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Abstract 

Background: Deep learning models can infer cancer patient prognosis from molecu‑
lar and anatomic pathology information. Recent studies that leveraged information 
from complementary multimodal data improved prognostication, further illustrating 
the potential utility of such methods. However, current approaches: 1) do not compre‑
hensively leverage biological and histomorphological relationships and 2) make use 
of emerging strategies to “pretrain” models (i.e., train models on a slightly orthogonal 
dataset/modeling objective) which may aid prognostication by reducing the amount 
of information required for achieving optimal performance. In addition, model inter‑
pretation is crucial for facilitating the clinical adoption of deep learning methods 
by fostering practitioner understanding and trust in the technology.

Methods: Here, we develop an interpretable multimodal modeling framework 
that combines DNA methylation, gene expression, and histopathology (i.e., tissue 
slides) data, and we compare performance of crossmodal pretraining, contrastive learn‑
ing, and transfer learning versus the standard procedure.

Results: Our models outperform the existing state‑of‑the‑art method (average 
11.54% C‑index increase), and baseline clinically driven models (average 11.7% C‑index 
increase). Model interpretations elucidate consideration of biologically meaningful fac‑
tors in making prognosis predictions.

Discussion: Our results demonstrate that the selection of pretraining strategies is cru‑
cial for obtaining highly accurate prognostication models, even more so than devis‑
ing an innovative model architecture, and further emphasize the all‑important role 
of the tumor microenvironment on disease progression.

Keywords: Multimodal, Survival, DNA methylation, Whole slide images, Gene 
expression, Machine learning, Graph neural networks, Tumor infiltrating lymphocytes

Background
Cancer prognostication and machine learning

Despite improvements in disease management options and global public health efforts, 
nearly half of Americans will develop cancer in their lifetime and cancer is the second 
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leading cause of death worldwide. In 2022 alone, it is estimated that over 600,000 indi-
viduals in the United States will die from cancer [1]. As each individual struggles with the 
disease differently, cancer care has become increasingly personalized. As such, research-
ers and clinicians are working collaboratively to develop and apply treatments tailored 
to the specific disease progression of individual patients. The patient’s prognosis indi-
cates the eventual disease outcome or risk of death, which is paramount for determin-
ing effective therapies [2]. Prognostication is a difficult and often subjective task which 
relies on information such as disease stage and molecular markers (ex; mutation status), 
where practitioners must rely heavily upon a gestalt impression of the patient’s risk pro-
file for clinical decision-making. Inferring this information can be especially challenging 
when considering the troves of biomedical information that are now available as enabled 
through the transformative impact of big data and subsequent high throughput process-
ing methods. Thus, there is a lack of prognostically relevant clinically-adopted molecular 
information derived from these data. Machine learning (ML) is a discipline where mod-
els are optimized by task-specific objective functions to make sense of large datasets. 
Deep learning models are particularly effective and leverage artificial neural networks 
(ANNs) to make predictions based on input data [3]. As data availability has prolifer-
ated through large-scale consortiums such as The Cancer Genome Atlas (TCGA), ML 
techniques have been applied to integrate a wide range of input data modalities for prog-
nostication [4], such as whole-slide-imaging (WSI), gene expression quantification, clini-
cal attributes like age and gender, and other biological and molecular measures [5–7]. 
These methods aim to quantify prognosis as a scalar hazard ratio and are supervised 
by Cox loss, a common method in survival analysis [8]. Effective ML-driven automated 
prognostication methods may reduce practitioners’ burden and resource-consumption. 
It should also account for challenges in data quality in low-resource areas, while helping 
improve patient outcomes by selecting of optimal disease management options, making 
it a promising active research area.

Multimodal machine learning and model interpretability

As ML is used to tackle increasingly complex problems, recent studies have sought to 
leverage multiple input data modalities to make downstream predictions (i.e., mul-
timodal modeling) rather than relying on a single data type (i.e., unimodal modeling) 
[9]. This follows the logic that increasing the model’s exposure to a more complete set 
of patient characteristics may facilitate improved predictive power by utilizing comple-
mentary information. Accordingly, many studies demonstrated the application of mul-
timodal modeling to cancer prognostication, providing improvements over unimodal 
methods [10]. These works aim to study optimal approaches for fusing embeddings (i.e., 
vector representations) from multiple data representations—methods to combine uni-
modal feature representations (i.e., vectors) to capture relationships both within and 
between these modalities (e.g., gene expression, whole slide imaging). For example, Chen 
et al. [11] combined crossmodal attention gating and a Krokener-product based method 
to model interactions across features extracted from different input modalities (WSI, 
gene expression, etc.). There exist efforts to validate these technologies across cancer 
types and explore their interpretability to ensure they truly capture relevant biological 
features as means to improve reliability and avoid sources of bias.
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Clinical or biological interpretability of model decision making can foster practitioner 
and patient trust in the technology, which is imperative for the adoption of ML technol-
ogies in the medical context [12, 13]. Several recent multimodal cancer prognostication 
studies have applied specific architectures and techniques to enhance model interpret-
ability and offer explanations for model predictions [14, 15]. For instance, specialized 
encoding schemes which reflect prior biological structure (e.g., genes to pathways) offer 
opportunities to reduce noise and further increase the capacity to interrogate the model 
findings.

DNA Methylation, Gene Expression, and Histopathology

Multimodal cancer prognostication methods typically utilize genomics data such as 
gene expression profiles or DNA methylation (DNAm). DNAm refers to the binding of 
a methyl group to the DNA, typically a cytosine residue of a cytosine-guanine dinucleo-
tide (CpG), which impacts the binding of transcription factors and regulatory proteins, 
largely responsible for setting the transcriptional programming for specific cell-types 
during aging and initiating pathogenesis [16]. The proportion of methylated alleles 
measured at specific sites can be recorded and used as informative data. As millions of 
sites can be methylated, this modality is currently underutilized by cancer prognostica-
tion approaches largely due to the prohibitive dimensionality for encoding to a latent 
space (i.e., set of features abstracted from the input data and optimally aligned to the 
modeling objective). Capsule-style approaches such as sparsely coded layers (i.e., local 
connectivity) can circumvent these challenges and provide additional interpretability 
while learning meaningful representations [17, 18].

High-resolution gigapixel histopathological whole slide imaging (WSI) are informative 
tools in pathology workflows. As most GPU-equipped machines cannot allocate suffi-
cient memory to apply deep learning models to the entire WSI, WSI are often broken 
into smaller subarrays (i.e., patches) which are modeled independently or jointly through 
a two-stage process. Graph neural networks (GNNs) – where nodes are representations/
embeddings of patches and edge connections are formed based on spatial adjacency – 
are promising modeling approaches based on their ability to capture complex micro 
and macro architectural relationships in WSI based on spatial connectivity [19]. Net-
work embedding methods (e.g., DeepWalk), are highly effective at representing graph 
structured data. For instance, previous methods have been developed to demonstrate 
the prediction of links in an attributed graph data structure through network embedding 
approaches, deriving node-level embeddings [20]. These network embedding approaches 
differ from what can be accomplished using a GNN, which can be configured to pool 
representations of tissue structures across large-spatial architectures (i.e., graph embed-
dings), while simultaneously updating node embeddings (i.e., tissue patches/subarrays). 
Few applications of GNNs to WSI for cancer prognostication currently exist [14, 21]. 
Further investigation of additional cancer types and experimental setups could prove 
beneficial.

Pretraining in multimodal cancer prognostication

Pretraining strategies are typically used as a form of regularization to tune model 
weights to extract meaningful representations from input data before these models are 
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applied and trained for a specific task (e.g., similar to how face detection algorithms are 
finetuned on an edge device to recognize specific individuals’ faces). For example, con-
volutional neural networks (CNNs) are commonly pretrained for classification on Ima-
geNet, a large dataset of natural world images with 1000 classes (ex; cats, dogs, cars). 
Then these models are trained on specialized objectives (ex; cancer diagnosis), having 
already learned to extract high level features from images (ex; shapes, edges). Recent 
studies have shown that multimodal neural networks – such as those integrating gene 
expression and DNAm – benefit from crossmodal pretraining; unimodal pretraining 
mechanisms which incorporate complementary modalities, such as predicting gene 
expression from DNAm and vice versa [22, 23]. Other unimodal pretraining strategies 
include the usage of variational autoencoders (VAEs) [24], transfer learning [25], and 
contrastive learning [26]. VAEs seek to reconstruct input data from low level represen-
tations, and can be beneficial when only data from one modality is available. Transfer 
learning centers on domain adaptation (e.g., recognizing liver tumors and adapting the 
model to learn to recognize Colorectal tumors) and is key in  situations where a high 
quantity of data is available that is not directly applicable to the target task (e.g., far fewer 
Colon slides available as compared to liver). Contrastive learning has emerged in recent 
years as an additional unimodal pretraining mechanism, where data is compared across 
classes or contexts (e.g., comparing spatially adjacent subarrays or the same subimage 
which has been augmented/re-stained) to learn important distinguishing features.

These innovative pretraining strategies have yet to be comprehensively investigated 
and applied to omics data such as gene expression and DNA methylation, as well as his-
topathology, for the purpose of prognostication. Existing works on multimodal cancer 
prognosis largely utilize a single unimodal pretraining method and assume its effective-
ness. Unimodal networks are trained to predict survival, often leveraging self-supervised 
learning objectives (sometimes in conjunction with VAEs), and their weights are sub-
sequently transferred to encoders in the multimodal model, as it is assumed that the 
unimodal training was sufficient to learn relevant high level features from input data. 
Cheerla & Geveart [10] evaluated the effectiveness of multimodal pretraining on dif-
ferent cancer subtypes, investigating whether learned biology from certain subtypes 
could be directly applicable to other subtypes. However, they too did not investigate 
the usage of other specialized pretraining mechanisms in an unimodal context, such 
as cross modal pretraining or contrastive learning, which have shown promise in other 
domains but have yet to be explored for pretraining multimodal prognostication meth-
ods. Accordingly, there is a gap in the existing literature in the potential benefits of using 
such pretraining strategies when developing multimodal modeling methods for cancer 
prognostication [4].

Contributions

Current works integrating histopathology, gene expression, and DNA methylation in a 
multimodal modeling approach to predict cancer prognosis can benefit from evaluating 
the impact of emerging pretraining strategies which may further leverage the biological 
and histomorphological information encoded within and across these modalities. Here, 
we present an application of interpretable multimodal prognostication using gene and 
pathway-neural networks and GNNs to compare innovative pretraining mechanisms 
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including self-supervised crossmodal pretraining, Graph Contrastive Learning, and 
transfer learning. Our study is the first to jointly evaluate the usage of these methods for 
multimodal cancer prognostication. Crucially, we bring insight on deep learning-driven 
prognostication – including assessment and analysis regarding pretraining strategies, as 
well as biological insights derived from the interpretation of models – which can inform 
further work in the field. We conduct our study on publicly available data from The Can-
cer Genome Atlas (TCGA) from 8 cancer subtypes: [4].

Methods
Methods overview

In Table 1 and Fig. 1, we have included a glossary and graphical overview of the methods 
employed in this study and their definitions for reference. In brief, the following meth-
odologies were adopted for this work:

1. Data Collection: Multimodal data (e.g., DNAm) from the TCGA were collected and 
preprocessed from 8 cancer subtypes

2. Model Approaches: Pathway neural networks were leveraged for omics data, while 
graph convolutional neural networks were used to capture information across tissue 
slides

Table 1 Definition of terms used in this analysis; it should be noted that the goal of unimodal self‑
supervised methods (e.g., Uni‑Self ) is to predict survival, regularized using a self‑supervised learning 
objective

Concept Term Description

Data Integration Strategy Unimodal Methods that operate on data from a single modal‑
ity (ie; gene expression, DNAm, or WSI)

Multimodal Methods that operate on data from multiple 
modalities, at the same time (ie; combining gene 
expression, DNAm, and WSI)

Pretraining Strategies Self‑Supervised (Self ) Methods which use properties of an individual data 
type to learn meaningful representations

Crossmodal (Cross) Methods predict a complementary modality from 
an input one

Transfer Learning (Transfer) Methods which learn information from particu‑
lar subtype(s), and aim to apply them to other 
subtypes

Model Names
(Data-Pretraining-Modality)

Uni‑Self‑Omics Gene expression and DNAm networks pretrained 
using VAEs

Uni‑Self‑WSI WSG GCNs pretrained using surival prediction

Uni‑Cross‑Omics Gene expression and DNAm networks pretrained 
using crossmodal prediction

Uni‑Cross‑WSI WSG GCNs pretrained using crossmodal pretraining 
and GCL

Uni‑Transfer Unimodal models which were pretrained using 
transfer learning from other subtypes

Multi‑Self Multimodal models which leveraged embeddings 
from self‑supervised pretraining on the individual 
modalities

Multi‑Cross Multimodal models which leveraged cross‑modal 
pretraining

Multi‑Transfer Multimodal models which were pretrained using 
transfer learning
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3. Unimodal Pretraining: Several pretraining strategies were compared for unimodal 
prediction (e.g., supervised learning, crossmodal, contrastive, transfer learning)

4. Multimodal Pretraining: Several pretraining strategies were compared for multi-
modal prediction (e.g., supervised learning, crossmodal, contrastive, transfer learn-
ing)

5. Model Comparison: Models were compared through reports of concordance statis-
tics and confidence intervals. Partial likelihood ratio tests and Kaplan Meier curves 
were devised to compare the suitability of deep learning-derived predictors to pTNM 
staging, etc.

6. Model Interpretation: Models were interpreted using neural network interpretation 
methods (e.g., integrated gradients, pathway layers, graph convolutional network 
pooling layers), comparison to tumor-infiltrating lymphocytes and enrichment anal-
yses to determine important genes, pathways, and WSI regions of interest

Dataset and preprocessing

The Genomic Data Commons (GDC) data transfer tool was used to download DNA 
methylation data, gene expression quantification, clinical data, and histopathologi-
cal whole slide tissue images from the TCGA tumor subtype studies bladder (BLCA), 
breast (BRCA), head and neck (HNSC), renal clear cell (KIRC), liver hepatocellular 
(LIHC), lung adenocarcinoma (LUAD), pancreatic (PAAD), and melanoma (SKCM). 
We restricted to patients where gene expression quantification, DNA methylation, a 
WSI downsampled to 20 × magnification, and clinical data were all available. Survival 
outcomes were right censored and recorded as days to death. Cases from each subtype 
were partitioned into an 80/10/10 train-test-validation split. We ensured cases within 
these sets exhibited similar survival status through report of a log-rank statistical test 
that compared survival between the dataset partitions. Gene expression and DNA 

Fig. 1 Study workflow overview; neural networks are pretrained using various methods to encode gene 
expression, DNA methylation, and histopathology whole slide imaging (denoted whole slide graph; WSG) 
data. Multimodal prognostication models are developed using these encoders pretrained using these 
methods, to assess the utility of each one
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methylation data were preprocessed using standard functions from the TCGABiolinks 
R package via Sesame [27]. Gene expression data was FPKM-normalized and log-trans-
formed. DNA methylation and gene expression data were preprocessed for each patient 
by only including CpGs and genes, for which data was available for every patient in the 
cohort across all cancer subtypes.

Stain normalization was applied to the WSI using the PathFlowAI Python package [28] 
(Macenko method) to match the application of staining reagents at the host institution. 
PathFlowAI was used to split each image into non-overlapping 256 × 256 subimages (i.e., 
patches). These subimages were transformed into embeddings (ie; vector representa-
tions) using a ResNet50 Convolutional Neural Network (CNN) [29] encoder pretrained 
using the ImageNet dataset, which is a common protocol in WSI patch encoding. These 
subimages served as nodes of a graph which were connected based on spatially adja-
cency using a radius neighbors algorithm. The embeddings formed the nodal attributes. 
The largest connected component was selected for each whole slide graph (WSG) to 
represent each WSI.

Clinical characteristics (e.g., sex, pathological stage, subtypes) are presented in Addi-
tional file 1: Appendix Table S1.

Unimodal omics pretraining

All omics encoders consist of sparsely coded and gene/pathway-informed layers, where 
input nodes represent gene expression and DNA methylation. The following layers rep-
resent biological pathways and genes associated with input genes and CpGs respectively. 
In standard neural networks, a single node in each layer is connected to every node in 
the following layer. When sparse coding is applied, each node in the input layer (gene 
expression, DNAm) is only connected to a certain subset of nodes (aka; capsules) in the 
following layer (genes, pathways) (Fig. 2). The Gene Ontology (GO) Biological Processes 

Fig. 2 Unimodal omics pretrraining; A) Uni‑Self‑Omics procedure consisting of unsupervised VAE pretraining 
followed by finetuning using a survival prediction objective; B) Uni‑Cross‑Omics procedure including 
concurrent crossmodal pretraining and survival prediction
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Set was used to construct gene expression pathway nodes (https:// www. ebi. ac. uk/ Quick 
GO/ annot ations), while genes associated with each CpG according to Illumina docu-
mentation are used as a gene set for DNA methylation (GSE42409). This capsule-style 
neural network configuration resembles the approach used by Gold et al., 2019 [30].

The following unimodal pretraining approaches were compared:

Unsupervised/Supervised Pretraining (Uni-Self-Omics): Unimodal encoders for 
gene expression quantification and DNA methylation data were individually pre-
trained for each subtype, using variational autoencoders (VAEs). VAEs are com-
monly used to generate compressed representations of high dimensional data, and 
subsequent unimodal survival training encouraged the encoders to learn features 
relevant to cancer prognosis while requiring less data. By transferring the initial 
weights for the encoders of the top-performing VAEs for each subtype, these neural 
networks were finetuned to predict prognosis from the omics information (Uni-Self-
Omics) directly. This methodology is typical for existing state of the art multimodal 
cancer prognostication methods.
Crossmodal Pretraining (Uni-Cross-Omics): Separately, neural networks were 
trained to simultaneously predict prognosis, and reconstruct information from com-
plementary modality. The complementary modality for gene expression is DNA 
methylation beta values, and vice versa. Input data is first encoded to a common 
latent space, followed by one branch of hidden layers used to predict the comple-
mentary modality, and another nearly identical branch that outputs prognosis pre-
dictions. The primary advantage of our crossmodal supervision strategy (Uni-Cross) 
was to learn more nuanced information relevant to other modalities, which may 
bring a richer understanding of input data as understanding of other modalities 
given a single data type can enhance the quality of learned features by forcing mod-
els to learn complex information.

VAEs were trained for a total of 500 epochs and checkpointed every 100 epochs, opti-
mized by the Adam optimizer, and employed a learning rate of 0.008. A hyperparameter 
scan was performed to determine the optimal VAE checkpoint for beginning unimodal 
omics survival training for each cancer type, by considering VAEs checkpointed at 100, 
200, 300, 400, and 500 training epochs. Sparsely coded unimodal survival networks were 
supervised by a Cox loss for prognostication and a Mean Squared Error objective for 
crossmodal prediction. These networks were trained for up to 40 epochs with a learning 
rate of 0.0002, a batch size of 32, a linearly decaying weight scheduler set to a decay of 
1e-4, and the Adam optimizer.

Unimodal WSI GCN Pretraining

Unimodal GCN models were trained to predict patient prognosis from WSGs. GCN 
models consisted of several blocks of SAGEConv graph convolutional layers and SAGE-
Pool node pooling layers [31], which jointly learn contextualized node embeddings 
by pooling graphs using a self-attention mechanism where attention scores are calcu-
lated using graph convolutions. Spatial information was aggregated across the WSG 
using a graph-wide JumpingKnowledge (JK) pooling layer [32] to output a graph-level 

https://www.ebi.ac.uk/QuickGO/annotations
https://www.ebi.ac.uk/QuickGO/annotations
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embedding. This embedding is passed through several fully connected layers to obtain a 
scalar hazard prediction.

The following unimodal pretraining approaches were compared (Figs. 3, 4, 5):

Supervised Pretraining (Uni-Self-WSI): GCNs were trained to predict progno-
sis using standard randomly initialized weights (Uni-Self-WSI). This is typical for 
existing multimodal prognostication works.
Crossmodal and Contrastive Pretraining (Uni-Cross-WSI): Separately, a cross-
modal pretraining procedure was adopted as outlined in the previous section, using 
weights transferred from a pretraining that used graph contrastive learning (GCL) 
(Uni-Cross-WSI). GCL pretraining was conducted by training a Deep Graph Info-
max [33] scheme to update patch-level embeddings before including of the Jump-
ingKnowledge and fully connected layers for whole-graph embeddings. Deep Graph 
Infomax is a commonly used GCL approach for learning node and graph embed-
dings. These graph level embeddings were used for simultaneous prognostication 

Fig. 3 Unimodal WSI GCN pretraining; A GCN pretrained to predict survival; B GCN pretraining using Graph 
Contrastive Learning (Deep Graph Infomax scheme) followed by concurrent crossmodal pretraining and 
survival prediction (Uni‑Self‑WSI)

Fig. 4 Multimodal modeling; Pretrained encoders are used to extract features from gene expression, DNAm, 
and WSI; embeddings are fused using Trilinear Fusion; prognosis is predicted using a feedforward neural 
network. Predicted hazards are dichotomized to generate a Kaplan Meier plot to compare low and high risk 
groups



Page 10 of 24Azher et al. BioData Mining           (2023) 16:23 

and crossmodal training through two separate neural network branches which pre-
dict prognosis and information from the complementary modality, e.g., DNA meth-
ylation or gene expression, respectively. GCNs were separately trained to predict 
both DNAm and gene expression in the crossmodal scheme, to assess which modal-
ity brings improved complementary information extraction for prognostication, for 
each subtype. The top performing model for each subtype (between DNAm and GE 
crossmodal pretraining) was reported as the selected crossmodal approach. GCL 
models were trained for 15 epochs, and weights were transferred to the subsequent 
prognostication GCN model from the training epoch which obtained the lowest vali-
dation loss. These models were implemented using the PyGCL Python library [34].

GCNs for prognosis and crossmodal were trained using the Cox and Mean Squared 
Error losses respectively, with a coarse hyperparameter search over the following learn-
ing rates for each cancer subtype: 1e-4, 2e-4, or 4e-4. All networks used the Adam opti-
mizer with a linearly decaying weight scheduler set to 1e-4. Models were trained with 
a batch size of 4 due to GPU memory constraints, and gradient accumulation every 4 
steps to account for the small batch size (effective batch size of 16).

Multimodal modeling

Multimodal prognostication models were developed for each cancer subtype. These 
included the top-performing unimodal models for each modality (as identified using the 
validation Cox loss), from which features were extracted from the penultimate layer. Fea-
tures from all modalities were combined using a gated attention and Krockener product-
based tensor fusion mechanism introduced by Chen et  al. [11], as this method allows 
for the learning of heterogeneous features across modalities. The fused representation 
is passed through several fully connected layers, followed by a final prognosis prediction 
output layer. Two sets of multimodal models were trained for each subtype (Fig. 5):

Fig. 5 Transfer learning experimentation; unimodal transfer learning with the Uni‑Cross mechanism followed 
by multimodal transfer learning and subtype‑specific multimodal finetuning
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1. Multi-Self– similar to Uni-Self-Omics and Uni-Self-WSI, which initializing weights 
from networks trained using these schemes (e.g.; VAEs and unimodal survival train-
ing), and

2. Multi-Cross– which additionally employed the pretraining strategies (e.g., unsuper-
vised, crossmodal, contrastive) and initialized weights from Uni-Cross-Omics and 
Uni-Cross-WSI.

This allowed us to compare the effectiveness of the optimal pretraining strategies when 
predicting prognosis in a multimodal context.

Multimodal models were trained with a learning rate of 0.0001 for up to 40 epochs, 
using the Adam optimizer with a linearly decaying weight scheduler set to a value or 
1e-4, and a batch size of 3 due to GPU memory constraints. Gradient accumulation was 
performed every 8 steps to account for the small batch size (effective batch size of 24). 
Unimodal encoders were frozen for the first 10 training epochs to combat overfitting. 
Training was supervised by the Cox loss.

Cross-subtype transfer learning experimentation

Using cross-subtype transfer learning, Cheerla & Geveart [10] found that it may be bene-
ficial to apply learned biological information from one or more subtype(s) to prognostica-
tion of a different subtype, potentially due to the presence of shared biology from similar 
tissue contexts [35]. We used this finding to motivate our assessment of this multimodal 
pretraining approach. Transfer learning was conducted by first training a single model 
per modality, using the Uni-Cross procedure of concurrent crossmodal pretraining and 
survival prediction (Uni-Transfer-Omics), as well as GCL for WSI (Uni-Transfer-WSI). 
For WSI GCN, the gene expression prediction scheme was used for crossmodal pretrain-
ing, as it performed better than the DNAm scheme for non-transfer learning Uni-Cross 
models. In this instance, these models were trained on patients across all subtypes to 
limit the number of comparisons (i.e., a single subtype per model). A multimodal (Multi-
Transfer) prognostication model which used starting weights from the transfer learned-
unimodal models, was similarly trained on data from all subtypes for 10 epochs. Finally, 
the Multi-Transfer model was separately finetuned on each subtype for 40 epochs with a 
learning rate of 1e-3 (after coarse hyperparameter search), and evaluated.

Baseline clinical experimentation

Random-forest-based models and a Cox Proportional Hazards (CoxPH) model were 
trained per subtype to predict prognosis from clinical data. These were implemented 
with the Sksurv Python package [36], and trained using standard clinical covariates 
including age, race, and sex. Additionally, a separate set of random-forest based prog-
nosis models were trained which included pathological stage (pTNM) as an additional 
covariate. The clinical models served as a baseline to compare unimodal and multimodal 
methods against.

Evaluation and interpretation experiments

Model Performance: Prognostication performance was measured using the concord-
ance index (C-index), calculated on survival predictions on the held-out testing set for 
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each subtype. We reported the C-index for unimodal prognostication models (Uni-Self, 
Uni-Cross-, and Uni-Transfer), clinical forest-based methods, and multimodal mod-
els (Multi-Self, Multi-Pre, and Multi-Transfer). A 1000 sample non-parametric boot-
strapped 95% confidence interval C-index was calculated for each model. Multimodal 
models are also compared against reported results for PORPOISE [15], the current 
state of the art for interpretable multimodal cancer prognostication, as well as Cheerla 
& Gevaert [10], a prominent pioneering work in multimodal prognostication though 
their study does not center on interpretability. It is important to note that the Cheerla 
& Gevaert [10] study used transfer learning across 20 different cancer types, while only 
8 subtypes were used in this study. Evaluation was not performed on identical testing 
folds, so one-to-one comparisons were avoided.

Kaplan Meier and Statistical Comparisons: Hazards were dichotomized across the 
top-performing multimodal models to generate Kaplan–Meier (KM) survival curves 
along with Log-Rank testing conducted on the non-training folds of each subtype. High-
risk and low-risk groups were delineated using sensitivity analysis on predicted hazards 
for each subtype (i.e., a threshold determined via a sensitivity analysis of a log-rank sta-
tistic and standardized regression coefficients from CoxPH models fit on dichotomized 
hazards). This was performed using the R package ‘survminer’ [37] and the ‘surv_cut-
point’ function. We also used partial likelihood ratio testing to compare CoxPH mod-
els fit on the predicted hazards and clinical data versus the clinical data alone to assess 
whether incorporating deep learning hazards from multimodal models alongside clinical 
data could improve survival curves compared to the usage of solely clinical data, and to 
assess the added benefit of hazards predicted using our multimodal models versus the 
sole usage of advanced pTNM to predict high/low risk (p-value less than 0.05 indicates 
improved prognostic capacity; less than 0.1 is suggestive) [38].

Gene/Pathway Interpretation: We additionally interrogated these models using layer-
wise Integrated Gradients from the Captum library [39, 40] to report the top 10 most 
significant genes (from DNA methylation capsules) and biological pathways (from gene 
expression capsules) per subtype. Integrated Gradients is a method that can identify 
significant genes/pathways by integrating the gradients (with respect to the genes/path-
ways) accumulated from a reference (i.e., low risk) to target group (i.e., high risk). In this 
experiment, the low risk patients were used as a reference, while high risk patients were 
the target group. Genes and pathways were ranked using this method. Pathway analy-
sis was conducted using Enrichr, to interrogate significant genes from the DNAm cap-
sules to evaluate their potential biomarker applicability. Fused unimodal embeddings 
from were extracted from the Multi-Transfer model prior to finetuning on subtypes by 
passing input data through the network through the trilinear fusion layer, and visual-
ized using the t-distributed Stochastic Neighbor Embedding (t-SNE) method. Addi-
tionally, we sought to provide evidence that these models are able to provide predictive 
value above and beyond established molecular subtypes which have been implicated 
in prognosis. As an example, we restricted the KIRC cohort to individuals with BAP1 
and PBRM1 mutations (prior studies have identified their association with survival). 
Oncoprint queries for these KIRC molecular subtypes and copy number alteration 
(CNA) data were downloaded to facilitate this analysis. Partial likelihood ratio testing 
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and generalized linear modeling was used to assess whether predicted hazards provides 
additional predictive value versus the BAP1 and PBRM1 subtypes of KIRC [41]. KM 
plots were generated conditional on each KIRC molecular subtype to demonstrate the 
added predictive value.

Alignment of Important Regions of Interest in WSI with Immune Infiltration: Finally, 
we visually inspected areas of tissue from randomly selected slides which were 
assigned high importance by the WSI GCN as a basis of explanation for features of 
histopathology relevant for multimodal prognostication. Patches present in the WSG 
following the final SAGEPooling layer were determined to have high importance. 
These regions were compared against corresponding published maps of tumor infil-
trating lymphocytes (TILs) [42]where such information was made publicly available. 
TILs may confer prognostic information in cancer imaging, as the density, type, and 
spatial localization of TILs have been shown to be associated with prognosis [43]. 
Thus, we hypothesized that capable models would assign relatively high importance 
to tissue areas containing TILs, especially for predicting low risk patients. Wald-Wol-
fowitz testing [44] was used to assess agreement between TIL maps and high-atten-
tion tissue regions, where the null hypothesis was that TILs and high-attention image 
patches were in high agreement, i.e., drawn from the same distribution. For each sub-
type included in this analysis, a p-value was generated using Wald-Wofowitz testing 
for each slide for which a corresponding TIL map was available [45]. A higher p-value 
indicates greater TIL localization by the GCN model, while a lower p-value indicates 
the opposite. Fisher testing was used to determine the significance, direction and mag-
nitude of the relationship between model’s localization of TILs and predicted hazards 
(as determined through the aforementioned dichotomized hazards; i.e., how responsi-
ble are TILs for model’s hazard predictions). Separately, Kaplan Meier plots were gen-
erated for all available patients using TIL localization as further stratification between 
high and low risk groups to demonstrate the capacity for improved predictiveness 
beyond the predicted hazards. Partial likelihood ratio testing was used to corrobo-
rate with the KM analysis (i.e., does the alignment of the model to TILs provide addi-
tional predictive value). KM plots stratifying patients by high and low concordance 
between the model and TIL maps were generated, separately for patients of high and 
low predicted risk. Likewise, KM plots stratified by risk were generated, separately for 
patients by high and low concordance between the model and TIL maps. We retained 
KM plots suggestive of an interaction between the TIL phenotype and risk strata. This 
analysis is reported for subtypes for which TIL maps were available: BLCA, BRCA, 
LUAD, PAAD, and SKCM.

Reported significant genes, pathways, and image region visualizations were inspected 
by a certified pathologist to validate their potential applicability as biomarkers.

Resource usage

All analyses were conducted with Python 3.6. Unless otherwise specified, deep learning 
models were implemented with the PyTorch package. Models were trained using a single 
Nvidia Tesla v100 graphics card, and training times ranged from 1 h to approximately 
10 h.
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Results
Multimodal prognostication performance

Unimodal prognostication results are presented in Additional file 1: Appendix Section 
S2 for reference– this study focused on comparing the performance of several multi-
modal approaches some of which leveraged embeddings learned by these unimodal 
models. In Table 2, we report the test set 95% confidence interval bootstrapped C-Indi-
ces for the Multi-Self, Multi-Cross, and Multi-Transfer models. Additionally, we com-
pare the multimodal approaches to the top performing unimodal models for the given 
subtypes– the top performing multimodal model outperformed all but one top perform-
ing unimodal models and all clinical variable-derived models (Additional file 1: Appen-
dix Tables S7-8), by 5.3% and 11.7% respectively. We also add comparisons for analogous 

Table 2 Comparison of multimodal models and top unimodal model via their C‑indices and 95% 
confidence interval

a No reported confidence interval

Subtype Top Unimodal Multi-Self Multi-Cross Multi-Transfer PORPOISE Cheerla 
and 
 Gevearta

BLCA 0.692 ± 0.002 0.551 ± 0.003 0.739 ± 0.002 0.621 ± 0.002 0.631 ± 0.050 0.73

BRCA 0.711 ± 0.002 0.633 ± 0.003 0.606 ± 0.004 0.836 ± 0.002 0.628 ± 0.053 0.79

HNSC 0.680 ± 0.002 0.651 ± 0.002 0.687 ± 0.002 0.605 ± 0.002 0.573 ± 0.010 0.67

KIRC 0.794 ± 0.004 0.864 ± 0.003 0.835 ± 0.003 0.628 ± 0.003 0.659 ± 0.075 0.73

LIHC 0.746 ± 0.002 0.725 ± 0.003 0.742 ± 0.003 0.739 ± 0.003 0.622 ± 0.042 0.77
LUAD 0.669 ± 0.003 0.697 ± 0.003 0.718 ± 0.002 0.776 ± 0.003 0.600 ± 0.046 0.73

PAAD 0.628 ± 0.004 0.666 ± 0.004 0.666 ± 0.003 0.700 ± 0.003 0.653 ± 0.030 0.74
SKCM 0.640 ± 0.003 0.582 ± 0.003 0.626 ± 0.002 0.643 ± 0.002 0.651 ± 0.056 0.72

Fig. 6 Bar graph of multimodal model performance indicated by C‑Index across subtypes
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models developed by the PORPOISE study and Cheerla & Gevaert. Importantly, models 
developed by Cheerla & Gevaert were pretrained on 20 cancer subtypes while only 8 
were used here.  Multimodal model comparisons are shown in Fig.  6. Furthermore, in 

Fig. 7 Kaplan Meier survival curves generated using top performing multimodal models on held out data
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Fig. 7, we present Kaplan Meier survival curves for each subtype, generated using the 
top performing multimodal model for the given subtype. In Additional file 1: Appendix 
Table  S9, we report the partial likelihood ratio testing results of the partial likelihood 
ratio testing to assess whether the inclusion of both clinical covariates and deep learn-
ing hazards improved the predictiveness of clinical covariates or deep learning hazards 
alone. These results indicated that this was the case for most cancer subtypes, where 
deep learning provides improved prognostic capacity beyond clinical staging and vice 
versa (i.e., clinical staging used in conjunction with the deep learning model provides 
added predictive value).

The prognostic performance of multimodal models was improved when applying pre-
training mechanisms with the Multi-Cross or Multi-Transfer protocols rather than the 
standard Multi-Self setup, for every subtype besides KIRC. Top-performing models for 
each subtype further appear to outperform similar multimodal models presented in the 
state-of-the-art PORPOISE study (average C-index increase 11.54%), for every cancer 
type other than SKCM. These models outperformed prior pancancer-pretrained models 
from Cheerla & Gevaert for 5/8 subtypes (average C-index increase 6.85%).

Interpretation

In Additional file  1: Appendix Tables S10 and S11, for each subtype, we present sig-
nificant pathways and genes derived from the gene expression and DNAm encoders of 
top-performing multimodal models. Additional file 1: Appendix Table S12 reports the 
results of pathway analysis conducted on significant genes from the DNAm multimodal 
encoder. From the gene expression capsules, we identified several pathways associated 
with disease progression– for instance: 1) regulation of smooth muscle cell prolifera-
tion (BLCA) [46], 2) mammary gland development (BRCA) [47], 3) establishment of skin 
barrier (HNSC) [48], 4) regulation of NF-KB signaling (KIRC) [49, 50], 5) negative regu-
lation of production of molecular mediator of immune response (LIHC) [51], 6) positive 
regulation of granulocyte chemotaxis (LUAD) [52], 7) positive regulation of cell popula-
tion proliferation (PAAD) [53], and 8) epidermis development (SKCM) [54], amongst 
others. From the DNAm capsules, we identified the following pathways: 1) glucocor-
ticoid receptor pathway (BLCA) [55], 2) G2 phase pathway (BRCA) [56], 3) Y branch-
ing of actin filaments (HNSC) [57], 4) regulation of heat shock proteins (KIRC) [58], 5) 
autophage and lysosome dysregulation (LIHC) [59], 6) semaphore interactions (LUAD) 
[60], 7) E2F transcription factors (PAAD) [61], and 8) PIP biosynthesis (SKCM) [62]. 
Additional file 1: Appendix Figure S13 presents t-SNE embeddings from Multi-Trans-
fer prior to subtype finetuning to demonstrate both the delineation of subtypes during 
pretraining and the separation of survival. Cancers with similar prognosis are gener-
ally clustered together, while those with differing prognostic profiles have more distinct 
clustering patterns with respect to one another. For example, LIHC has a relatively poor 
prognosis for most patients [63], while BRCA and KIRC have higher survival rates [64, 
65]. Accordingly, BRCA and KIRC are generally clustered together, while LIHC is more 
distinct from the two.

Partial likelihood testing used to assess whether the hazard prediction provides 
additional predictive value over prognostically associated BAP1 and PBRM1 muta-
tions (performed to investigate KIRC underperformance with Multi-Cross and 
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Multi-Trans), which yielded p-value of 0.041, indicating predictive improvement ver-
sus relying on the KIRC-subtyping alone (KIRC-subtype + hazard > KIRC-subtype). 
Combining the hazard prediction with the mutational status did not provide added 
predictive value over using the hazard alone (p = 0.245; KIRC-subtype + hazard > haz-
ard). From the Cox-PH models, hazard was a predictor of time to death for BAP1 
patients with a p-value of 0.0739, while it predicted time to death for PBRM1 patients 
with a p-value of 0.000458. When controlling for subtype, hazard is predictive of 
death with a p-value of 1.29e-5. The KM plots in Figure S14 suggests that the hazard 
provides predictive value of death, independent of key KIRC molecular alterations.

We demonstrate regions of interest (ROI) from select tissue slides which were 
assigned high importance after pooling by the WSI GCN from top-performing mul-
timodal models, and compare these high-attention patches with TIL maps (Fig.  8). 
Inspection of randomly selected slides and fisher’s exact testing indicated that the 
assignment of hazards across multiple cancer subtypes was associated with the align-
ment of important ROI with positions of TILs in these slides. In Additional file  1: 
Appendix Table S15, we report the significance of TIL localization indicating lower 
patient risk. In Additional file 1: Appendix Figure S16, we present Kaplan Meier sur-
vival curves generated using dichotomized hazards from top-performing multimodal 
models, which were further substratified by cases with TIL agreement with the mul-
timodal model, for all patients for whom TIL maps were available. For SKCM, the 
distance between survival curves for patients with a TIL phenotype as determined 
by the machine learning model, was much greater than for patients without the TIL 
phenotype (Additional file  1: Appendix Figure S16A). Likewise, the TIL phenotype 

Fig. 8 Regions of high importance (patches present after final pooling layer) from WSI GCNs of 
top‑performing multimodal models, visualized across randomly selected held‑out slides
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as identified by the deep learning model was predictive of favorable prognosis for 
patients already stratified by low hazard (Additional file  1: Appendix Figure S16B), 
suggesting an interaction between model predicted hazards and model identified TIL 
phenotype.

Discussion
Evaluation of patient prognosis provides key insight for health practitioners when con-
sidering multiple disease management options. Interpretable multimodal deep learning 
approaches have shown time and time again the remarkable capacity to infer prognosis 
from heterogenous data modalities by elucidating salient complementary features. Here, 
we aimed to compare and investigate emerging pretraining strategies to improve the 
application of these methods.

Prior works have not evaluated these nascent strategies– crossmodal pretraining, 
contrastive learning, and transfer learning, for multimodal pretraining, despite initial 
investigations of multimodal transfer learning. Here, we demonstrate that implement-
ing these methods on DNA methylation, gene expression, and whole slide imaging data 
leads to improvements in prognosis prediction compared to baseline clinical methods as 
well as the current state of the art. Our results show that leveraging effective pretraining 
approaches may be as critical to consider as improving the design of these neural net-
work architectures. Thus, exploration of pretraining strategies should complement work 
to develop improved prognostic deep learning methods through novel architectures.

Effectiveness of pretraining strategies. As noted in Additional file  1: Appendix Sec-
tion S2, We demonstrated that superior performance for unimodal prognostication 
from gene expression data can be achieved when implementing investigated pretraining 
strategies for all eight subtypes included in the study. The same was observed for 5/8 
subtypes for prognostication from DNAm and WSI data as well, suggesting that novel 
pretraining strategies may improve prognostic power in these instances as well, though 
results are not fully conclusive.

The strategies employed in this paper improved cancer prognostication for more 
than half of the cancer subtypes as compared to other state-of-the-art multimodal 
approaches. Superior performance was observed with multimodal models compared to 
unimodal methods for 7/8 subtypes, demonstrating the utility of considering multiple 
modalities. The pretraining strategies employed in this work (via Multi-Cross and Multi-
Transfer) improved multimodal prognostication performance for all but one cancer sub-
type (KIRC). This may be because molecular subtypes of KIRC which are predictive of 
prognosis, are solely identifiable with copy number alteration and mutational informa-
tion which are not well recapitulated with the selected modalities. Partial likelihood test-
ing revealed that when considering the PBRM1 and BAP1, which are two KIRC subtypes 
(Brugarolas, 2014) which are heavily implicated in prognosis, deep learning-predicted 
hazard was predictive of death independent of the mutational status. This was despite a 
relatively small sample size. Other molecular subtypes (ex; CIMP, PAM50, MMR) may 
be responsible for prognostic patterns as well. Superior performance of KIRC models 
as compared to the prior start of the art can be attributed to both the unique combina-
tions of selected modalities (gene expression, DNAm, WSI) and modeling architectures 
selected. As transfer learning leveraged information from all of the cancer subtypes, 
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this would suggest that multimodal features and interactions relevant to the prognosis 
of KIRC cancers may be distinct, at least within the subtypes leveraged for this study. 
BRCA showed the highest performance increase when transfer learning was used as 
compared to the other employed training strategies, suggesting the ubiquity of the iden-
tified pathways with other cancers included in the study. This may be due to the overrep-
resentation of BRCA cases in the study cohort.

Although one-to-one comparisons cannot be made, our prognostication performance 
results appear to be competitive or superior than those presented in the state-of-the 
art PORPOISE study, for seven of the eight subtypes; our top performing models for 
each subtype outperform the PORPOISE multimodal fusion models by C-index with 
an 11.54% average increase per subtype. These models also outperformed Cheerla & 
Gevaert’s pancancer pretrained models on more than half of the subtypes. We attrib-
ute the fact that Cheerla & Gevearts models outperformed those developed here on 
3/8 subtypes to their pretraining on 20 different subtypes while only 8 were used here, 
giving theirs an inherent advantage as data from more cancers is leveraged. Our results 
also indicate that learning histopathological features associated with DNAm and gene 
expression (and vice versa for the other data types) during unimodal pretraining can 
help identify prognostic features. This result is corroborated by findings from studies 
applying similar techniques to different domains [66, 67]. Furthermore, we present the 
first application of Graph Contrastive Learning for prognosis prediction from WSI with 
our Uni-Cross mechanism, and demonstrate its potential utility, as Uni-Cross GCNs had 
higher C-indices than Uni-Self GCNs for majority of the cancer types. Moderate-high 
separation was observed in Kaplan Meier curves for multimodal models from all sub-
types besides SKCM, indicating overall strong multimodal performance in all but one 
of the subtypes. Reported statistical testing indicates that incorporating deep learning 
hazards from our developed multimodal models with clinical covariates enhance risk 
prediction using CoxPH models, compared to solely using hazards, pTNM stage or clini-
cal covariates alone.

Model interpretations corroborate with known metastasis targets. Using of capsule-
inspired neural network designs in our framework improved the explainability of our 
approach. Reported significant genes and pathways, and interrogated histopathology 
regions given high importance, may serve as novel biomarker candidates, demonstrating 
the potential utility of deep learning for clinical application. As an example, lysosomes, 
the final component of autophagy [68], was implicated with disease progression from 
pathways mined from the DNAm and gene expression capsules for Hepatocellular car-
cinoma. As lysosomes play an important role in antigen presentation, cellular adhe-
sion and migration, energy metabolism, setting the stage for further invasion, etc. their 
involvement in metastasis is supported by the findings in this work. Across multiple 
subtypes, our neural network models identified key hallmarks of cancer– e.g., disrup-
tion of cellular senescence and downregulation of genes that inhibit mitosis after cell 
damage was a common theme. As expected, T-cell receptor signaling was heavily impli-
cated across many subtypes for both molecular assays and were important histological 
findings. For instance, comparison of significant tissue regions identified by our model 
with published TIL maps affirmed the all-important role of the tumor immune micro-
environment (TIME) for informing the coordinated immune response to nodal and 
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distant metastasis. Statistical testing confirmed that this relationship is especially pre-
sent for BLCA, BRCA, and PAAD, while TIL localization may be important for high risk 
LUAD patients. These results makes sense in a biological context as prior studies have 
shown that TIL arrangement and presence are associated with prognosis [43, 69]. Yet, 
the inability of the WSI graph neural networks to pinpoint lymphoid and myeloid infil-
trates in other tumor types can partially be attributed to the synthesis of information 
from DNAm, which can better represent immune component of the tumor microenvi-
ronment more so than through examination of the tissue slide. Future works can further 
interrogate these significant regions (e.g., tumor immune microenvironment– TIME) 
for specific pathological endpoints, such as whether the tumor had metastasized with-
out direct evaluation of nodal involvement. As highly accurate cell type deconvolution 
approaches are able to decipher the TIME into its constituent components, integrating 
cellular populations inferred through DNAm presents an interesting area of follow-up. 
Follow-up clinical studies can also explore whether findings from deep learning models 
can be truly indicative of patient outcomes, and whether targeting these biomarkers (eg; 
significant genes from DNAm networks) lead to improved cancer therapies or whether 
specific strata may be more responsive to specific therapies. Results should be inter-
preted in context as it is important to note that these genes and pathways are considered 
significant after adjusting for complementary modalities (e.g., for DNAm, adjusting for / 
stratifying by gene expression data and histomorphological features).

Limitations and Future Directions. A key limitation of this study is the usage of only 
8 cancer subtypes. This may have limited visible improvements with transfer learning 
performance, as some cancer subtypes included in the study may share important prog-
nostic features with other subtypes not present. Furthermore, heterogeneity is tied to 
distinct tissue-specific cellular differences and molecular subtypes within the selected 
solid tumor types that should be accounted for. Future multimodal model pretrain-
ing could incorporate tumor subtype data and / or microenvironment cell type esti-
mates deconvoluted from DNAm data [70]. There may also be untapped benefits from 
further preprocessing input data or conducting data preprocessing, such as includ-
ing only highly variable genes and CpGs. Methods of color normalization for imaging 
as scanning quality and protocol of TCGA imaging is also highly variable. Addition-
ally, hyperparameters were selected by coarse optimization due to model training time 
and resource constraints, while refined tuning procedure and architecture exploration 
may improve model training. The model architecture was not thoroughly explored, as 
it was outside the scope of the study. For instance, we did not explore deep clustering 
approaches which could either cluster whole slide graphs and/or characterize tissue 
slides by clustering their constituent image patches, neither did we explore deep clus-
tering of the genomics information. Prior work has demonstrated the effectiveness of 
deep clustering approaches for classification tasks and studying these approaches in con-
junction with graph-based representation methods presents a follow up direction for 
our work [71–73]. Clinical application of models like ours may also be hampered by the 
inability to account for potential missing data situations, as data from all modalities will 
not always be available in every scenario. We included patients for whom data is avail-
able from all central modalities, while this if often not the case in real world settings. 
Furthermore, TCGA is not highly reflective of a real-world prospective cohort study, 
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as case–control cohorts have collected samples. Future works will aim to address these 
limitations, by exploring new methods of WSI image patch encoding (ex; crossmodal 
transformers, multimodal coattention), explanation techniques, different sets of biologi-
cal pathways and capsules, survival prediction from different data (ex; tumor microen-
vironment), stress testing such as leaving out certain data modalities, and additional 
pretraining methods such as student–teacher networks, distillation, and learning from 
spatially resolved data, which will improve the resolution of these findings and their 
interpretation.

Conclusion
We showcase the utility of applying sparsely coded layers and GCNs for omics and his-
topathology analysis in multimodal machine learning. We also demonstrate that apply-
ing crossmodal pretraining and contrastive learning, as well as transfer learning, can 
improve prognosis prediction from similar models and modalities. Our multimodal 
pretrained models outperform baseline clinical models and the existing state-of-the art 
method for most of the tested cancer subtypes. Future work will expand the scope of 
multimodal pretraining by investigating further model innovations and training strate-
gies, and evaluation of in-house datasets.
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