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Abstract 

Purpose: Data‑driven diabetes research has increased its interest in exploring the het‑
erogeneity of the disease, aiming to support in the development of more specific 
prognoses and treatments within the so‑called precision medicine. Recently, one 
of these studies found five diabetes subgroups with varying risks of complications 
and treatment responses. Here, we tackle the development and assessment of differ‑
ent models for classifying Type 2 Diabetes (T2DM) subtypes through machine learning 
approaches, with the aim of providing a performance comparison and new insights 
on the matter.

Methods: We developed a three‑stage methodology starting with the preprocess‑
ing of public databases NHANES (USA) and ENSANUT (Mexico) to construct a dataset 
with N = 10,077 adult diabetes patient records. We used N = 2,768 records for training/
validation of models and left the remaining (N = 7,309) for testing. In the second stage, 
groups of observations –each one representing a T2DM subtype– were identified. We 
tested different clustering techniques and strategies and validated them by using inter‑
nal and external clustering indices; obtaining two annotated datasets Dset A and Dset B. 
In the third stage, we developed different classification models assaying four algo‑
rithms, seven input‑data schemes, and two validation settings on each annotated data‑
set. We also tested the obtained models using a majority‑vote approach for classifying 
unseen patient records in the hold‑out dataset.

Results: From the independently obtained bootstrap validation for Dset A and Dset B, 
mean accuracies across all seven data schemes were 85.3% ( ±9.2% ) and 97.1% ( ±3.4% ), 
respectively. Best accuracies were 98.8% and 98.9% . Both validation setting results 
were consistent. For the hold‑out dataset, results were consonant with most of those 
obtained in the literature in terms of class proportions.

Conclusion: The development of machine learning systems for the classification 
of diabetes subtypes constitutes an important task to support physicians for fast 
and timely decision‑making. We expect to deploy this methodology in a data analy‑
sis platform to conduct studies for identifying T2DM subtypes in patient records 
from hospitals.
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Introduction
Background

Usually, diabetes has broadly been categorized into Gestational (GDM), Type 1 (T1DM), 
and Type 2 (T2DM). GDM occurs during pregnancy and increases the chances of devel-
oping T2DM later in life. T1DM usually appear at early ages when the pancreas stops 
producing insulin due to an autoimmune response. The reasons why this occurs are 
still not very clear. It is very important to monitor the glucose levels of patients, as sud-
den changes might be life threatening. Patients with this type often need a daily dose of 
insulin to lower their blood glucose levels. T2DM is the most common type of diabe-
tes encompassing 95% of diabetic patients, which are commonly adults with a sedentary 
lifestyle and poor quality diet. Despite it can be easily controlled in early stages, comor-
bidities might appear years later. Stages of T2DM are related to parameters such as 
glucose concentration, insulin sensitivity, insulin secretion, overweight, and aging. How-
ever, recent studies have found that not all patients present the same manifestations.

According to the International Diabetes Federation (IDF) [1], diagnostic guidelines 
for diabetes include two measures obtained from blood tests: glycated hemoglobin test 
(HbA1C ) and plasma glucose (PG) test. The latter can be obtained in three different man-
ners: in fasting state called Fasting Plasma Glucose (FPG), from an oral glucose tolerance 
test (OGTT), which consists of administering an oral dose of glucose and measuring PG 
after two hours; and from a sample taken at random time (normally carried out when 
symptoms are present), called Random Plasma Glucose (RPG). A positive diagnosis is 
reached when either one of the following conditions holds (IDF recommends two condi-
tions in absence of symptoms): (1) FPG ≥ 7.0 mmol/L (126 mg/dL), (2) PG after OGTT 
≥ 11.1 mmol/L (200 mg/dL), (3) HbA1C ≥ 6.5%, or (4) RPG ≥ 11.1 mmol/L (200 mg/dL). 
These parameters allow to readily identify diabetic patients and, when combined with 
risk factors such as demographic, family history, dietary, etc. may help to predict the 
tendency of developing the disease or its related complications. Understanding the rela-
tion of distinct parameters to the pathology of the disease also helps scientists to develop 
new ways to treat it. In this regard, data-driven analysis provide powerful means to dis-
cover such relations.

With the relatively recent advent of big data supporting precision medicine [2], the 
understanding of diabetes changed from the classical division of T1DM,T2DM, and 
other minority subtypes, to the notion of a highly heterogeneous disease [3]. The field of 
research has directed the efforts towards the exploitation of available big data analysis – 
particularly from electronic health records – searching for refined classification schemes 
of diabetes [4]. Indeed, recent diabetes research has stressed the importance of underly-
ing etiological processes associated to development of important adverse outcomes of 
the disease along with response to treatment [5–7]. Exploring the disease heterogeneity, 
a recent data-driven unsupervised analysis [8] found that T2DM might have different 
manifestations including five subtypes that were related to varying risks of develop-
ing typical diabetes complications such as kidney disease, retinopathy, and neuropathy. 
Based on Ahlqvist et al. data-driven analysis [8], in this paper we tackle the development 
of methods for classifying T2DM subtypes through machine learning approaches with 
the aim of providing a comparison and new insights on the matter. In short, the goals of 
the present study were:
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• Construct a dataset using publicly available databases comprising a majority of mexi-
can and other hispanic population.

• Obtain a characterized dataset with different T2DM subgroups by means of cluster-
ing algorithms and evaluate different clustering strategies through clustering valida-
tion indices.

• Train and validate classification models using different algorithms and data schemes.
• Test developed models with a hold-out dataset.

Compared to previous work, our study introduces the following contributions and main 
results:

• The development of classification models for T2DM subgroups. To our best knowl-
edge, there is only one preceding study that tackled this issue [9].

• Validation of T2DM subtypes in a relatively large dataset predominantly composed 
of mexican and other hispanic population.

• An evaluation of clustering algorithms and strategies including indices to measure 
clustering quality.

• An assessment of performance of classification models for T2DM subtypes. This 
assessment included four algorithms, seven data schemes, two datasets, and two val-
idation methods.

• Our models reached accuracies of up to 98.8% and 98.9% on both datasets. Simpler 
and faster algorithms such as SVM and MLP performed better. Models adjusted 
notably better to Dset B data and performance was more consistent within the 
schemes on this dataset. Both validation settings, bootstrap and 10-fold cross valida-
tion, yielded similar results.

• Finally, the simple majority vote implemented in the testing stage showed a great 
amount of consensus, providing class proportions akin to previously reported for 
other populations.

We will briefly review the subject of artificial intelligence works related to general dia-
betes and diabetes subgroup classification in the remaining of this Introduction section.

Related work

Artificial intelligence – and particularly, machine learning – methods have been exten-
sively applied within the biomedical field mainly for development of computational tools 
to aid in diagnosis of diabetes or its complications [10]. Data analysis has been applied 
in several diabetes studies, covering five different main fields: risk factors, diagnosis, 
pathology, progression, and management [11]. A number of studies deal with identifi-
cation of diabetes biomarkers, generally by means of feature selection methods, such 
as evaluating filter/wrapper strategies [12], combining feature ranking with regression 
models to predict short-term subcutaneous glucose [13], and proposing new methods 
for feature extraction [14, 15] and generation [16]. Another subfield of research regard-
ing machine learning applied to diabetes mellitus is devoted to detection/prediction 
of complications. With the rise of deep learning within the last decade, much of this 
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work aims at predicting diabetic retinopathy through convolutional architectures and 
primarily analyzing retinal fundus images [17, 18], even deploying tools that are com-
mercially available [19, 20]. Predictive tools for diabetic nephropathy were developed 
integrating genetic features with clinical parameters [21] and comparing performance 
of various models for detection of diabetic kidney disease [22]. Another major diabetic 
complications tackled with machine learning algorithms are cardiovascular disease [23], 
peripheral neuropathy [24], diabetic foot [25], and episodes of hypoglycemia [26, 27]. 
All of these classification/regression tasks are approached with varying machine learn-
ing methods, most of which are reviewed in [28, 29].

Until recently, diabetes mellitus was thought as a two-class disease, divided into the 
general Types I and II with some uncommon manifestations within them; such as mono-
genic types (e.g. Maturity Onset Diabetes of the Young - MODY, and neonatal diabetes) 
and secondary types (e.g. due to steroid use, cystic fibrosis, and hemochromatosis) [30]. 
As mentioned earlier, Ahlqvist et al. [8] introduced a novel subclassification of diabetes 
with a data-driven (clustering) approach. Using six variables (glutamate decarboxylase 
(GAD) antibodies, age at diabetes onset, body mass index, glycated hemoglobin, and 
homeostatic model assessment values for β cell function and insulin resistance), they 
discovered five clusters (T2DM subtypes) that were dubbed as: 

1. Severe Autoimmune Diabetes (SAID): It is probably the same as T1DM, but it is clas-
sified as a T2DM subtype, where the pancreas stops producing natural insulin by an 
autoimmune response. This is identified by the presence of GAD antibodies.

2. Severe Insulin-Deficient Diabetes (SIDD): It is similar to SAID, but the antibodies 
responsible for the autoimmune response are missing.

3. Severe Insulin-Resistant Diabetes (SIRD): the patients seem to produce a normal 
amount of insulin, but their body does not respond as expected, maintaining high 
blood sugar levels.

4. Mild Obesity Related Diabetes (MORD): It is related to a high body mass index, can 
be treated with a better diet and exercise when moderated.

5. Mild Age Related Diabetes (MARD): It is mostly present in elder patients, and corre-
sponds to the natural body ageing.

For such subgroup identification, they used a cohort comprising 8,980 patients for initial 
clustering and then, found centroids were used to further cluster three more cohorts and 
replicate results. Importantly, these groups were associated with different disease pro-
gression and risk of developing particular complications.

Soon after this pioneer study, a number of works based on the proposed cluster 
analysis method emerged to replicate diabetes subgroup assessment within differ-
ent cohorts (see Table  1). The subject was systematically reviewed in [31]. ADOPT 
and RECORD trial databases with international and multicenter clinical data com-
prising 4,351 and 4,447 observations, respectively, were analyzed in [32] to investi-
gate glycaemic and renal progression. They found similar cluster results compared 
to those reported by Ahlqvist et  al., but also that simpler models based on single 
clinical features were more descriptive to their same purposes. In a 5-year follow-up 
study of a german cohort with 1,105 patients [33], the authors evaluated prevalence 
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of complications such as non-alcoholic fatty liver disease and diabetic neuropathy 
within diabetes subgroups after follow-up. Later, using this same german cohort, the 
authors assessed inflammatory pathways within the diabetes subgroups by analyzing 
pairwise differences in levels of 74 inflammation biomarkers [34]. In another study of 
the same german group [35], prevalence of erectile dysfunction among the five dia-
betes subgroups was researched. This complication presented a higher prevalence 
in SIRD and SIDD patients, suggesting that insulin resistance and deficiency play an 
important role in developing the dysfunction.

A couple of studies were carried out to validate the data-driven approach for dia-
betes subgroups in chinese population [36, 37]. The former consisted in a multi-
center national survey with cross-sectional data comprising 14,624 records. These 
data showed similar distributions than those found by Ahlqvist et  al. with a higher 

Table 1 Datasets and found proportions of diabetes subgroups reported in the literature

a  These percentages were recalculated merging results of NHANES cycles III and 1998‑2004

 b These percentages correspond to the sum of MDH and MD groups as explained by the authors

 DB abbreviations. ANDIS all new diabetics in scania, SDR scania diabetes registry, ANDIU all new diabetics in Uppsala, DIREVA 
diabetes registry Vaasa, ADOPT a diabetes outcome progression trial, RECORD rosiglitazone evaluated for cardiac outcomes 
and regulation of glycaemia in diabetes, GDS german diabetes study, NHANES national health and nutrition examination 
survey, ENSANUT encuesta nacional de salud y nutrición, MSC metabolic syndrome cohort, DCS diabetes care system, 
GoDARTS genetics of diabetes audit and research tayside study, ORIGIN outcome reduction with initial glargine intervention, 
FDEMC Fukushima diabetes, endocrinology, and metabolism cohort. SAID severe autoimmune diabetes, MARD mild age 
related diabetes, MORD mild obesity related diabetes, SIDD severe insulin‑deficient diabetes, SIRD severe insulin‑resistant 
diabetes

Reference Database/study Origin N SAID (%) MARD (%) MORD (%) SIDD (%) SIRD (%)

[8] ANDIS Sweden 8980 6.4 39.1 21.6 17.5 15.3

SDR 1466 10.1 34.4 18.3 20.4 16.8

ANDIU 844 7.6 41.7 21.0 14.6 15.2

DIREVA (newly 
diagnosed)

878 9.9 47.3 22.8 8.9 11.2

DIREVA (longer‑
term)

2607 14.7 41.0 19.8 14.0 10.6

[32] ADOPT International 4003 4.2 33.8 21.4 20.2 20.4

RECORD 4148 NA 36.6 20.5 23.5 19.4

[33] GDS Germany 1105 22.4 34.9 29.2 2.5 11.0

[34] GDS Germany 414 21.0 35.0 32.0 3.0 9.0

[36] Retrospective study China 14624 6.2 30.9 21.6 24.8 16.6

[37] Retrospective study China 1152 4.4 21.4 34.6 20.5 19.0

[9] NHANES USA 1758 NA a39.7 a21.4 a15.0 a23.9

ENSANUT Mexico 614 NA 15.8 32.2 41.9 10.1

SIGMA Mexico 1521 NA 16.8 34.3 41.1 7.8

MSC Mexico 331 NA 13.6 45.0 5.7 35.6

CAIPaDi Mexico 1608 NA 11.5 39.8 43.0 5.7

[38] DCS Netherlands 2953 NA b48.1 17.6 12.7 21.6

GoDARTS Scotland 5509 NA b45.7 19.3 17.3 17.7

ANDIS Sweden 7478 NA b51.5 23.2 15.9 9.4

[39] NHANES USA 5489 NA 25.6 30.1 23.5 20.8

[35] GDS Germany 351 23.0 41.0 25.0 4.0 7.0

[40] ORIGIN ‑ All International 7017 3.4 38.1 22.7 22.7 13.0

ORIGIN ‑ European Europe 3361 3.3 40.9 22.3 17.6 15.8

ORIGIN ‑ Latin 
American

Latin America 2428 3.8 33.4 24.0 27.7 11.0

[41] FDEMC Japan 586 10.2 35.7 25.4 15.4 13.3
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prevalence of SIDD class. The latter recruited 1,152 inpatients of a tertiary care hospi-
tal. After performing clustering on the data, the proportions were similar for SIDD and 
SIRD, but in this case MORD assembled the majority of records, instead of MARD. 
A team of researchers [9] verified the reproducibility of diabetes subgroups by intro-
ducing classification models with trained Self-Normalized Neural Networks (SNNN). 
They clustered NHANES data to obtained a labeled dataset on which four input data 
models were fitted. These models were used later to classify data from four different 
mexican cohorts to assess risk for complications, risk factors of incidence, and treat-
ment response within subgroups. In a subsequent work [39], with the purpose of 
assessing prevalence of diabetes subtypes in different ethnic groups in US population, 
the research team applied their SNNN models to classify an extended NHANES data-
set comprising cycles up to 2018.

A replication and cross-validation study was performed in [38], the authors used 
an alternative input data scheme replacing HOMA2 values – originally used for clus-
tering – with C-peptide along with high density lipoprotein cholesterol. Five clus-
ters were produced with the proposed scheme, three of them showing good matching 
with MORD, SIDD, and SIRD; whereas the combination of the remaining two showed 
good correspondence to MARD. Cross-validation among three different cohorts 
exhibited fair to good cluster correspondence. Pigeyre et al. [40] also replicated clus-
tering results of the original Swedish cohort using data from an international trial 
named ORIGIN. In this cohort, they investigated differences in cardiovascular and 
renal outcomes within the subgroups, as well as the varied effect of glargine insulin 
therapy compared to standard care in hyperglycemia. Finally, the risk of developing 
sarcopenia was evaluated in a Japanese cohort previously characterized using clus-
ter analysis [41]. Among diabetes subtypes, SAID and SIDD patients exhibited higher 
risk for the onset of this ailment.

Methods
Our interest was to explore different ways to obtain classification model variations for 
assigning T2DM subtypes to patients according to a set of attributes. This required us to 
characterize T2DM subtypes from existing databases, train these models and apply them 
to unseen patient records. The study followed a procedure with three main sequential 
stages shown in Fig. 1: 

dataset
construction

classification
model training

data
characterization

classification
model testing

final

classification

model

subsets

clusters

class

members

stronger

classes

1

2

3

4

Fig. 1 Overview of the general procedure applied in the study
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1. Dataset construction, where the tasks for acquiring, cleansing, merging and preproc-
essing the data are performed to get a tidy subset from databases. This subset is used 
for training, validating, and testing the clustering and classification models in the 
subsequent stage.

2. Data characterization, where diabetes patients (instances of the dataset) are seg-
mented, yielding diabetes groups that are labeled according to the feature distribu-
tion patterns.

3. Classification model training, where different classification models are trained and 
validated using datasets from previous characterization; the obtained classification 
models are then used and evaluated by assigning T2DM subtypes to unseen patient 
records.

The best classification models were obtained according to different strategies vary-
ing co-related attributes. Next, in the following subsection, we describe these stages and 
steps more in detail.

Dataset construction

The study was performed over real data (NHANES and ENSANUT databases). These 
data come from health surveys but was curated in several ways to obtain the better fit-
ting of classification models.

• The National Health and Nutrition Examination Survey (NHANES) database [42], 
as its name suggests, is a U.S. national survey performed by the National Center for 
Health Statistics (NCHS), which in turn is part of the Centers for Disease Control 
and Prevention (CDC). It gathers information from interviews where people answer 
questionnaires covering demographic, nutritional, socioeconomic, and health related 
aspects. For some of the participants, physical examination and laboratory informa-
tion are included. The database is divided in cycles, which after the NHANES III 
(1988 to 1998) are biennial. From NHANES can be obtained several datasets (views) 
for a vast number of works, depending on the interests of research. NHANES dataset 
that we assembled in the present work consists of the merging of cycles III (1988-
1998) with all continuous NHANES cycles from 1999-2000 to 2017-2020. This latter 
cycle was the 2017-2018 cycle joined to the incomplete “pre-pandemic” cycle from 
2019 to march 2020.

• The Encuesta Nacional de Salud y Nutrición1 (ENSANUT) [43], is the Mexican anal-
ogous of NHANES database. ENSANUT survey methodology, data gathering, and 
curation is carried out by the Center for Research on Evaluation and Surveys, which 
is part of the National Institute of Public Health (Mexican Ministry of Health). The 
database is the product of a systematic effort aiming to provide a trustworthy database 
to assess the status and tendencies of the population health condition, along with uti-
lization and perception of health services. Starting in 1988 as the National Nutrition 
Survey, it was until 2000 that became a six-year survey (with some special issues) that 
included health information such as anthropometric measures, dietary habits, clini-

1 National Health and Nutrition Survey, for english.
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cal history, vaccination, common diseases, and laboratory analysis (in some issues). 
Similarly to NHANES, several views can be obtained focusing on specific attributes. 
ENSANUT dataset that we have used here included the cycles 2006, 2016, and 2018.

From both databases we selected a subset of demographic, medical history, anthropo-
metric, and laboratory variables (see Table 9). Importantly, C-peptide and Glucose2 were 
available in NHANES for only some cycles. C-peptide was only available in NHANES 
cycles III and 1999-2004, whereas Glucose2 was only available in NHANES cycles III, 
2001-2002, and 2005-2016.

After merging the versions of each database, we obtained an initial raw dataset 
with N = 224,807 patients. From this, we selected only adult patients (Age ≥ 20 years, 
N=172,909). We then performed a data wrangling workflow including the following 
tasks, see Appendix B for a detailed description. 

1. Data cleansing consisted in replacing some invalid values with zeroes to represent 
absent values.

2. An imputation process to assign values to missing and needed variable inputs to 
records that otherwise would be dismissed. When handling data, it is very likely 
that some values are missing for many circumstances, such as the participants of 
the survey did not answer the questions, then their answers could not be included 
in the dataset, or the laboratory samples could not be analysed. We imputed miss-
ing values by using the Multivariate Feature Imputation procedure, which infer 
absent values based on values available in other attributes. The considered variables 
were Weight, Height, Waist, HbA1c, Glucose1, Glucose2, Insulin, and Age at Diabe-
tes Onset by taking the median value returned by four regression techniques (see 
Appendix B for details).

3. A selection step to maintain only those records that met the inclusion criteria: a) 
being a diagnosed patient, or b) having OGTT glucose ≥ 200 (mg/dL), or c) having 
HbA1C ≥ 6.5 (%). Extreme values, i.e. those values that were apart for more than five 
standard deviations from their mean, were removed on each attribute.

4. Scaling. Due to variations in the ranges of values of selected attributes, the compu-
tations are generally biased. Thus, a scaling on those values is required. We trans-
formed the selected attributes by means of min-max normalization and z-score 
standardization.

As a result of the whole dataset construction process, a curated dataset was obtained com-
bining NHANES and ENSANUT records. The process is illustrated on the left Panel in 
Fig. 2. The dataset was fully preprocessed according to the requirements of the study and, at 
this point, is ready for its utilization in data analysis algorithms. The final dataset comprised 
a total of 10,077 patient records that were split into a training/validation dataset termed D1 
(N = 2,768) and a hold-out dataset termed Test Dset (N = 7,309). D1 consisted of the records 
including values for C-peptide variable, whereas Test Dset did not included these values.
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Data characterization

The objective of this stage was to characterize the selected instances in the curated 
dataset. The overall flow is depicted on Fig. 2 (central panel). Since this dataset was not 
labeled with any group or T2DM subtype, we applied clustering algorithms over selected 
attributes with the purpose of finding groups of instances in the dataset according to 
the similarities on values of the attributes. In a preliminary analysis, we explored three 
algorithms with different clustering approaches: partitional (K-means [44]), hierarchi-
cal (agglomerative clustering [45]), and density (DBSCAN [46]). Since these preliminary 
results (not included in this paper) demonstrated meaningful dissimilarities among 
DBSCAN and Agglomerative clusters with respect to those obtained with K-means, we 
determined to focus on the utilization of the latter.

Thus, we applied K-means to group T2DM patients into clusters, relying on the princi-
ple that similar patients in a cluster denote a T2DM subtype. We used a fixed number of 
groups (K = 4) corresponding to previously found diabetes subtypes [8], with the excep-
tion of SAID. We did not take this class into account considering all patients as being 
GADA negative. The five clinical features previously reported in the literature [8, 30] were 
taken into account. These features are: Age at Diabetes Onset (ADO), Body Mass Index 
(BMI), Glycated Haemoglobin (HbA1C ), and Homeostasis Model Assessment 2 [47] esti-
mates of beta cell function and insulin resistance (HOMA2-%β and HOMA2-IR, respec-
tively). HOMA2 values are defined by computationally solving a system of empirical 
differential equations with software provided by the authors [48]. There are two types of 
HOMA2 values, one derived from FPG plus C-peptide, and the other derived from FPG 
plus Insulin. We used both types HOMA2 values, as will be explained later. Hereafter, we 
will refer to them as CP-HOMA2 and IN-HOMA2, respectively.

As mentioned earlier, dataset D1 included only those records with C-peptide values (N 
= 2768) and thus, CP-HOMA2 measures can be computed for those records. Dataset D2 

Fig. 2 Main stages of the implemented procedure
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(N = 680), in turn, consists of the subset of D1 that only includes patients with less than 
five years of diabetes onset (i.e. AGE − ADO < 5). We carried out a two-stage clustering, 
first on D2 and then, used the obtained centroids to cluster the remaining instances of 
D1 : those with five or more years of diabetes onset (i.e. the difference set D1 − D2 ) in the 
second stage. In total, we tested four clustering strategies in the first stage (numbered 1.1 
to 1.4) and six in the second stage (numbered 2.1 to 2.6). In both stages we aimed to con-
trast two overall clustering alternatives: (1) with centroid initialization or de novo cluster-
ing; and (2) taking each gender separately or both genders at once. In the first stage, we 
also tested the alternative of only assigning instances to initial centroids (i.e. no iteration) 
versus assigning and iterating until centroid convergence. Strategies 1.1 to 1.4 are thus 
defined as follows:

• Centroid initialization using centroids provided by Ahlqvist et al. [8]: 

 (1.1) Only assigning instances to initial centroids.
 (1.2) Iterating until reaching centroid convergence.

• De novo clustering with repeated K-means procedure:

 (1.3) Each gender separately.
 (1.4) Both genders at once.

For 1.1 and 1.2 we took centroids reported by Ahlqvist et al. [8]. These centroids are 
defined by gender, therefore, centroid assignment is performed this manner in 1.1 and 
1.2. De novo strategies 1.3 and 1.4 used a repeated K-means procedure, which con-
sisted in several executions (51) of K-means. This procedure yielded a string with 51 
positions, where each position holds one of {0, 1, 2, or 3} (the four groups). Hence, 
each string corresponds a group assignment pattern for each instance. Then, similarity 
among strings was compared to constitute the final four groups. This way, two iden-
tical strings mean that those instances were assigned the same groups across the 51 
executions. Those strings not identical were grouped with their most similar instances. 
In all these executions, we used the K-means scikit-learn function with K = 4, 100 
randomized centroid initializations (with k-means++ function), and 300 maximum 
iterations.

After analyzing results from the first stage strategies, we selected strategies 1.2 and 
1.4, according to intrinsic and extrinsic clustering validation indices (Appendix A). We 
then moved on to second stage clustering computing centroids from strategies 1.2 and 
1.4. For both genders denoted by C1.2 and C1.4 ; and separated by gender (W)omen and 
(M)en denoted by C1.2(W ) , C1.2(M) , C1.4(W ) , and C1.4(M) . In second stage, we also carried 
out de novo clusterings with the repeated K-means procedure. Here, we included two 
forms of de novo clustering: in addition of using CP-HOMA2 parameters, we also tested 
a clustering using IN-HOMA2 parameters and scaling the data with Min-Max normali-
zation, instead of z-score. Importantly, this latter strategy was the only one that imple-
mented these changes. In this manner, the six strategies in second stage were:
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• Centroid initialization using centroids from first stage:

 (2.1) With centroids C1.2.
 (2.2) With centroids C1.2(W ) and C1.2(M).
 (2.3) With centroids C1.4.

 (2.4) With centroids C1.4(W ) and C1.4(M).

• De novo clustering with repeated K-means procedure:

 (2.5) With CP-HOMA2 values.
 (2.6) With IN-HOMA2 values and Min-Max normalization.

Strategies 2.1 to 2.4 used centroids found in first stage for dataset D2 and thus, only clus-
ter the remaining instances in D1 . Strategies 2.5 and 2.6 cluster the whole dataset D1 
without taking into account previous results from first stage. Again, we evaluated the 
results by means of intrinsic and extrinsic validation indices selecting strategies 2.5 and 
2.6 as the best performing ones. At the end of second stage clustering, we obtained two 
labeled datasets from D1 , named as Dset A and Dset B, from groups obtained from clus-
tering 2.5 and 2.6, respectively. The matching of groups with labels of T2DM subtypes 
was performed by comparing the obtained attribute distribution patterns against those 
reported in the literature [8, 9, 30], as will be further explained in Results section.

Model development and evaluation

Clustering in previous stage helped us to find out how patients can be grouped on T2DM 
subtypes; each patient was labeled according to its corresponding T2DM subtype. In this 
section, a subset of the dataset was used to train classification algorithms to learn how to 
identify unseen patients of the same dataset, not used for training. We developed classi-
fication models in two pathways, one for each annotated dataset (Dset A and Dset B; see 
upper-right panel in Fig. 2). On both pathways, we considered seven classification schemes, 
according to different selections of attributes in the input data. First, we used bootstrapping 
to validate models on both pathways, and then performed a second validation of best per-
forming algorithms using stratified 10-fold cross validation. Four classification algorithms 
were explored: Support Vector Machine, K-Nearest Neighbors, Multilayer Perceptron, and 
Self-Normalized Neural Networks (see Appendix A for description). Finally, we used mod-
els obtained in the validation stage to classify subjects from the hold-out dataset.

Classification schemes

We explored how classification algorithms behave fed with different input data. The 
seven classification schemes denoted by S1 to S7 are the following:

• S1. ADO, BMI, HbA1C , and CP-HOMA2-%β and CP-HOMA2-IR.
• S2. ADO, BMI, HbA1C , and IN-HOMA2-%β and IN-HOMA2-IR.
• S3. ADO, BMI, FPG, and IN-HOMA2-%β and IN-HOMA2-IR.
• S4. ADO, BMI, HbA1C , FPG, and C-peptide
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• S5. ADO, BMI, HbA1C , FPG, and insulin
• S6. ADO, BMI, HbA1C , HOMA-%β , and HOMA-IR.
• S7. ADO, BMI, HbA1C , METS-IR, and METS-VF.

Note that all schemes include ADO and BMI and, with exception of scheme S3, all 
include also HbA1C . Attributes that were interchanged within schemes are those related 
with pancreatic beta cell function and insulin resistance (i.e. HOMA measures and their 
related input variables: Glucose and C-peptide/insulin). Notice that schemes S1 and S2 
consist of the same attributes on which Dset A and Dset B were respectively clustered. 
Scheme S3 is the same as S2 with HbA1C replaced by FPG. Schemes S4 and S5 substitute 
HOMA2 measures in schemes S1 and S2 with their respective input attributes. Scheme 
S6 makes use of a previous HOMA model [49] that uses simple formulas for approxi-
mating beta cells function and insulin resistance. Finally, scheme S7 applies Metabolic 
Scores for Insulin Resistance (METS-IR) [50] and Visceral Fat (METS-VF) [51], which are 
respectively proposed measures of insulin resistance and intra-abdominal fat content. 
Schemes S1, S2, S3, and S7 were implemented elsewhere [9] and here we added schemes 
S4, S5, and S6.

Training and validating models

In the validation stage, several models are trained to compare among them, obtain aver-
age metrics and choose the best ones. This task was carried out using two independent 
validation processes: bootstrapping and stratified 10-fold cross validation. The former is 
recommended for obtaining classification models that circumvent overfitting. This is a 
common undesired effect on classification models that occurs when the model memo-
rizes the training dataset instead of learning to classify; therefore the statistics provided 
during training might not represent the actual performance of the model in real sce-
narios on unseen data. Bootstrapping helps to evaluate the model by randomly sampling 
a dataset with replacement to obtain the training data, and the rest of non sampled data, 
called out-of-bag data, to test its results. The process is repeated several times selecting 
different random samples each time. We chose to extract 1000 bootstrap samples and a 
distribution of metric values for each of the models.

Results obtained from bootstrapping validation were evaluated by means of classifi-
cation metrics (see Appendix A) to select the best performing algorithm on each clas-
sification scheme. We then performed a stratified 10-fold cross validation process only 
on the selected algorithms. This process consists in randomly splitting the dataset in ten 
equitable partitions maintaining proportional number of records per each class. At each 
iteration of the cross validation process each partition was selected as the testing set and 
the remainder nine partitions combined as the training set. Unlike the bootstrapping 
procedure, where random sampling is processed at each iteration, in cross validation 
every model is validated on the exact same patient records, as the splitting is effected 
only at the beginning.

Final evaluation

After the validation stage, we saved the trained models of best performing algorithms in 
terms of accuracy, for each of the seven classification schemes. These were obtained from 
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the bootstrapping procedure and thus, achieved the best accuracy among 1000 runs in 
each case. Since the hold out dataset (N = 7,309) did not contain C-peptide values, we 
classified it with five trained models from schemes S2, S3, S5, S6, and S7, which did not 
use this attribute. To obtain a final classification we applied the majority vote approach, 
breaking ties (i.e. two pair of schemes voting for two different classes each pair) by select-
ing the option of the model that achieved the highest accuracy during validation.

Results
This section describes the results corresponding to the data characterization by fol-
lowing the different clustering strategies previously defined, the classification models 
obtained from the validation Dset A and Dset B using bootstrapping and cross-valida-
tion, and the final classification on the test dataset.

Data characterization

For the first stage clustering, Table  2 shows the number of patients clustered on each 
group and the intrinsic validation values of the four clustering strategies applied on the 
dataset D2 . Overall, strategies 1.1, 1.2, and 1.4 obtained comparable scores and fairly 
similar distribution of patients among the groups, while clustering 1.3 produced con-
siderably lower values on validation indices. As may be intuitively expected, allowing 
K-means to iterate until convergence after assigning initial centroids performed slightly 
better than the only-assign counterpart. In terms of these validation values obtained, 
performing a repeated K-means clustering without initial centroids and without gender 
separation outperformed the rest of strategies.

The comparison among the first stage clustering strategies is provided in Table  3. 
It can be observed how the similarities among clusterings provide further means to 

Table 2 Results for first stage clustering. Dataset D2 (N = 680). SIL silhouette, DB Davies‑Bouldin, CH 
Calinski‑Harabasz. Best metric value achieved appears in bold

Obs. per group Intrinsic index

 Strat. 0 1 2 3 SIL DB CH

1.1 262 191 122 105 0.2013 1.5039 159.51

1.2 256 177 140 107 0.1951 1.4794 161.91

1.3 249 123 121 187 0.1545 2.0872 119.49

1.4 234 200 140 106 0.2015 1.4554 167.34

Table 3 Comparison metrics for first stage clustering. Dataset D2 (N = 680). ARI adjusted rand index, 
AMI adjusted mutual index, FM Fowlkes‑Mallows index. Best metric value achieved appears in bold

Strat. i Strat. j ARI AMI FM

1.1 1.2 0.8139 0.7629 0.8659
1.1 1.3 0.4302 0.4073 0.5885

1.1 1.4 0.7011 0.6658 0.7838

1.2 1.3 0.4440 0.4365 0.5965

1.2 1.4 0.7530 0.7363 0.8205

1.3 1.4 0.4866 0.4778 0.6261
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evaluate them. The best validated clustering 1.4 attained good similarities with clus-
tering strategies 1.1 and 1.2. On the contrary, strategy 1.3 yielded a rather dissimi-
lar grouping with respect to its counterparts, even on this relatively small dataset. In 
addition to these results, Fig. 3 contains box plots showing the distribution of attrib-
utes per group, for each of the four implemented clustering strategies. Groups of the 
four strategies were identified and changed to match by observing the correspond-
ing pattern in the plots. The order of attributes per group is the same: ADO, BMI, 
HbA1C , HOMA2-B, and HOMA2-IR. As it is apparent from these plots, strategies 1.1, 
1.2, and 1.4 also yielded similar clusters. It is also noticeable that the distribution of 
attributes of clustering 1.3 did not suit the rest of them, particularly in groups 1 and 3.

Based on these first stage clustering results, we chose strategies 1.2 and 1.4 and com-
puted centroids either for the whole clustering (strategies 2.1 and 2.3, respectively) and 
for clusterings separated by gender (strategies 2.2 and 2.4, respectively). Additionally, 
we performed repeated K-means procedures for CP-HOMA2 and IN-HOMA2 attrib-
utes, the latter using Min-Max normalization instead of z-score (strategies 2.5 and 2.6, 
respectively). Table 4 summarizes results from second stage clustering. Overall, group 
proportions were similar across all the strategies, being Group 0 the majority group with 
proportions ranging from 39.4 to 43.2%. Groups 1, 2, and 3 showed almost identical pro-
portions in strategies 2.1 to 2.5. These percentages ranged from 18.9 to 21.1%, 18.5 to 
19.9%, and 19.2 to 20.7%, respectively, for Groups 1, 2, and 3. On the other hand, cluster-
ing 2.6 generated slightly different populated clusters with proportions of 17.6, 16.3, and 
22.8%, respectively, in Groups 1, 2, and 3. In terms of clustering validation indices, both 
strategies implemented with repeated K-means procedure outperformed those with cen-
troid initialization. Moreover, clustering 2.6, achieved notably better metric scores than 
its nearest competitor strategy 2.5. Also, comparing strategies with initial centroids, it 

Fig. 3 Box plots of the four implemented clustering strategies in first stage clustering. (A) to (D) correspond 
to strategies 1.1 to 1.4, in that order
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is observable that those without gender separation (2.1 and 2.3) obtained better scores 
than their gender-separated counterparts.

Table 5 shows comparison metrics obtained for all-pairs of the six clustering strate-
gies implemented in the second stage clustering. Interestingly, the pair of strategies 
(2.1, 2.3) attained the highest similarity scores, despite that they originated from dif-
ferent first stage centroids. These scores were substantially higher, even compared 
with that of the pairs (2.1, 2.2) and (2.3, 2.4), that originated from the same first stage 
clusterings 1.2 and 1.4, respectively. Moreover, the second similar pair was (2.2, 2.4), 
which also come from different centroid initialization. Pairs of strategies that come 
from the same first stage clusterings (i.e. (2.1, 2.2) and (2.3, 2.4)) obtained the third 
and fourth places in terms of these clustering validity metrics. The remaining of 
clustering pairs that used z-score normalization and CP-HOMA2 values (2.1 to 2.5) 
reached scores ranging from: 0.6538 to 0.7512 (ARI), 0.6122 to 0.6853 (AMI), and 
0.7517 to 0.8221 (FM). Finally, all comparison pairs involving the clustering 2.6 that 
used IN-HOMA2 values with Min-Max normalization, obtained lower score ranges: 
0.3289-0.3784 (ARI), 0.3380-0.3828 (AMI), and 0.5250-0.5533 (FM).

Table 4 Results for second stage clustering. Dataset D1 (N = 2,768). SIL silhouette, DB Davies‑Bouldin, 
CH Calinski‑Harabasz. Best metric value achieved appears in bold

Obs. per group Intrinsic index

 Strat. 0 1 2 3 SIL DB CH

2.1 1160 523 511 574 0.1976 1.5518 629.61

2.2 1140 555 542 531 0.1883 1.6004 607.14

2.3 1138 546 511 573 0.1959 1.5530 631.39

2.4 1092 584 552 540 0.1798 1.6188 601.69

2.5 1155 530 549 534 0.2118 1.4701 671.79

2.6 1196 488 452 632 0.2580 1.2120 934.23

Table 5 Comparison metrics for second stage clustering. Dataset D1 (N = 2,768). ARI adjusted rand 
index, AMI adjusted mutual index, FM Fowlkes‑Mallows index. Best metric value achieved appears in 
bold

Strat. i Strat. j ARI AMI FM

2.1 2.2 0.8065 0.7396 0.8619

2.1 2.3 0.9379 0.9099 0.9557
2.1 2.4 0.7269 0.6803 0.8042

2.1 2.5 0.7362 0.6563 0.8121

2.1 2.6 0.3289 0.3380 0.5250

2.2 2.3 0.7512 0.6853 0.8221

2.2 2.4 0.8449 0.7969 0.8886

2.2 2.5 0.7298 0.6577 0.8070

2.2 2.6 0.3481 0.3556 0.5375

2.3 2.4 0.7768 0.7288 0.8396

2.3 2.5 0.7023 0.6340 0.7874

2.3 2.6 0.3389 0.3415 0.5310

2.4 2.5 0.6538 0.6122 0.7517

2.4 2.6 0.3734 0.3696 0.5533

2.5 2.6 0.3435 0.3828 0.5350
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Figure  4 shows the distribution patterns of involved attributes for the six clustering 
strategies applied on dataset D1 . The order of attributes per Group is the same: ADO, 
BMI, HBA1C, CP-HOMA2-%β , and CP-HOMA2-IR. Importantly, these distribution 
plots allowed us to assign T2DM subtype to each cluster, by means of visual inspection 
and direct comparison of the patterns against previous results in T2DM sub-classifica-
tions [8, 9, 30]. Indeed, the patterns of attributes obtained within the different clusters 
matched the distributions previously reported for MARD, MORD, SIDD, and SIRD. 
In general, patterns from all six clustering strategies were sufficiently matching to that 
of previously reported in the literature to distinguish and assign a T2DM subtype to 
each group. Nevertheless, as it is observable on the plots, there are some slight differ-
ences in ranges, interquartile ranges, and outliers comparing distribution of attributes 
in the T2DM subtypes. Among these minor discrepancies, the most appreciable were 
(see Fig. 4): both HOMA2 values in MARD (Panels A-E compared to F); BMI in MORD 
(Panels A-D compared to E and F); HBA1C in SIDD (Panels A-E compared to F); ADO 
and HBA1C in SIRD (Panels A-D compared to E and F).

From the second stage clustering on dataset D1 , and considering validation and 
comparison metrics, we selected the groups produced by two clustering strategies to 

Fig. 4 Box plots of the six implemented clustering strategies on dataset D1 (N = 2,768). Panels (A) to (F) 
corresponds to strategies 2.1 to 2.6, in that order
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constitute two labeled datasets: Dset A and Dset B, from strategies 2.5 and 2.6, respec-
tively. On these datasets, T2DM subtype labels were assigned to patients by means of 
the matching of patterns in the identified groups by clusterings 2.5 and 2.6 (Panels (E) 
and (F) in Fig. 4). Both datasets were used in the next stage for developing classification 
models.

Obtaining classification models

Based on the labeled datasets Dset A and Dset B, the four classification algorithms 
learned about these T2DM subtypes. Models trained with both datasets are presented 
in Table 6. For brevity, we will refer to them as models A and B. Each entry in Table 6 
displays global results that include median accuracies (ACC) and median weighted-aver-
aged F1-scores (F1) with respective 95% CI computed from bootstrap validation (1000 
samples) for each of the seven data schemes and four algorithms implemented. In our 
discussion, we will use the term “best performing” algorithm/model referring to the one 
that achieved the highest median/mean metric value, regardless of having overlapping 
confidence intervals.

Table 6 Bootstrap validation results. Global classification metrics obtained for models A and B. 
Median accuracies (ACC) and F1‑scores (F1) are presented with respective 95% CI. Best performing 
model on each scheme appears in bold

Models A Models B

 Scheme Algorithm ACC (95% CI) F1 (95% CI) ACC (95% CI) F1 (95% CI)

S1 SVM 0.9862 (0.978–0.993) 0.9862 (0.978–0.973) 0.9794 (0.969‑0.987) 0.9794 (0.969‑0.987)

KNN 0.9292 (0.912–0.947) 0.9284 (0.910–0.946) 0.9307 (0.910‑0.947) 0.9298 (0.909‑0.947)

MLP 0.9880 (0.981–0.994) 0.9880 (0.981–0.994) 0.9832 (0.972-0.991) 0.9832 (0.971-0.991)

SNNN 0.9462 (0.928–0.962) 0.9463 (0.928‑0.962) 0.8177 (0.782‑0.845) 0.8053 (0.759‑0.836)

S2 SVM 0.8271 (0.807–0.846) 0.8232 (0.802–0.843) 0.9835 (0.974‑0.990) 0.9835 (0.975‑0.990)

KNN 0.8074 (0.785–0.828) 0.8023 (0.778–0.824) 0.9542 (0.938‑0.968) 0.9539 (0.937‑0.968)

MLP 0.8166 (0.795–0.836) 0.8154 (0.793–0.835) 0.9891 (0.979-0.995) 0.9891 (0.979-0.995)

SNNN 0.8131 (0.788–0.837) 0.8106 (0.782–0.836) 0.8037 (0.766‑0.830) 0.7871 (0.729‑0.819)

S3 SVM 0.7801 (0.759–0.803) 0.7762 (0.753–0.800) 0.8927 (0.876‑0.908) 0.8908 (0.874‑0.907)

KNN 0.7735 (0.752–0.797) 0.7687 (0.746–0.794) 0.8751 (0.856‑0.893) 0.8735 (0.853‑0.891)

MLP 0.7643 (0.742–0.786) 0.7625 (0.740–0.784) 0.8934 (0.876-0.909) 0.8917 (0.874-0.908)

SNNN 0.7777 (0.750–0.802) 0.7760 (0.744–0.801) 0.7446 (0.705‑0.774) 0.7287 (0.659‑0.763)

S4 SVM 0.9613 (0.949–0.972) 0.9611 (0.949–0.972) 0.9788 (0.969‑0.987) 0.9788 (0.969‑0.987)

KNN 0.8921 (0.872–0.911) 0.8902 (0.870–0.910) 0.9037 (0.882‑0.924) 0.9023 (0.881‑0.924)

MLP 0.9781 (0.968–0.986) 0.9781 (0.968–0.986) 0.9833 (0.971-0.991) 0.9833 (0.971-0.991)

SNNN 0.9041 (0.882–0.922) 0.9044 (0.882–0.922) 0.7770 (0.736‑0.808) 0.7563 (0.689‑0.792)

S5 SVM 0.8222 (0.803–0.842) 0.8177 (0.797–0.839) 0.9772 (0.968‑0.985) 0.9772 (0.968‑0.985)

KNN 0.7948 (0.773–0.818) 0.7863 (0.760–0.811) 0.8988 (0.877‑0.919) 0.8974 (0.875‑0.919)

MLP 0.8149 (0.793–0.835) 0.8140 (0.792–0.834) 0.9851 (0.974-0.992) 0.9851 (0.974-0.992)

SNNN 0.8049 (0.778–0.831) 0.8011 (0.769–0.828) 0.7740 (0.736‑0.805) 0.7535 (0.684‑0.791)

S6 SVM 0.7937 (0.763–0.819) 0.7808 (0.742–0.811) 0.9806 (0.971‑0.988) 0.9806 (0.971‑0.988)

KNN 0.7553 (0.731–0.778) 0.7310 (0.698–0.759) 0.9504 (0.934‑0.965) 0.9502 (0.933‑0.964)

MLP 0.8190 (0.797–0.838) 0.8175 (0.796–0.837) 0.9810 (0.970-0.989) 0.9810 (0.970-0.989)

SNNN 0.7704 (0.742–0.795) 0.7608 (0.727–0.789) 0.9145 (0.848‑0.956) 0.9127 (0.841‑0.955)

S7 SVM 0.7579 (0.737–0.781) 0.7379 (0.709–0.766) 0.9771 (0.968‑0.985) 0.9771 (0.968‑0.985)

KNN 0.7431 (0.720–0.766) 0.7216 (0.691–0.749) 0.9312 (0.914‑0.948) 0.9306 (0.913‑0.947)

MLP 0.7398 (0.713–0.763) 0.7296 (0.705–0.754) 0.9785 (0.966-0.987) 0.9785 (0.965-0.987)

SNNN 0.7455 (0.717–0.772) 0.7348 (0.693–0.763) 0.8062 (0.765‑0.839) 0.7944 (0.727‑0.831)
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Naturally, as it consists of the same attributes on which Dset A was clustered, the best 
performance among models A was attained by scheme S1 with same ACC and F1 values 
of 98.8% (98.1–99.4% CI) . Nonetheless, the next best performing scheme (S4) was not 
far from these metrics reaching up to 97.8 (96.8–98.6% CI) ACC and F1. Remaining (best 
performing) models A produced ACCs ranging from 75.8 to 82.7% and F1s ranging from 
73.9 to 82.3%. Algorithms that yielded the highest ACC were SVM (schemes S2, S3, S5, 
and S7) and MLP (schemes S1, S4, and S6). Moreover, these algorithms obtained the best 
and second-best performance in all schemes excepting S3 and S7, where KNN and SNNN 
attained the second-best performance, respectively. SVM kernels that performed best 
were linear (schemes S1, S3, S4, S6, and S7) and rbf (schemes S2 and S5). There were mar-
ginal differences among K values tested in KNN, with values K=54 and K=55 achieving 
the best in most of the schemes. Evaluating mean performance of best models across all 
seven schemes, mean ACC and F1 were 85.3% (± 9.2%) and 84.8% (± 9.7%), respectively.

Among models B, the best performing were also the ones from which the input dataset 
was labeled (in this case, scheme S2), with 98.9% (97.9–99.5% CI) of both best ACC and 
F1. However, in this case, the rest of models offered considerable closer performances 
with respect to S2, in all schemes excepting S3. Indeed, second to sixth performing mod-
els (schemes S5, S4, S1, S6, and S7) achieved ACCs and F1s ranging from 97.9 to 98.5% 
(i.e. only 1.0 to 0.4% lower than S2), while S3 attained lower ACC = 89.3% and F1 = 
89.2%. In this case and within all schemes, MLP outperformed the rest of algorithms 
closely followed by SVM, particularly in schemes S6 and S7. Interestingly enough, SVM 
kernel that produced best results was polynomial within these models. Again, tested K 
values did not yield substantial difference in performance for models B. The mean per-
formance of best models in all schemes is given by ACC and F1 values of 97.1% (± 3.4%) 
and 97.0% (± 3.5%), respectively.

Supplementary Tables S1 and S2 show corresponding per-class results of models A and B, 
respectively, in terms of F1-score, Sensitivity, and Specificity. In these tables, each entry dis-
plays the metrics for the best performing model (i.e. best ACC), out of the 1000 bootstrap 
samples. Corresponding confusion matrices from which these metrics were computed are 
also included in Supplementary Figs. S1 and S2. By observing Table S1 and corresponding 
Fig. S1, it can be noticed that the lower performance of models A within schemes S2, S3, S5, 
S6, and S7 is mainly due to a poor Sensitivity for Class 3 (SIRD). This metric was drastically 
low in schemes S6 and S7 where some algorithms reached values even lower than 40%. This 
effect is evidenced in the confusion matrices by observing that most errors come from Class 
3 cases being misclassified as Class 0, and vice versa. Interestingly, that was not the case for 
models B (Table S2). In these models, the abnormal low sensitivities occurred only in Class 
1 (MORD) and only for SNNN. This result is also explained by watching that many Class 1 
records are misclassified as Class 0, 2, or 3 (Fig. S2) in most of schemes.

The amounts of records of each class left in the out-of-bag (validation) set are also 
shown in Tables S1 and S2. It can be observed that the proportion of validation records 
from the input dataset is ∼ 35–38% in these samples. This means that the models were 
trained using a proportion of ∼ 62–65% of different records from the input dataset. In 
other words, 35 to 38% of the training records are repeated in the bootstrap process.

For this reason and with the purpose of contrasting results with those reported by [9], we 
also aimed at assessing the performance of classification models A and B using a stratified 
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10-fold cross validation. We selected the best performing algorithm in each scheme from 
the bootstrap validation stage; as reviewed above (i.e. those appearing bolded in Table 6). 
Table 7 shows these classification results computed as the mean values across the 10 folds 
for global Accuracy and per-class Precision, Sensitivity, Specificity, and Area Under the 
Curve (AUC). The overall performance of all models was consistent compared with boot-
strap results, with minor increases and decreases in ACC. For models A, it is noticeable the 
same behavior observed in bootstrap regarding the low sensitivity in Class 3 for schemes 
S2, S3, S5, S6, and S7. With respect to implemented schemes S1, S2, S3, and S7 in [9], our 
models A achieved comparable performance in S1, but yielding lower metric values in the 
rest of them. Conversely, models B produced remarkable competitive performances in all 
compared schemes. Lastly, Fig. 5 compares macro-averaged Receiver Operating Charac-
teristics (ROC) curves and displays corresponding AUCs for both models A and B, and for 
each of the seven implemented schemes. In the case of models A (upper panel), these plots 
show how schemes S1 and S4 attained the best performance, with considerable higher 
AUC than the rest of schemes. For models B (lower panel), it can be observed that except-
ing for S3, all schemes obtained closely similar curves and AUC values.

As a final step in the classification stage of our data analysis flow, we tested our trained 
models on unseen data. The hold-out dataset comprised N = 7,309 patient records that 
did not include C-peptide values and thus, was a disjoint set with respect to the training/
validation dataset. As previously explained, we applied a majority vote approach using 
the best performing models A, considering the five schemes which did not make use of 
C-peptide parameter (i.e. S2, S3, S5, S6, and S7). Table 8 shows the number of records 
that were classified in each class by the five predictors. Despite of the fact that there were 
disparities in these amounts (i.e. predictor S5), in general, there was consensus among the 
five predictors. On 77.3% of the observations, all five or four of the predictors agreed on 
the resulting class. Moreover, the cases when three or more predictors agreed amounted 
to 97% of observations. The total of ties (cases where two pairs of predictors voted for two 
different classes) were 175 (2.4%) and were solved by simply assigning the class predicted 
by the predictor that achieved the best performance during the bootstrap validation stage.

Figure 6 depicts our final classification results (Panel A) on the test set in terms of 
the proportions of each class separated by gender or including both. For comparison 
purposes, we also include proportions obtained by landmark studies [8, 9]. The for-
mer (Panel B) were acquired by classifying our test set using the authors’ web tool 
with attributes corresponding to our scheme S2. The latter (Panel C) consist of the 
authors’ reported results obtained with a dataset of their own (ANDIS, Swedish popu-
lation, N = 8,980). On the latter results, we recalculated the number of observations 
accordingly, after eliminating those belonging to the SAID class, which we did not 
consider. Proportions of classes from our majority vote approach were similar to that 
of [8], in spite of the fact that both were obtained from different populations. On the 
other hand, although the charts in Fig. 6 display different proportions with respect to 
[9], there was still an overall matching of 57.2% with 1152, 938, 1510, and 578 equally 
classified observations for MARD, MORD, SIDD, and SIRD, respectively. 90.3% of dis-
crepancies came from observations that were respectively classified in our method/
web tool as: MARD/MORD (1228), MARD/SIDD (790), MORD/SIDD (411), and 
SIRD/MORD (398).
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Lastly, Fig.  S3 shows a comparison of per-class distribution patterns for ADO, BMI, 
HBA1C, IN-HOMA2-%β , and IN-HOMA2-IR; for results obtained in the test set from 
our study (Panel A) and the aforementioned web classifier (Panel B). Overall, resemblance 
of patterns is appreciable for all variables, although, there was some variation derived 
from the disparities in amounts of observations per class. Due to the MARD/MORD and 
MARD/SIDD mismatching classifications, it is observable that the web classifier yielded a 
narrower distribution and higher median for ADO in MARD class; as this class has fewer 
instances. However, as a consequence of having more instances classified within, classes 
MORD and SIDD present less defined distributions of BMI and HBA1C, respectively.

Fig. 5 Macro‑averaged Receiver Operating Characteristics curves for each scheme. (A) Models A. (B) Models 
B
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Discussion
In the present study, we have focused on developing and testing classification models for 
T2DM subtypes. Our methodology consisted in three main stages: dataset construction, 
data characterization, and classification model development. In view of our results, we 
consider the following as our findings.

First, producing an enriched large dataset by fusing information from two repre-
sentative health databases, NHANES and ENSANUT. Although NHANES includes 

Table 8 Number of records classified per class in the hold‑out dataset for each of the five predictors 
considered

Schemes

 Class S2 S3 S5 S6 S7

MARD 3048 3058 4260 3317 2832

MORD 1225 1273 1982 1402 1314

SIDD 1593 1561 592 1555 1193

SIRD 1443 1417 475 1035 1812

Fig. 6 Proportion of observations of T2DM classes. (A) Our mayority vote scheme with models trained 
with LD1 dataset. (B) Classification of test dataset using the insulin‑based HOMA2 model developed by 
Bello‑Chavolla et al. [9]. (C) Clustering results reported by Ahlqvist et al. [8] with their dataset ANDIS
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multi-ethnic information, our dataset predominantly comprised mexican-american, 
other hispanic, and mexican patients with approximately 60% of the total records. Thus, 
we consider that this dataset comprises a fairly representative sample of this population. 
Our dataset was amongst the largest within those related to application of unsupervised 
learning for diabetes [31].

Second, experimenting with more clustering algorithms such as density-based and 
hierarchical methods; and evaluating cluster qualities in terms of clustering valida-
tion indices. We verified that tested DBSCAN and Agglomerative algorithms did not 
yield good clusterings contrasted to K-means, according to intrinsic metrics; which, 
according to our knowledge, has not been reported by previous works. Also, amounts 
of observations within groups importantly differed from those obtained with 
K-means, as was corroborated by extrinsic metrics. Thus, on reported experiments 
we attached to previous proved methodologies that were based on K-means to char-
acterize T2DM groups; on the basis that this unsupervised method provides the best 
means to find better defined and distinctive class boundaries. Additionally, we tested 
different clustering strategies contrasting centroid initialization, clustering by gender, 
and using a repeated K-means procedure. The latter simple procedure allowed us to 
deal with cluster variance within executions, occurring in some observations lying on 
an inter-cluster boundary. Results obtained in this stage suggest that better defined 
clusters are obtained by executing de novo K-means clustering and without gender 
separation.

And third, providing further insights of model performances in the classification 
of T2DM subtypes. In this regard, we carried out an exhaustive evaluation of four 
machine learning algorithms using two validation settings. Bootstrap is considered a 
more statistically robust way of assessing performance of machine learning models 
[52]. Nevertheless, both validation modes yielded similar results in terms of classifica-
tion metrics applied. Interestingly, models fitted remarkably better to data that was 
clustered using Min-Max normalization and IN-HOMA2 measures, obtaining accura-
cies of 97.1 ± 3.4% (bootstrap) and 97.2 ± 3.2% (cross-validation), averaged from the 
seven implemented data schemes. These averaged accuracies were 85.3 ± 9.2% (boot-
strap) and 85.1 ± 9.8% (cross-validation) in the case of models trained with z-score 
standardized data with CP-HOMA2. SVM and MLP machine learning techniques 
attained best performances. Above all, from the seven data schemes we assayed, we 
found that HOMA2 constituent variables (used in schemes S4 and S5) provided great 
performances. From our point of view this result was interesting, as it points that 
HOMA2 variables used for clustering can be replaced with surrogates to train clas-
sification models. Indeed, the importance of this finding lies on the fact that param-
eters such as fasting glucose and C-peptide/insulin are readily available from public 
databases or health records, while HOMA2 measures require licensed software when 
deploying tools in online production environments (although they provide offline 
converters free of access). To the best of our knowledge, with the exception of SNNN 
models [9, 39], development and testing of classification models for T2DM subtypes 
has not been previously reported in the literature.



Page 25 of 37Ordoñez‑Guillen et al. BioData Mining           (2023) 16:24  

Finally, our majority vote approach demonstrated a great deal of consensus amongst 
used classifiers, in the hold-out dataset. Class proportions were similar to those found 
in the pioneer study of Ahlqvist et al. [8]. On the other hand, we believe that the dispar-
ity in our results compared with those of the web classifier of Bello-Chavolla et al. [9] 
are mainly attributable to the standardization step. Indeed, during experimentation we 
encountered that this step, which depends on the distribution of variables in the dataset, 
greatly impacts classification results.

Conclusion
We have introduced a new pipeline for analysis of datasets with the goal of obtaining 
classifiers for T2DM subtypes. With this purpose, we described a detailed data curation 
and characterization processes to obtained labeled datasets. Unlike previous work, our 
analysis included a clustering validation step through well-known indices, that allowed 
us to evaluate quality of clusters. We have obtained results consistent to most of previ-
ous work in terms of subgroup proportions (see Table 1). From the classifiers we have 
trained, it is remarkable the fact that simpler and faster algorithms such as SVM and 
MLP fitted better to the clustered data than the more involved convolutional architec-
tures. Also, the results showed that classifiers learned better from normalized (Min-
Max) compared to that of standardized (z-score) data. The obtained performances using 
this scaling approach were consistent across the seven data schemes, since normalized 
data produced better defined clusters according to validation indices.

The present work was based on cross-sectional data and thus, we have limited the 
scope of our analysis to the development of classification tools for T2DM subtypes, 
without further association with risks of complications, incidence, prevalence, and treat-
ment response. We left such analyses as future work, with the hope of establishing data 
sharing collaborations. However, we believe that the study offers valuable insights on the 
process of developing classification models for T2DM subtypes. Further limitations of 
the present study are those inherent to the population (i.e. dataset) used for the analy-
sis, preprocessing steps applied, and that we have considered all the patients within the 
dataset as GADA negative (i.e. not considering SAID class), since this variable was not 
available in most of NHANES and ENSANUT records.

Appendix A: Background definitions
This section will provide background concepts and definitions pertinent to the methods 
applied. In particular, we will describe clustering techniques, clustering validation indi-
ces, classification algorithms, and evaluation metrics.

Clustering techniques

Clustering techniques differ on the way how clusters are identified. Basically, this 
depends on how the user desires the grouping approach and the distribution of data. 
Three different clustering approaches were explored:



Page 26 of 37Ordoñez‑Guillen et al. BioData Mining           (2023) 16:24 

• Hierarchical (agglomerative clustering) [45] is a bottom-up approach that begins 
grouping closer observations forming a tree (i.e. a hierarchy) termed dendrogram, 
where upper levels represents meta-clusters (cluster of clusters).

• Density (DBSCAN [46]) works on the density of instances into the space of instances, 
grouping those which are in dense regions to form clusters.

• Partitional (K-means) is directed by the number of desired clusters. Instances are 
grouped according to its similarity to the centroids of the clusters. K-means is one 
of the most used due to its simplicity and scalability. Given k, i.e. the desired num-
ber of clusters, k-means proceeds to coalesce instances by assigning them the clos-
est centroid, based on some distance measure. Centroids are representative instances 
of clusters, initially given or pre-computed, that represent the center of each cluster 
located at the mean of each variable. Once every instance is assigned to its corre-
sponding centroid, the next step consists on recomputing the k centroids. This pro-
cess is repeated until the centroids do not change significantly according to a pre-
defined tolerance value, or a maximum number of iterations is reached, or another 
stopping criteria.

Clustering validation indices

Validation indices are mathematical formulations that provide quantitative measures 
for evaluating the quality of the clustering procedures. There are intrinsic and extrinsic 
methods. These are briefly described in the following.

Intrinsic methods

When the ground truth labels of instances are not available, intrinsic methods allow to 
quantify the quality of clusterings. The general idea consists in minimizing distances of 
instances within the same partition (i.e. obtain more compact partitions), and maximiz-
ing distances of observations belonging to different partitions (i.e. obtain more separa-
tion among partitions). The methods we applied were:

• Silhouette (SIL) [53]. The Silhouette index computes for each instance pi a score 
SILi , given by SILi = (bi − ai)/max(bi, ai) , where ai is the average distance of pi to 
every instance within its cluster and bi is the average distance of pi to all instances of 
the nearest cluster. The overall index for a clustering C, SILC is obtained by averaging 
the index of all instances.

• Davies-Bouldin (DB) [54]. This index is defined as the average similarity 
between each cluster Ci ( 1 ≤ i ≤ k ) and its most similar Cj . For each cluster Ci let 
Rij = ((si + sj)/dij) be this measure of similarity, where si , sj are respectively the 
average distance of each instance in Ci to its centroid, and dij the distance between 
centroids i and j. The Davies-Bouldin index is defined as the average of the similarity 
between clusters Ci and Cj : 



Page 27 of 37Ordoñez‑Guillen et al. BioData Mining           (2023) 16:24  

• Calinski-Harabasz (CH) [55]. This index is also known as the Variance Ratio Crite-
rion. For a k-clustering of a dataset with N instances, the between- and within-cluster 
dispersion matrices are respectively defined as: 

 where nk and ck are the number of instances and centroid of the k-th cluster Ck and 
cN is the global centroid of the dataset. The Calinski-Harabasz index is defined as the 
ratio 

Extrinsic methods

On the other hand, the extrinsic methods assist in evaluation of clustering quality 
only respective to a ground truth label assignment, and without considering any other 
information of distance among the data points. We used the following indices with 
the purpose of comparing similarity among our different clustering strategies:

• Adjusted Rand Index (ARI) [56]. For a ground truth label assignment C and a 
clustering K, let us define a,  b,  c,   and d, respectively as the number of pairs of 
instances that:

– are in the same set in C and in the same set in K,
– are in the same set in C and in different sets in K,
– are in different sets in C and in the same set in K,
– are in different sets in C and in different sets in K.

  Terms a, b, c,  and d can be calculated from the contingency matrix [57]. The 
unadjusted Rand Index is defined by: 

  To guarantee that random label assignments will get a value closer to zero, the 
Adjusted Rand Index is defined as: 

DB =
1

k

k

i=1

max
i �=j

(Rij)

BK =

K
∑

k=1

nk(ck − cN )(ck − cN )
T

WK =

K
∑

k=1

∑

p∈Ck

(p− ck)(p− ck)
T

CH =
trace(Bk)

trace(Wk)
×

N − K

K − 1

RI =
a+ b

a+ b+ c + d
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• Adjusted Mutual Information (AMI) [58]. Let U and V be two label assignments 
for N instances in a clustering. Let us define the probability that a randomly picked 
instance falls into:

– class Ui as P(i) = |Ui|/N ,
– class Vj as P′(j) = |Vj|/N  , and
– both classes Ui and Vj as P(i, j) = |Ui ∩ Vj|/N .

  The entropy (amount of uncertainty) of each assignment are defined as: 

 The unadjusted Mutual Information score for U and V is: 

 and with the expected value for MI E(MI) the Adjusted Mutual Information score is 
defined as: 

• Fowlkes-Mallows (FM) [59]. This index is defined as the geometric mean of the pair-
wise precision and recall metrics. In notation of terms a, b, c,  and d, defined previ-
ously for the ARI index the FM score is defined as: 

Classification algorithms

Algorithms used for developing classification models were K-Nearest Neighbors (K-NN), 
Support Vector Machine (SVM), MultiLayer Perceptron (MLP), and Self-Normalized Neu-
ral Networks (SNNN). These are briefly described in the following.

• K-NN. It is one of the simplest algorithm for classification. It is based on two simple 
notions, a measure of distance and the premise that closeness among patients is helpful 

ARI =

(

N
2

)

(a+ d)− [(a+ b)(a+ c)+ (c + d)(b+ d)]

(

N
2

)2

− [(a+ b)(a+ c)+ (c + d)(b+ d)]

H(U) = −

|U |
∑

i=1

P(i)log(P(i))

H(V ) = −

|V |
∑

j=1

P′(j)log(P′(j))

MI(U ,V ) =

|U |
∑

i=1

|V |
∑

j=1

P(i, j)log(
P(i, j)

P(i)P′(j)
),

AMI =
MI(U ,V )− E[MI]

mean(H(U),H(V ))− E[MI]
.

FM =
a

√
(a+ b)(a+ c)
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to infer its class (T2DM subtype) membership [60]. Classification is made in two basic 
steps, first find the K nearest neighbors of an input patient and then classify the patient 
on a majority vote basis. It is called a lazy learning method in the sense that does not per-
form a training like other methods but rather classifies new patients using the data itself.

• SVM. This algorithm finds the best hyperplane (support vector) that best separates 
each class in the input data. In the binary case, the objective is to find a hyperplane 
that has the maximum distance between instances of a pair of classes. This maxim 
margin distance is useful so that a future instance can be classified. In case that the 
distribution of the classes in the training data is not lineally separable, it is necessary 
to modify the dimensionality of the data via a kernel function. In some cases, it is 
necessary to try different kernel functions to find the most suitable one.

• MLP. This is one of the simplest neural networks, but powerful for classification 
because it can learn linear and non-linear relations in data. The input data helps is 
combined to adjust a set of initial weights and bias arranged into layers, each linear 
combination in a layer is propagated to the next layer. By this, the model learns a set 
of patterns that describe the input data of each class. It can use any arbitrary activa-
tion function at the output. By several iterations on the input data, the algorithm 
readjusts weights and learning rate until no improvement is noticed in the classifica-
tion. The resulting model classifies unseen patients.

• SNNN. This is a kind of deep learning technique; at first, this was defined as a new 
architecture of neural networks, but later it was defined as a variant of MLP. Its main 
feature is an implementation of the SELU (Scaled Exponential Linear Units) activa-
tion function. Neuron activations converge towards zero mean and unit variance 
even under the presence of perturbations in data. In this way, the data is self-normal-
ized as it passes by each layer of the network making learning highly robust.

Values for K in K-NN were selected in the neighborhood of ⌊
√
N⌋ (i.e. the interval 

[⌊
√
N⌋ − 3, ⌊

√
N⌋ + 3] , where N is the number of patients. The hyperparameters for SVM, 

MLP, and SNNN were selected on preliminary execution of algorithms using grid search.

Classification metrics

Each of the obtained data models was evaluated by means of the following multi-class 
metrics. For an M-class classification problem with N instances, let us consider the 
M ×M confusion matrix CONF = cij , where by convention, we put the actual labels 
(ground truth) in columns and predicted labels in rows. For the k-th class 1 ≤ k ≤ M:

• True Positives ( TPk ) are in position cij ( i = k , j = k)
• True Negatives ( TNk ) are given by 

∑

cij ( i  = k , j  = k)
• False Positives ( FPk ) are given by 

∑

cij ( i = k , j �= k)
• False Negatives ( FNk ) are given by 

∑

cij ( i  = k , j = k)

With these values the per-class metrics Precision (PRE), Sensitivity or Recall (REC), their 
harmonic mean termed F1-score (F1), and Specificity (SPE) are respectively defined by:
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Global PRE, REC, and F1 are computed by averaging or adding up per-class values. 
These forms of averaging are: 

1. macro-averaged, which is the direct average of all classes (e.g. 
PREmacro = (PRE1 + PRE2 + · · · + PREM)/M);

2. weighted-averaged, which takes the proportion of instances on each class as weights 
(e.g. PREweighted = w1PRE1 + w2PRE2 + · · · + wMPREM , with wk = Nk/N  for 
1 ≤ k ≤ M ); and

3. micro-averaged, which follows the one-vs-rest approach pooling the results 
of the M ×M confusion matrix into a binary 2× 2 matrix, where TP, TN, FP, 
and FN values are the sum of its corresponding per-class values (e.g. TP = 
TP1 + TP2 + · · · + TPM ). Micro-averaged PRE, REC, and F1 turn out to be the 
same that the overall Accuracy (ACC) value, which in the multi-class setting is 
given by: 

Appendix B: Data preparation
Data preparation/preprocessing is a crucial stage in a machine learning pipeline. Here, 
we will describe in detail the data transformation steps we carried out to construct our 
dataset. For the implementation of these steps we used Pandas and Sklearn libraries, ver-
sions 1.4.2 and 1.0.2, respectively.

Data merging

After downloading the appropriate files/tables containing the variables needed for our 
study, we converted the format of files to .CSV when it was necessary. Particularly, we 
used the Python XPORT library to convert NHANES SAS .XPT files. Afterwards, we first 
merged tables within each cycle separately, and then concatenated the partial dataset 
obtained from each cycle. The set of attributes we initially selected from databases are 
shown in Table 9. To deal with variable naming inconsistencies across different cycles, 

PREk =
TPk

TPk + FPk
,

RECk =
TPk

TPk + FNk
,

F1k = 2×
PREk × RECk

PREk + RECk
=

2TPk

2TPk + FPk + FNk
,

SPEk =
TNk

TNk + FPk
.

ACC =

∑M
k=1 TPk

N
.



Page 31 of 37Ordoñez‑Guillen et al. BioData Mining           (2023) 16:24  

we defined an ordering and naming. For some categorical variables (e.g. ETHNICITY 
or DIABETES) we also defined a consistent scheme of values and changed them accord-
ingly. All values that were identified in the database documentation as codes for missing 
or irrelevant data were set to zero. Each observation was identified with a new sequential 
variable “NSEQN” and a cycle identifier “CYCLE” was also added. Table 10 resumes this 
information about each cycle.

Table 9 Subset of selected attributes

Attribute Description

Age Patient age in years

Gender Patient gender

Ethnicity Patient ethicity (Mex‑Amer, hispanic, white, black, other)

Diabetes Diabetes status (NA, diabetic, non‑diabetic, borderline, gestational, etc.)

ADO Age at Diabetes Onset in years

BMI Body Mass Index (kg/m2)

Height Height in cm

Weight Weight in kg

Waist Waist circumference in cm

HbA1C Glycated Haemoglobin as percentage

Glucose1 (FPG) Fasting plasma glucose in mmol/L

Insulin Fasting plasma insulin in pmol/L

C‑peptide Fasting plasma C‑peptide in nmol/L

Glucose2 (OGTT‑PG) Plasma glucose after Oral Glucose Tolerance Test (OGTT) in mmol/L

HDLC High‑Density Lipoprotein Cholesterol in mmol/L

Triglyceride Triglyceride in mmol/L

Table 10 Datasets generated per cycle. Cycles 1‑11 are from NHANES and cycles 21‑23 are from 
ENSANUT

CYCLE Years NSEQN Size

1 1988‑1998 0 ‑ 20049 20050

2 1999‑2000 20050 ‑ 30014 9965

3 2001‑2002 30015 ‑ 41053 11039

4 2003‑2004 41054 ‑ 51175 10122

5 2005‑2006 51176 ‑ 61523 10348

6 2007‑2008 61524 ‑ 71672 10149

7 2009‑2010 71673 ‑ 82209 10537

8 2011‑2012 82210 ‑ 91965 9756

9 2013‑2014 91966 ‑ 102140 10175

10 2015‑2016 102141 ‑ 112111 9971

11 2017‑2020 112112 ‑ 127671 15560

21 2006 300000 ‑ 345240 45241

22 2016 345241 ‑ 354064 8824

23 2018 345065 ‑ 397134 43070

TOTAL 224807
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Data cleansing

Data cleansing steps consisted in a double-checking variable-per-variable for null/blank 
or coded values that were set to zero. In this step we also corrected data inconsistencies 
(e.g. some observations with AGE < ADO). Values that were declared in the database 
documentation as “below the limit of detection” (C-PEPTIDE and INSULIN in cycles 1 
and 4) were also set to zero.

Imputation

Prior to imputation, we maintained only adult patients (AGE ≥ 20, N = 172, 909 ) to 
avoid including young diabetic patients that are often of type I. Imputation was imple-
mented in six incremental stages. For each imputed variable, we used four Sklearn esti-
mator methods: 

1. Bayesian Regression. It uses the available data to train a Bayesian ridge regression 
model to infer the missing data. By using a ridge approach, the resulting regression is 
intentionally offset from the original data to avoid overfitting the model.

2. Decision Tree Regression. It splits the existing data in several ranges per each row, 
depending on the ranges the predictor variables are, the outcome variable will be the 
mean of the rest of the data in the same range.

3. Extra Trees Regression. It works in a similar way to Decision Tree Regression, but 
instead of making rigorous calculus to find the optimal group splitting, a random 
splitting is performed.

4. KNN Regression. It uses the K-NN approach where the weighted mean of the k-near-
est neighbours to the existing values in the row to impute are calculated to fill in the 
blanks.

We used the median of the four estimated values for each imputed variable. Estimators 
require to provide the dataset to impute and the dataset to fit, both with the same vari-
ables. Pandas functionality allow logical formulae with operator symbols “ ∼ , | , &” (NOT, 
OR, and AND; respectively) to be provided as queries to retrieve subsets of observa-
tions in a dataset. For instance, if define v1, v2, v3, and v4 as the result of queries where 
variables satisfy some conditions (in our case, check if v1, v2, v3, and v4 are present), then 
the query v1 | (v2 & ∼ v3) retrieves the dataset where either v1 is present or v2 is present 
and v3 is absent. Using this notation, in the following we describe the six stages of our 
imputation scheme by providing the dataset to impute. We also provide the amount of 
observations in each dataset. In stages 1-4 we imputed observations separated by gender, 
and thus, the amounts are depicted as Nm (men) and Nw (women). For notation brevity, 
we will use the first two letters of each of the involved variables WEIGHT, HEIGHT, 
WAIST, HBA1C, GLUCOSE1, INSULIN, ADO, AGE, and BMI.

• Stage 1. Dataset to impute ( Nm = 2380,Nw = 3887 ): AG & [(¬ HE & WE & WA) | 
(HE & ¬ WE & WA) | (HE & WE & ¬WA)]. Dataset to fit ( Nm = 55319,Nw = 69051 ): 
AG & HE & WE & WA.
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• Stage 2. Dataset to impute ( Nm = 130,Nw = 160 ): AG & [(¬ HE & WE) | (HE & ¬
WE)]. Dataset to fit ( Nm = 57699,Nw = 72938 ): AG & HE & WE.

• Stage 3. Dataset to impute ( Nm = 130,Nw = 160 ): AG & HE & WE & ∼WA. Dataset 
to fit ( Nm = 57699,Nw = 72938 ): AG & HE & WE & WA.

• Stage 4. Dataset to impute ( Nm = 3974,Nw = 6338 ): AG & BM & [(∼ HB & GL & IN) 
| (HB & ∼ GL & IN) | (HB & GL & ∼IN)]. Dataset to fit ( Nm = 26191,Nw = 31288 ): 
AG & BM & HB & GL & IN.

• Stage 5. Dataset to impute ( N = 61037 ): AG & HB & GL & IN & ∼AD. Dataset to fit 
( N = 7406 ): AG & HB & GL & IN & AD.

• Stage 6. Dataset to impute ( N = 24398 ): AG & HB & ∼AD. Dataset to fit 
( N = 72216 ): AG & HB & AD.

Selection and extreme value removal

In this stage we selected patients that met the eligibility criteria, that is, patients with 
variables DIAGNOSED = 1 (diabetic) or with HBA1C > 6.5% or GLUCOSE2 ≥ 200 
mg/dl (glucose after oral glucose tolerance test, where this data was available). After 
selection, the size of the dataset was N = 21200 . We further selected observations 
that included values for C-PEPTIDE ( N = 2889 ) and carried out an extreme value 
removal procedure: observations with values that were separated from their mean for 
more than five standard deviations. We considered the variables ADO, BMI, GLU-
COSE1, C-PEPTIDE, and INSULIN, and repeated the procedure until there were no 
more extreme values in neither of the variables ( N = 2816).

HOMA2 computation

HOMA2 values which are derived from GLUCOSE1 and either C-PEPTIDE or INSU-
LIN were computed using the excel version of the HOMA2 calculator downloaded 
from the authors’ webpage [48]. This calculator has some limit restrictions on the 
values accepted. We dealt with these restrictions by assigning the limit values when 
necessary. After the HOMA2 computation, we performed a second extreme value 
removal procedure based only on the HOMA2 (from C-peptide) variables, from 
which we obtained a final dataset with N = 2768 observations.
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