive. Since [10] is easily able to detect outliers in mirrored 
monotonic distributions such as the triangular and the laplace, STAR_outliers applies 
[10] to mirror transformed monotonic distributions. If the distribution is determined 
not to be monotonic, then skewness is handled simply by splitting each unimodal 
distribution at the peak and applying the previous mirror image concatenation pro-
cedure to each side of the monotonic distribution. As insurance against the possibil-
ity that discrete random variables would bias the quantile based Tukey-gh parameter 
estimates of [10], Tukey-gh parameters are estimated from 100 percentiles with per-
centile regression [15].

If the original or the transformed distribution is determined to be multimodal, then 
we use an approximate EM algorithm to fit a bimodal Tukey-gh mixture model to 
the transformed distribution. The mixture could include more modes, but data with 
three or more modes is rare, which makes such a modification more likely to overfit 
discreteness than to correctly account for higher modality. The E step uses the most 
recent Tukey-gh parameter values to update the probability that each transformed 
data value belongs to each Tukey-gh in the mixture model. The M step updates the 
mixture model’s Tukey-gh parameters by stochastically assigning each transformed 
data value to one of the Tukey-gh distributions in accordance with their respective 
probabilities of drawing that value. Then it estimates the Tukey-gh distributions’ 
parameters with a slightly modified version of [15] from the assigned data values. A 
derivation that this procedure normally converges to standard EM in the limit of large 
data is in the Additional file 1. Note that our modifications of [15] slightly bias the g 
and h parameters toward 0, which is useful to prevent our method from overfitting 
discrete data. They also upweight the importance of fitting high percentile datapoints, 
which ensures that the model’s tail fits well in the event of an imperfect overall fit to 
the real data.



Page 9 of 15Gregg and Moore  BioData Mining           (2023) 16:25  

Fi
g.

 1
 A

 d
ia

gr
am

 o
f t

es
ts

 a
nd

 tr
an

sf
or

m
s 

us
ed

 b
y 

ST
A

R_
ou

tli
er

s



Page 10 of 15Gregg and Moore  BioData Mining           (2023) 16:25 

Results
The first half of Fig.  3 qualitatively demonstrates the problem with multimodality 
(Fig. 3a), skewness (Fig. 3b), and monotonicity (Fig. 3c). Distributions are of ASO-probit 
transformed values, and the outlier bin sizes are increased 15 fold for ease of viewing. 
The second half of Fig.  3 quantifies how STAR_outliers improves [10] when handling 
Multimodality, skew, and monotonicity. Figure  3d shows that, without STAR_outlier’s 
EM fitting algorithm, the outlier detection TPR steadily decreases as the interpeak dis-
tance increases. Figure  3e shows that the proportion of outliers caught by [10] stead-
ily decreases as the skew increases. Since all missed outliers are in the distributions’ 
light tails, this demonstrates that the ASO fails to correctly account for high amounts 
of skew, and that skewed distributions’ sides need to be analyzed separately, such as 
with our mirror transform. Figure 3f shows that [10] simply fails to smoothly transform 
most monotonic distributions, which necessitates our novel monotonicity test and cor-
responding mirror transformation. Figure 3 therefore demonstrates the need for the spe-
cific improvements that STAR_outliers provides.

Figure  4 shows that STAR_outliers removes outliers more effectively than the best 
method of each type. We also included the T2 method on data that is not yeo-john-
son transformed for good measure. In general, all of the outlier removal methods dem-
onstrate low TPR for some parameter values in at least two distribution types, and 
many of them also have high FPRs for other distribution types. Notice that varying an 

Fig. 2 The procedure that STAR_outliers uses to test for outliers
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outlier removal method’s parameters is unlikely to fix this problem. If the 3SD method 
is changed to a 2.5SD method to improve the TPR for certain distributions, then that 
will worsen the FPR for other distributions, which makes tinkering with such parameters 
less effective than modeling distributions correctly in the first place. The IF-calibrated 
method performs most comperably to STAR_outliers, demonstrating that it could effec-
tively remove univariate outliers if it would fit a better model to the outliership scores. 
Even so, the IF-calibrated method also underperforms on distributions with high skew 
and normal kurtosis in a manner similar to [10], as the IF-calibrated method also fails 
to detect most outliers in the most skewed Tukey-g distributions’ short tails. Note that 
increasing both the kurtosis and the skew appears to dampen this effect, indicating that 
it is caused by relative differences in tail heaviness. This further highlights the impor-
tance of STAR_outlier’s skew removal transform.

Figure 5 shows that STAR_outliers and [10] (with p = 0.99) both remove significantly 
closer to 0.7 percent of the datapoints across NHANES dataset features than any of 

Fig. 3 Each sub-figure characterizes a specific flaw in how [10] handles skew, monotonicity, or multimodality
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the best outlier removal algorithm types, indicating that their Tukey-gh based model 
of ASO-probit transformed data provides a superior fit to most distributions. While 
STAR_outliers and [10] appear to fit real transformed data distributions equally well 
when p is set to equal 0.99, we have also shown that [10] transforms outliers in the 
short tail into lower outliership scores than non-outliers in the long tail. Such inaccu-
racies cannot be observed in Fig.  5 because the outlier statuses are unknown, which 
makes STAR_outliers the most accurate outlier removal procedure. We have also dem-
onstrated that [10] fits exponential and multimodal distributions poorly, meaning that 
these results for [10] cannot be expected to generalize to other datasets. Finally, we 
could not find an easily installable algorithm for [10], which leaves STAR_outliers as a 
unique and ready-to-use outlier removal algorithm that can correctly handle the vast 
majority of distribution shapes.

Conclusions
We have demonstrated an easily implemented python package that is objectively 
superior to other modern unsupervised univariate outlier removal programs. Given 
recent interest in detecting multi-dimensional outliers, it’s worth noting that modify-
ing STAR_outliers to detect multidimensional outliers would be relatively straight-
forward by adhering to the generalization described in [10]. Alternatively, one could 
compute a distribution of multivariate outliership scores with an existing algorithm 
like COPOD, and use STAR outliers to fit that distribution for the purpose of outlier 
removal.

Fig. 5 STAR_outliers consistently removes closer to 0.7% of a dataset than the other algorithms (i.e. the 
mean absolute difference from 0.7% is closest to 0), except for [10] after setting p = 99 against its authors’ 
recommendations. Despite removing the correct number of points, [10] still fails to account for skew, 
bimodality, and monotonicity, while STAR_outliers does all of these things correctly
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YJ  Yeo-Johnson (referring to the normality transformation)
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