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Abstract 

Background: Cancer subtype identification is important for the early diagnosis of can-
cer and the provision of adequate treatment. Prior to identifying the subtype of cancer 
in a patient, feature selection is also crucial for reducing the dimensionality of the data 
by detecting genes that contain important information about the cancer subtype. 
Numerous cancer subtyping methods have been developed, and their performance 
has been compared. However, combinations of feature selection and subtype iden-
tification methods have rarely been considered. This study aimed to identify the best 
combination of variable selection and subtype identification methods in single omics 
data analysis.

Results: Combinations of six filter-based methods and six unsupervised subtype 
identification methods were investigated using The Cancer Genome Atlas (TCGA) data-
sets for four cancers. The number of features selected varied, and several evaluation 
metrics were used. Although no single combination was found to have a distinctively 
good performance, Consensus Clustering (CC) and Neighborhood-Based Multi-omics 
Clustering (NEMO) used with variance-based feature selection had a tendency to show 
lower p-values, and nonnegative matrix factorization (NMF) stably showed good 
performance in many cases unless the Dip test was used for feature selection. In terms 
of accuracy, the combination of NMF and similarity network fusion (SNF) with Monte 
Carlo Feature Selection (MCFS) and Minimum-Redundancy Maximum Relevance 
(mRMR) showed good overall performance. NMF always showed among the worst 
performances without feature selection in all datasets, but performed much better 
when used with various feature selection methods. iClusterBayes (ICB) had decent 
performance when used without feature selection.

Conclusions: Rather than a single method clearly emerging as optimal, the best 
methodology was different depending on the data used, the number of features 
selected, and the evaluation method. A guideline for choosing the best combination 
method under various situations is provided.
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Introduction
In the era of precision medicine, cancer subtype identification, which aims to divide 
patients into subgroups with distinct clinical phenotypes such as survival time, is of 
the utmost importance. Since cancer is a heterogeneous disease, cancer types can have 
several subtypes with different phenotypic and molecular profiles [1]. The classification 
of patients is essential for the early diagnosis of cancer and the provision of adequate 
treatment. An early diagnosis of cancer can increase patients’ survival probability, and 
the identification of a clinically relevant subtype is crucial for selecting and administer-
ing the most effective treatment, as different cancer subtypes may respond differently 
to specific treatments [2–5]. With the advancement of large-scale omics technologies, 
cancer subtypes have been identified in multiple cancers using mRNA and microRNA 
expression levels, methylation data, and multi-omics data [6–9].

Numerous cancer subtyping methods have been developed, and these methods can be 
divided into two types: supervised and unsupervised learning. In supervised learning, 
classification takes the true class into account and classifies a new patient to the cor-
rect label, whereas clustering based on unsupervised learning does not use class labels 
when patients are grouped into similar types. One of the major limitations of classifi-
cation analysis is that it cannot identify novel subtypes. The current subtypes of breast 
cancer were proven to be highly ambiguous, resulting in an inaccurate classification of 
new patients [10]. In this paper, we focus on the unsupervised approach instead of the 
classification approach. Among unsupervised methods, Consensus Clustering (CC) [11] 
is the state-of-the-art method for cancer subtyping that uses single-omics biological 
data to compute patient similarity. Nonnegative Matrix Factorization (NMF) has also 
been applied in single-omics cancer datasets [12]. More recent studies have utilized mul-
tiple datasets and focused more on the integration of these datasets, as technological 
advances have made such multi-view analyses possible. For instance, the proper inte-
gration of genome, transcriptome, and epigenome information would enhance the pre-
dictability of subtyping, if such a wealth of data is available for a set of samples. These 
integrative clustering methods include iCluster [13], iClusterPlus [14] and iClusterBayes 
(ICB) [15], which are based on joint statistical modeling and depend on the adequacy 
of the statistical assumptions. Similarity network fusion (SNF) [16] constructs a fused 
network using a patient similarity network constructed from each data type. Neighbor-
hood-Based Multi-Omics Clustering (NEMO) [17] and Perturbation Clustering for Data 
Integration and Disease Subtyping (PINS) [18] are also similarity-based approaches.

An important procedure when identifying cancer subtypes is feature selection for 
detecting genes that contain important information about the cancer subtype [19, 20]. 
Feature selection is often used to reduce the dimensionality of high-dimensional data, 
thus dramatically reducing the time taken to run the algorithms. Informative genes 
should be selected prior to patient clustering, as it is presumed that the expression of 
only a subset of genes is affected by the subtype, and the inclusion of irrelevant genes 
can disturb proper clustering. Thus, the choice of the feature selection method is equally 
important in subtype identification as the choice of the clustering method. Feature selec-
tion without labels should utilize the characteristics of the genes across samples. Recent 
efforts to identify useful feature selection methods in genomic setting have shown the 
importance of selecting informative genes in cancer subtyping [21–23].
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There are various ways to classify feature selection algorithms. One approach is to con-
sider this issue from the perspective of data, including statistical measure-based, proba-
bility measure-based, similarity measure-based, sparse learning-based, and evolutionary 
algorithm-based feature selection methods [24, 25]. However, feature selection methods 
are most commonly classified as filter, wrapper, and embedded methods [24, 26, 27]. In 
filter methods, a learning algorithm is not used to evaluate a subset of features; instead, 
features are filtered based on a criterion called a measure of feature relevance. The meas-
ures include variance, correlation, the F-statistic, mutual information, and information 
gain [24, 25]. In recent research, Maximum Clique and Edge Centrality (MCEC) [28], 
and Dual Regularized Unsupervised Feature Selection based on Matrix Factorization 
and Minimum Redundancy (DR-FS-MFMR) [29] have been proposed. MCEC utilizes 
social network analysis to select a subset of genes that meets the Minimum-Redundancy 
Maximum Relevance (mRMR) criterion, and it has the advantage of being able to deter-
mine the optimal number of geneset automatically [28]. DF-FS-MFMR obtained the 
optimal feature set using matrix factorization and correlation information. The objec-
tive function is solved using an optimization algorithm and its convergence analysis 
[29]. Filter methods are computationally efficient and independent of the classification 
or clustering algorithms. Since the main purpose of cancer subtype identification is to 
explanatorily find unknown classes in a large dataset, we focus on filter model. Specifi-
cally, the variance (VAR), median (MED), median absolute deviance (MAD), Dip test 
(DIP), mRMR, and MCFS [22, 30–32] methods are considered. These methods are dis-
cussed further in "Feature selection methods" section.

Wrapper methods use specific learning algorithms to evaluate the performance of a 
feature subset [33]. Forward and/or backward procedures to find the optimal subset are 
often used. For example, Sequential Forward Floating Selection (SFFS) starts with an 
empty feature set and iteratively adds the best feature that improves the model perfor-
mance [34]. Recursive Feature Addition (RFA) adds features to the model one at a time, 
starting with the most important feature, and continuing until the desired number of 
features is reached [35]. Guided Regularized Random Forest (GRRF) trains a random 
forest model on the entire feature set and uses feature importance scores to guide a reg-
ularization algorithm that selects the most important features [36]. The wrapper method 
has the advantage of considering the interaction between variables, but has the disad-
vantage of high computational cost.

Embedded methods differ from wrapper methods in that the optimal feature sub-
set is built into the classifier construction. PSO-GWO is an example, which is a 
multi-objective feature selection method using Newton’s law-based Particle Swarm 
with Grey Wolf optimization to minimize the classification error rate while per-
forming feature selection [25]. Deep Feature Selection is another embedded method. 
It trains a deep neural network to perform feature selection and classification simul-
taneously by using the hierarchical representation of the input features and selecting 
the most informative features at each layer [37]. Lastly, two-layer feature selection 
methods have been proposed, including the Genetic Algorithm and Elastic Net. 
Elastic Net combines L1 and L2 regularization to select features that are both sparse 
and correlated, hence encouraging both sparsity and correlation among the selected 
features [38]. Embedded methods are capable of better handling high-dimensional 
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data, and less prone to overfitting. They are also able to simultaneously optimize 
and select features, making a separate feature selection step unnecessary. Embedded 
methods reduce the computational time required to reclassify compared to wrap-
per methods, although they are still more time-consuming than filter methods [39]. 
Numerous feature selection methods have been proposed, each of which has advan-
tages and drawbacks.

Several attempts have been made to review and compare existing unsupervised 
clustering methods for subtype identification [40–43]. A systematic comparison 
of nine multi-omics clustering algorithms, including PINS [18], SNF [16] and ICB 
[15], was conducted using 10 The Cancer Genome Atlas (TCGA) datasets [40]. More 
recently, 13 unsupervised integrative methods were benchmarked on eight simula-
tion datasets [41], but neither study compared the accuracy of the algorithms using 
a real cancer dataset. In another study, two Bayesian approaches and four matrix 
factorization approaches were compared using simulated data and the TCGA breast 
cancer dataset [42]. Moreover, five network-based methods and three statistic-based 
integration methods, as well as PINS [18] and Subtype-GAN [44], which do not fall 
into either of those categories, were reviewed using simulated data and the TCGA 
breast cancer dataset [43]. However, neither of those studies took feature selection 
into account prior to clustering. Most review papers that used TCGA data focused 
more on the integrative aspect of the methodologies, and again, the combinations of 
subtype identification and feature selection methods were not considered [40].

In this study, we compared the performance of combinations of feature selection 
and clustering methods, evaluated on four TCGA datasets of cancers with different 
characteristics. We considered six methods of feature selection and six clustering 
methods for subtype identification. The clustering methods are either state-of-the-
art or commonly used in subtype identification, and only those available in the R 
programming language were chosen. Thus, a total of 24 combinations were com-
pared in two mRNA gene expression datasets without labels, and 36 combinations 
were compared in two mRNA gene expression datasets with gold-standard labels 
using different settings. Furthermore, for each feature selection method, we com-
pared the results of two different numbers of selected features along with the results 
when all features were used.

In "Materials and methods" section, we briefly review several current methods 
for cancer subtyping and feature selection. The simulation scheme and materials 
are also described. Comparative results of the methods’ performance are shown in 
"Results" section, and a short discussion is presented in "Discussion" section.

Materials and methods
The usual workflow for identifying cancer subtypes is as follows. After data preprocess-
ing, which includes missing value imputation and normalization, we select informative 
genes using a feature selection method to solve the redundancy problem. A clustering 
method for subtype identification is then applied. The result is validated by checking the 
silhouette score or log-rank test. We briefly review the selected feature selection meth-
ods, clustering methods, and evaluation methods as follows.
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Feature selection methods

We considered six feature selection methods based on four criteria. First, we selected 
genes with high expression levels. We computed the median expression level (MED) 
for each gene across samples and selected the ones with high median values. The sec-
ond criterion was based on variation. Genes with a large variability of expression are 
expected to contain variations caused by the subtype of cancer [45–47]. We selected the 
genes with large variability using two measures: variance (VAR) and the median absolute 
deviance (MAD). The third criterion was based on modality, which refers to whether the 
distribution of gene expression levels has two or more peaks (modes). The peaks of the 
distribution are thought to represent the different subtypes of a disease, and informa-
tive genes can thus be detected by checking the multimodality of the gene expression 
distribution. There exist several ways of checking the bimodality of genes. These meth-
ods include parametric tests such as the Bimodality Index (BI) [48] and nonparametric 
tests such as the Variance Reduction Score (VRS) [49]. In this study, we used DIP, which 
extends the bimodality problem to the multimodality problem. DIP computes the maxi-
mum difference between the empirical distribution function and the unimodal distribu-
tion that minimizes the maximum difference. Genes with low p-values are selected. The 
fourth criterion was based on the relevance of informative genes and their target vari-
ables for the datasets with true class labels. We selected genes with a high information 
criterion using two measures: mRMR [30] and Monte Carlo Feature Selection (MCFS) 
[31]. mRMR aims to identify a subset of genes that are most relevant to a class while 
minimizing redundancy among selected features. Relevance can be calculated by using 
the F-statistic or Mutual Information (MI), and redundancy can be calculated by using 
Pearson correlation coefficients or MI [30]. MCFS is a computer-intensive method rely-
ing on Monte Carlo approach. MCFS identifies relevant features by randomly selecting 
a subset of genes and evaluating their relevance using decision trees or support vector 
machines. This process is repeated multiple times and the most frequently selected fea-
ture is finally selected as the most relevant feature. It should be noted that mRMR and 
MCFS are not always applicable as they require labeled data for selection, which may not 
always be available or feasible.

Subtype identification methods

We considered six popular subtype identification methods: CC, NMF, PINS, ICB, SNF, 
and NEMO. In all methods, the goal is to group the samples into k clusters, given a data-
set D of m genes and n samples.

Consensus Clustering (CC)

CC is a model-independent resampling-based method for single genomic datasets. CC 
achieves consensus across multiple clustering runs. It also involves determining the 
number of clusters and assessing the stability of the clusters [11]. The algorithm consists 
of two steps: resampling and clustering. In the resampling step, H perturbed datasets 
D(1),D(2), . . . ,D(H) are generated from the original dataset using a pre-specified resam-
pling algorithm without replacement. In genomic datasets, gene resampling can also be 
used, in which the candidate genes can be given different weights if prior information 
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is available. The goal of the clustering step is to partition a given dataset D into a set 
of k clusters. In the clustering step, a connectivity matrix M(h) and an indicator matrix 
I (h) , both of size n× n , are created from each of the perturbed datasets D(h) using the 
pre-specified clustering algorithm for h = 1, . . . ,H . Using the connectivity and indicator 
matrices, the consensus matrix M is generated, which represents the consensus of the 
connectivity matrices. The ( i, j)th element of M is obtained by

where M(h) i, j  is an indicator of whether items i and j belong to the same cluster and 
I (h)

(

i, j
)

 is indicator of whether both items i and j are present in D(h).
To determine the number of clusters k , an ad-hoc technique can be adopted. A per-

fect consensus results in all the elements of M having values of either 0 or 1. Thus, we 
can select the optimal k corresponding to the cleanest consensus matrix M(k) , where 
the distribution of elements is skewed toward 0 or 1. A histogram of the consensus 
matrix elements and the resulting empirical cumulative distribution (CDF) can be used 
to find the best k , where the shape of the empirical CDF of the true k would approach 
the ideal step function. The CC method can be implemented using the R package 
ConsensusClusterPlus.

Nonnegative Matrix Factorization (NMF)

The goal of NMF is to find a small number of metagenes from thousands of genes based 
on decomposition by parts [12]. Each metagene is defined as a positive linear combina-
tion of m genes, and one can approximate the gene pattern of samples as a positive linear 
combination of metagenes. Then, the NMF algorithm clusters patients with regard to 
each of the metagenes.

To obtain k metagenes, an m× n data matrix D is decomposed into two nonnegative 
matrices Um×k and Vk×n (i.e., D ∼ UV  ). The element uij of matrix U represents the coef-
ficient of the ith gene in the jth metagene, and the element vij of matrix V  represents the 
expression level of the ith metagene of the jth sample. With the random initialization of 
U and V  , the algorithm iteratively updates the two matrices. Then, V  is used to group n 
samples into k clusters, where each sample is placed into a cluster in which it shows the 
highest expression of the metagene in matrix V  . Though NMF does not assume a hier-
archical structure of clusters, it shows a tendency to discover substructures of existing 
clusters as the number of clusters increases [12].

The NMF method builds on the CC algorithm to evaluate clusters quantitatively. NMF 
evaluates the robustness of decomposition quantitatively by assessing how much clusters 
vary in each run. Using the same concept of CC, the connectivity matrix and the result-
ing consensus matrix are obtained. The off-diagonal elements of consensus matrix rep-
resent the probability that a pair of samples belongs to the same cluster. The reordering 
of a consensus matrix using the average linkage hierarchical clustering provides a visual 
inspection of clustering stability. Furthermore, the quantitative measure of clustering 
robustness can be obtained as the cophenetic correlation coefficient of rank k [50].

This method can be implemented using the NMF package in R. The NMF package pro-
vides several different NMF algorithms, published by different authors.
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Similarity Network Fusion (SNF)

SNF is a non-Bayesian network-based method for integrating and finding cancer sub-
types [51]. In the first step, SNF constructs a similarity network between patients for 
each datatype. A similarity network is represented as a graph G = (V ,E) , where the 
vertices V  represent the patients {d1, . . . , dn} and the edges E represent the degree of 
similarity between patients [16]. The elements of the similarity matrix are the weights of 
the edges between patients calculated using the scaled exponential similarity kernel. In 
the second step, the network fusion step, the similarity networks are iteratively updated 
using nonlinear combinations so that they become more and more alike, converging to 
the final fused network.

Through this process, weak similarities of low-weight edges are considered as noise 
and disappear, while only strong similarities of high-weight edges remain. The SNF algo-
rithm uses full and sparse kernels to compute the fused matrix. The full kernel matrix 
carries the full information about similarity to all others, while the sparse kernel matrix 
encodes the similarity using the k-nearest neighbors for each patient. The number of 
neighbors is set to be the ratio of the number of samples to the number of clusters if it is 
known, but if the number of clusters is not known, the authors recommended using 6, 
which is a crude estimate of the number of clusters observed in cancer datasets [16, 17]. 
Finally, given the fused graph, patients are clustered using spectral clustering, which is 
known to be effective in capturing the global structure of a graph [52].

SNF is generally used for integrating multi-omics data, but can also be used for clus-
tering in single omics setting. This method can be implemented using the package 
SNFtool in R.

Perturbation clustering for data integration and disease subtyping (PINS)

The PINS algorithm, similar to the CC algorithm, uses the resampling and clustering 
technique to discover cancer subtypes. As it assumes that the true subtypes are stable 
with regards to small changes in features, new datasets are first obtained by repeatedly 
perturbing the data H times, and the samples from the resulting datasets are then parti-
tioned using the pre-specified clustering algorithm. The goal of the PINS algorithm is to 
identify the partitioning that is least affected by perturbation with regard to the number 
of clusters [18].

Perturbed datasets can be generated by adding Gaussian noise. PINS sets the variance 
of the perturbation noise equal to the median variance of the original data. The clus-
tering stability is evaluated by comparing the partitions obtained from the original data 
to those obtained from the perturbed datasets. Using the concept of CC, the original 
connectivity matrix is obtained from the original data, and the perturbed connectivity 
matrix is obtained by calculating the average of the perturbed trials. The perturbed con-
nectivity matrix will always reflect the true structure of the data, since PINS assumes 
that for truly distinct subtypes, the true connectivity between samples is recovered when 
the data are perturbed regardless of the number of clusters k . The difference matrix is 
then calculated as the absolute difference between the original and the perturbed con-
nectivity matrices. The best number of clusters is the one that minimizes this difference 
[41].
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For each value of k , the empirical CDF of the difference matrix and its area under the 
curve (AUC) is obtained, and the optimal value of k is selected to be the one with the 
highest AUC. When used in R, the perturbation is repeated 200 times and the partition 
samples are clustered using hierarchical clustering. This method can be implemented 
using the package PINSPlus.

iClusterBayes (ICB)

IClusterBayes is a Bayesian latent variable model that can jointly model omics data 
of continuous and discrete types [15]. The integrative clustering algorithm, iCluster, 
reduces the dimensionality of data for clustering and integrates various data types [13]. 
The iCluster algorithm seeks a pattern that is consistent among multiple data types and 
patterns that are unique in individual data types by separating the covariance between 
data types and the variance within a data type. The method incorporates joint latent 
variable modeling in calculating the principal components, thereby estimating the latent 
tumor subtype that can account for all data types.

ICB is known to overcome the limitations of iCluster in terms of statistical infer-
ence and computational speed. It adds an extra penalty term such as LASSO for the 
purpose of feature selection [53]. In single omics data, it is similar to principal com-
ponent analysis, where the first few principal components that capture most variation 
in the data are used to cluster the samples. The high-dimensional space is projected 
to a low-dimensional subspace, where each sample is associated with a latent variable 
zi =

(

zi1, . . . , zi(k−1)

)

, i = 1, . . . , n that follows a standard multivariate normal distribu-
tion MVN

(

0, I (k−1)

)

 [15]. Through joint modeling, zi can be used not only to capture 
the major variations of the data, but also to distinguish the driver features for clustering.

By applying k-means clustering to mean zi values, the samples are clustered into k 
subtypes in the latent variable space. IClusterBayes requires users to select the optimal 
number of clusters by comparing the Bayesian information criterion or deviance ratio 
for each k . This method can be implemented using the R package iClusterPlus.

Neighborhood‑based multi‑omics clustering (NEMO)

In real data, some patients have measurements for only a subset of omics. NEMO is an 
algorithm specialized in the clustering of these partial multi-omics datasets without 
having to impute missing data [17]. In the first step, NEMO builds on similarity-based 
multi-omics methods, such as SNF, to construct the patient similarity matrix. Then, 
NEMO modifies the similarity matrix to a relative similarity matrix based on radial basis 
function kernel. For omics l, the relative similarity RSI

(

i, j
)

 is defined as the similarity 
between sample i and j to i’s k nearest neighbors relative and to j’s k nearest neighbors.

where Sl(i, j) is the 
(

i, j
)th element of the similarity matrix and ηlj refers to the k nearest 

neighbors within omics l [17]. Then, by averaging the relative similarity in the different 
similarity networks for each pair of samples, it enables the analysis of partial data. In the 
final step, samples are clustered to identify subtypes’ spectral clustering for average rela-
tive similarity.

(2)RSl
(

i, j
)

=
Sl(i, j)

∑

r∈ηli
Sl(i, r)

I
(

j ∈ ηli
)

+
Sl(i, j)

∑

r∈ηlj
Sl(r, j)

I
(

i ∈ ηlj
)
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The number of clusters is selected using the modified eigengap method [52]. The num-
ber of neighbors is also selected in the same manner as SNF. The R code for NEMO 
can be downloaded from the github repository: https:// github. com/ Shamir- Lab/ NEMO 
or implemented using the R package NEMO. NEMO requires pre-installation of the R 
library SNFtool and uses parts of its code.

Performance metrics

To assess the performance of methods, we used several performance metrics: p-values 
from the log-rank test, the silhouette score, the Adjusted Rand Index (ARI), and Nor-
malized Mutual Information (NMI). Computational complexity is also considered.

First, the log-rank test is used to check the significance of differences in the survival 
profiles between the obtained clusters. The log-rank test assumes that the clusters of 
patients are different in a biologically meaningful way if the difference between their 
survival distributions is significant. The silhouette score was also used to check cluster-
ing robustness. The silhouette score is also used to measure compactness within clusters 
and separation across subtypes. It is often used as a measure of clustering in unsuper-
vised learning [16, 18]. For each observation i, the silhouette for patient i is defined as

where a(i) is the average distance between each point within the same cluster and b(i) 
is the lowest average distance to all other patients in different clusters [16]. We used the 
mean value of silhouettes for all the observations, and called it the silhouette score. Its 
value ranges from -1 to 1, and a high value indicates that the object is well matched to its 
own cluster.

For datasets with true class labels, the performance was evaluated using additional 
measures of accuracy. The performance accuracy in the datasets was assessed by cal-
culating ARI and NMI. Since both measures are normalized, it is possible to compare 
them between different clustering methods with different numbers of clusters [54, 55]. 
ARI assesses cluster validation by measuring the agreement between two classification 
results, one of which is defined by external criteria. For two partitions C and C’ in a set 
of S of n elements, let n11 be the number of pairs of elements in S that belong to the same 
cluster in both C and C’, n00 be the number of pairs that are in different subsets in C and 
in C’, n10 be the number of pairs that are in the same cluster in C but in different clus-
ters in C’, and n01 be the number of pairs that are indifferent clusters in C but belong to 
the same cluster in C’. The Rand index (RI) is a way to compare the similarity of results 
between two clustering methods and is defined as shown by Santos and Embrecht [54].

ARI is a correction of RI taking into account that some agreement between the two 
clusters may occur by chance, and defined as

(3)S(i) = (b(i)− a(i))/(max(a(i), b(i)),

(4)RI =
n11 + n00

n11 + n00 + n10 + n01
=

n11 + n00

nC2

.

(5)ARI =
RI − E(RI)

max(RI)− E(RI)

https://github.com/Shamir-Lab/NEMO
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where E(RI) and max(RI) are the expected and maximum values of RI, respectively [56]. 
The higher the ARI value, the closer the two clusters are to each other. It ranges from -1 
to 1, where 1 indicates perfect agreement, 0 indicates random agreement, and -1 indi-
cates that the two clusters are completely different.

NMI is a normalization of the MI score to scale the results between 0 and 1. 0 means 
no MI, while 1 means perfect correlation. MI accounts to the amount of information 
that can be extracted from a distribution regarding a second one. NMI is defined as

where Y and C are true labels and clusters, respectively, and H(.) and I(.;.) represent 
entropy and MI, respectively [56, 57].

Computational efficiency was also measured by calculating the total running time 
taken for each algorithm for all data types, with and without class labels.

Comparisons

Combining the six feature selection methods and six subtype identification methods 
introduced above, the optimal combination of methods for clustering cancer patients 
into appropriate groups was considered. Thus, a total of 24 combinations of feature 
selection and clustering methods were taken into account in two datasets without true 
class labels, and a total of 36 combinations were taken into account for two datasets with 
gold-standard labels. For a fair comparison, we set the number of variables selected in all 
methods to be the same. Either 500 or 2000 informative genes were selected when fea-
ture selection was conducted, and we compared these results with those obtained when 
all genes are used. The datasets used are the preprocessed mRNA expression datasets of 
four different cancer types of TCGA benchmark analysis downloaded from http:// acgt. 
cs. tau. ac. il/ multi_ omic_ bench mark/ downl oad. html [40]. Among the 10 preprocessed 
TCGA datasets, four datasets of various dimensions and data types were used in this 
paper: acute myeloid leukemia (AML), glioblastoma multiforme (GBM), breast invasive 
carcinoma (BIC), and colon adenocarcinoma (COAD). The AML dataset comprises 173 
samples and 19,940 genes, GBM 528 samples and 12,042 genes, BIC 671 samples and 
20,249 genes, and COAD 260 samples and 17,261 genes. The data type is RNA-seqv2 
level 3 RSEM genes normalized for AML, HT-HG-U133A microarray data for GBM, 
and HTSeq. FPKM level 3 for BIC and COAD. The TCGA datasets used for comparison 
can be divided into two categories: two datasets evaluated using true class labels and 
two datasets evaluated without using true class labels. The former category had an addi-
tional measure of assessment, as the presence of true class labels allowed classification 
accuracy to be measured. A problem with subtype identification using TCGA datasets 
is that there is no gold standard for these cancer datasets, but a previous study [58] has 
been done by the TCGA group in an effort to identify the subtypes for BIC and COAD 
patients, and these subtypes were considered as true labels in this paper in order to eval-
uate the performance of the methods, as done in previous TCGA benchmark studies 
[21, 43].

The datasets were preprocessed as follows: patients and features with more than 20% 
missing values were removed, and missing values were imputed using k nearest neigh-
bor imputation. The datasets were log-transformed for all clustering methods, and 

(6)NMI(Y,C) = (2× I(Y;C))/(H(Y)+H(C))

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
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were normalized for CC, SNF, and NEMO methods. Four or six feature selections and 
six subtype identification methods were used for comparison. A detailed scheme of the 
comparisons is presented in Table 1, and a flowchart is shown in Fig. 1.

The suggested number of clusters k was used for the subtype identification methods, 
except for CC and ICB, which requires the user to specify k . The maximum number of 

Table 1 Scheme for the comparisons

Methods Software Ref

Feature selection MED R [21]

VAR R [21]

MAD R [21]

DIP R [32]

mRMR R [47]

MCFS R [48]

Number of selected genes ALL

500

2000

Subtype Identification Resampling-based CC R [11]

PINS R [18]

Dimension reduction NMF R, Matlab [12]

Statistical model ICB R [15]

Similarity-based SNF R, Matlab [16]

NEMO R, Matlab [17]

Evaluation All datasets Silhouette width

Log-rank test
Computation time

With gold standard only ARI, NMI

Datasets Without gold standard AML

GBM

With gold standard BIC

COAD

Fig. 1 Flowchart of the comparison procedure
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clusters was set to be 10 for all methods. The criteria for determining the k value in the 
proposed approach are shown in Table 2.

Results
Subtyping without feature selection

Table 3 shows the subtyping results for the four cancer datasets without feature selec-
tion. The number of clusters varied among the clustering methods and datasets, but 
NEMO and ICB showed a tendency to generate larger numbers of clusters than other 
methods. NMF showed the best performance in the AML and GBM datasets in terms 
of the silhouette score, whereas the methods showed low scores overall in the BIC and 
COAD datasets. In terms of the p-value for the log-rank test, CC consistently showed 
decent performance in clustering patients with different survival distributions. ICB 
had the lowest p-value in the GBM and BIC datasets. NEMO was the only clustering 

Table 2 Criteria used for determining the number of clusters

Subtype 
Identification 
Methods

Determination of the number of clusters k

CC Choose k in an adhoc way that produces a consensus matrix that corresponds to the cleanest 
consensus matrix, i.e. a matrix with all entries with either 1 or 0

NMF Choose k where the magnitude of the cophenetic correlation coefficient which indicates the 
dispersion of the consensus matrix begins to fall significantly

SNF Chooses k by using spectral clustering that aims to minimize ratiocut

PINS Chooses k that minimizes the absolute difference between the original connectivity matrix 
and the perturbed connectivity matrices

ICB Choose k in an ad hoc way by selecting k where the Bayesian Information Criterion (BIC) value 
reaches the minimum or where the deviance ratio reaches a plateau which both indicate that 
the model fits the data best when the samples are divided into k + 1 subtypes. We used both 
BIC and deviance ratio to select k

NEMO Chooses k using the eigengap method by selecting k that maximizes the product of k and 
the difference between the eigenvalues of the average relative similarity matrix of k + 1 and k

Table 3 Subtyping results for each cancer dataset without feature selection

* sil. score: silhouette score; **p-value: p-value for the log-rank test

Dataset Subtyping Identification Methods

CC PINS NMF ICB SNF NEMO

AML No. of clusters 5 5 2 5 7 7

sil. score* 0.02 0.02 0.13 0.05 0.02 0.04

p-value** 0.01 0.01 0.10 0.06 4.0E-03 0.02

GBM No. of clusters 3 3 2 4 2 6

sil. score 0.11 0.15 0.16 0.13 0.14 0.10

p-value 0.01 0.39 0.46 0.01 0.28 0.03

BIC No. of clusters 3 3 2 4 4 4

sil. score -0.01 0.06 0.03 0.00 0.02 0.02

p-value 0.05 0.37 0.09 0.03 0.70 0.41

COAD No. of clusters 4 3 2 4 3 3

sil. score 0.06 0.08 0.03 0.02 0.08 0.08

p-value 0.53 0.10 0.26 0.23 0.15 0.04
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algorithm that showed a significant p-value under the 5% significance level in the COAD 
dataset. In terms of computational efficiency, NMF showed an overwhelmingly long 
running time, and ICB showed the second longest running time. On the contrary, SNF 
and NEMO took the shortest time to run.

Log‑rank test

Figure  2 shows the average log-rank p-values of the four datasets for each combina-
tion of methods. This criterion shows whether the clustered subtypes actually showed 
significant differences in the survival profile. When using 500 selected genes, as shown 
in Fig.  2(a), VAR showed the best performance (i.e., the smallest p-value) when used 
in combination with NEMO and CC, while DIP showed the second-best performance 
in combination with NEMO and CC. However, MAD outperformed the other feature 
selection methods when used in combination with all other clustering methods except 
for NEMO and CC. When using 2000 selected genes as shown in Fig.  2(b), the vari-
ance method consistently showed decent performance in combination with all cluster-
ing methods except for PINS. Focusing on the clustering methods, NEMO showed the 
best performance overall in 500 selected genes and the second-best performance in 2000 
selected genes, after CC. The details for the log-rank test p-values for each dataset can 
be found in Tables 4 and Table 5—the former table for 500 features and the latter for 
2000 features. Although no single combination was found to have a distinctively good 
performance, CC and NEMO, as previously mentioned, had a tendency to show lower 
p-values in general. We also noted that NEMO again showed a tendency to produce a 
large number of clusters when feature selection was done prior to clustering, as in the 
case when feature selection was not done a priori.

Silhouette score

Figure 3 shows the average silhouette scores of the four cancer datasets. All silhouette 
scores with negative values were changed to zero. According to the silhouette score, 
VAR generally showed a decent performance relative to the other feature selection 
methods and PINS relative to the other clustering methods. The combinations of vari-
ance with PINS and SNF similarly performed well when 500 genes were used for cluster-
ing, whereas the combination of variance with PINS only showed adequate performance 
when 2000 genes were used. Overall, the results for the log-rank test and silhouette 
scores revealed that VAR can be recommended as a feature selection method, whereas 
the performance differed considerably among the subtype identification methods.

Accuracy

Tables 6 and 7 show accuracy in terms of ARI and NMI. For the BIC datasets, NMF 
showed the best performance in terms of ARI in combination with all unsupervised 
feature selection methods, while it showed the worst performance without feature 
selection (Table  6). It showed especially good performance in combination with 
MCFS or VAR. For the combination with supervised feature selection such as mRMR 
or MCFS, NMF showed the second best performance after PINS. In terms of NMI, 
SNF was found to be highly vulnerable to the feature selection method, and PINS 
showed poor performance overall, especially when used with MED. Other than those 
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two methods, the remaining subtyping methods had similar NMI values. ICB had 
decent performance when used alone, especially in the BIC dataset, where it showed 
the best ARI and NMI among the clustering algorithms without feature selection. 
However, both measures always either remained similar or worsened in combination 
with feature selection methods. The supervised feature selection methods, mRMR 

Table 4 Log-rank test p-values for combinations of methods with 500 features

Value in parentheses indicates the number of clusters k

FS Dataset Subtyping Identification Methods

CC PINS NMF ICB SNF NEMO

MED AML 0.42 (4) 0.38 (3) 0.13 (3) 0.12 (4) 0.17 (2) 2.0E-03 (7)

GBM 0.01 (4) 0.40 (3) 0.02 (3) 0.01 (4) 0.83 (2) 6.6E-04 (6)

BIC 0.35 (4) 0.37 (2) 0.45 (2) 0.17 (5) 0.30 (2) 0.35 (6)

COAD 0.39 (6) 0.77 (2) 0.19 (3) 0.18 (5) 0.86 (2) 0.31 (8)

VAR AML 9.0E-04 (3) 0.10 (5) 0.06 (5) 3.0E-03 (4) 0.18 (2) 0.01 (5)

GBM 0.09 (3) 0.73 (2) 0.09 (2) 0.06 (5) 0.73 (2) 7.0E-07 (6)

BIC 0.04 (4) 0.52 (2) 0.53 (2) 0.14 (5) 0.06 (4) 0.09 (4)

COAD 0.05 (4) 0.96 (2) 0.01 (2) 0.32 (4) 0.44 (2) 0.29 (8)

MAD AML 1.0E-03 (4) 0.05 (2) 0.04 (4) 1.0E-04 (4) 0.21 (2) 0.08 (6)

GBM 0.09 (3) 2.2E-05 (5) 0.05 (2) 0.05 (5) 0.04 (3) 1.0E-03 (6)

BIC 0.32 (6) 0.24 (3) 0.06 (2) 0.09 (4) 0.06 (4) 0.12 (4)

COAD 0.55 (2) 0.09 (3) 2.0E-03 (3) 0.06 (5) 0.10 (3) 0.46 (9)

DIP AML 0.01 (6) 0.75 (2) 0.66 (2) 0.39 (4) 0.62 (2) 0.58 (2)

GBM 0.01 (4) 0.02 (6) 0.23 (5) 0.02 (5) 0.20 (2) 0.08 (9)

BIC 0.06 (2) 0.92 (2) 0.49 (2) 0.68 (4) 0.74 (2) 0.48 (3)

COAD 0.27 (2) 4.0E-03 (2) 0.02 (2) 0.02 (3) 0.05 (2) 0.00 (5)

Table 5 Log-rank test p-values for combinations of methods with 2000 features

Value in parentheses indicates the number of clusters k

FS Dataset Subtyping Identification Methods

CC PINS NMF ICB SNF NEMO

MED AML 0.29 (2) 0.01 (6) 0.04 (4) 0.27 (6) 0.03 (6) 5.0E-03 (5)

GBM 2.0E-03 (3) 0.66 (4) 0.05 (5) 0.26 (4) 0.74 (6) 0.01 (6)

BIC 0.44 (3) 0.64 (2) 0.04 (3) 0.08 (4) 0.24 (5) 0.51 (5)

COAD 0.43 (4) 0.56 (2) 0.05 (3) 0.83 (5) 0.56 (3) 0.10 (8)

VAR AML 3.4E-07 (6) 0.07 (2) 0.06 (2) 0.06 (6) 0.10 (2) 0.03 (3)

GBM 0.10 (3) 0.75 (2) 0.02 (2) 0.09 (4) 0.05 (3) 2.0E-03 (7)

BIC 0.02 (3) 0.64 (2) 0.20 (2) 0.10 (4) 0.11 (4) 0.42 (6)

COAD 0.23 (3) 0.58 (2) 0.02 (4) 0.11 (5) 0.20 (3) 0.15 (9)

MAD AML 0.67 (3) 0.01 (5) 0.11 (5) 0.10 (5) 0.23 (2) 0.05 (7)

GBM 0.24 (4) 0.03 (2) 0.02 (2) 0.03 (4) 3.6E-03 (4) 0.04 (6)

BIC 0.21 (3) 0.32 (3) 0.32 (2) 0.16 (4) 0.40 (5) 0.10 (7)

COAD 0.26 (4) 0.96 (2) 0.11 (4) 0.54 (5) 0.59 (3) 0.42 (3)

DIP AML 7.0E-04 (5) 0.92 (2) 0.80 (2) 0.69 (4) 0.58 (2) 0.01 (5)

GBM 1.3E-04 (3) 0.68 (3) 0.42 (3) 0.14 (4) 0.28 (2) 0.04 (6)

BIC 0.13 (3) 0.78 (2) 0.48 (2) 0.33 (4) 0.36 (2) 0.15 (3)

COAD 0.35 (4) 0.01 (2) 0.04 (2) 0.30 (3) 0.02 (2) 0.51 (4)
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and MCFS, showed overall high accuracy as expected, except when CC or ICB was 
used for subtype identification when 2000 features were selected.

In the case of the COAD dataset, values of ARI and NMI were small in all methods 
(Table 7). However, as in the BIC data, the performance of NMF without feature selec-
tion was very low, and the performance of supervised feature selection mRMR and 
MCFS was good. In addition, there were many cases where the performance of NMF and 
SNF was the best. In unsupervised feature selection methods, the values of ARI and NMI 
increased when the number of selected features was large, but in mRMR and MCFS, the 
accuracy tended to decrease when the number of selected variables was 2000 rather than 
500. This seems to be because in the two supervised feature selection methods, selecting 
a large number of variables results in more redundant variables being selected.

Figure 4 shows the average ARI and NMI values for the BIC and COAD datasets when 
500 and 2000 genes are selected. It can be seen that the result for ARI is consistent with 
the conclusions that can be drawn from Tables 6 and 7.

Time complexity

Table 8 shows the time complexity of six subtyping identification methods without fea-
ture selection for four datasets and six feature selection methods for two datasets. The 

Table 6 Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) for the BIC dataset

FS Subtyping Identification Methods

CC PINS NMF ICB SNF NEMO

w/o FS ARI 0.26 0.26 0.01 0.29 0.26 0.26

NMI 0.30 0.30 8.5E-04 0.39 0.36 0.35

MED 500 ARI 0.19 0.07 0.31 0.19 0.08 0.17

NMI 0.27 0.05 0.24 0.27 0.05 0.25

2000 ARI 0.23 0.05 0.26 0.25 0.22 0.19

NMI 0.27 0.02 0.30 0.34 0.31 0.27

VAR 500 ARI 0.23 0.32 0.40 0.25 0.26 0.26

NMI 0.32 0.23 0.30 0.34 0.37 0.33

2000 ARI 0.30 0.32 0.45 0.30 0.26 0.21

NMI 0.33 0.23 0.34 0.38 0.37 0.32

MAD 500 ARI 0.24 0.26 0.40 0.26 0.24 0.24

NMI 0.32 0.32 0.29 0.33 0.34 0.33

2000 ARI 0.27 0.26 0.37 0.26 0.22 0.20

NMI 0.31 0.30 0.26 0.33 0.31 0.29

DIP 500 ARI 0.37 0.33 0.38 0.24 0.18 0.27

NMI 0.30 0.24 0.33 0.33 0.16 0.35

2000 ARI 0.27 0.37 0.39 0.23 0.24 0.28

NMI 0.33 0.31 0.33 0.35 0.21 0.37

mRMR 500 ARI 0.29 0.42 0.41 0.27 0.29 0.28

NMI 0.32 0.32 0.28 0.34 0.36 0.36

2000 ARI 0.26 0.43 0.42 0.23 0.30 0.27

NMI 0.30 0.31 0.29 0.31 0.37 0.35

MCFS 500 ARI 0.28 0.45 0.41 0.22 0.30 0.30

NMI 0.32 0.34 0.28 0.31 0.37 0.36

2000 ARI 0.004 0.43 0.41 0.003 0.29 0.24

NMI 0.01 0.31 0.27 0.01 0.36 0.33
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running time was obtained using Ubuntu on an Intel i9 processor with 64 GB of mem-
ory. Among the subtyping identification methods, NMF showed an overwhelmingly 
long running time, and ICB showed the second longest running time. On the contrary, 
SNF and NEMO took the shortest time to run for all datasets. Among the feature selec-
tion methods, the running time of MCFS, which is based on the Monte-Carlo approach, 
showed a running time that far exceeded other methods, as expected. DIP had the sec-
ond longest running time, but there was a major difference from that of MCFS. mRMR, 
showed a fairly fast execution time despite using the greedy search algorithm. While 
mRMR showed different times depending on the dataset, VAR showed a stable and short 
running time regardless of the dataset or number of selected features.

Since subtype identification is performed after variable selection, the time required for 
each combination is the sum of the respective times.

Guideline

Based on the above results, guidelines for the appropriate choice of a variable selec-
tion method and subtype identification method are summarized as follows. First, if 
there is sufficient information on the relevant phenotype and the dataset is not very 
large, mRMR or MCFS is good as a variable selection method in terms of the accuracy 

Table 7 Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) for the COAD dataset

FS Subtyping Identification Methods

CC PINS NMF ICB SNF NEMO

w/o FS ARI 0.23 0.23 0.00 0.19 0.23 0.23

NMI 0.20 0.21 0.00 0.19 0.23 0.20

MED 500 ARI 0.06 0.00 0.09 0.12 0.01 0.09

NMI 0.12 4.3E-03 0.11 0.14 0.01 0.12

2000 ARI 0.11 0.00 0.13 0.13 0.24 0.10

NMI 0.17 2.7E-03 0.14 0.16 0.20 0.14

VAR 500 ARI 0.15 0.00 0.11 0.11 0.00 0.09

NMI 0.13 3.0E-03 0.07 0.12 2.2E-03 0.16

2000 ARI 0.20 0.07 0.27 0.12 0.21 0.12

NMI 0.19 0.05 0.23 0.15 0.21 0.16

MAD 500 ARI 0.02 0.14 0.15 0.19 0.17 0.09

NMI 0.04 0.15 0.12 0.17 0.18 0.14

2000 ARI 0.13 1.3E-03 0.19 0.17 0.25 0.25

NMI 0.15 0.02 0.20 0.17 0.24 0.25

DIP 500 ARI 0.00 0.02 0.00 0.00 3.4E-03 0.10

NMI 0.01 0.01 0.01 0.03 4.3E-03 0.12

2000 ARI 0.19 0.03 0.02 2.8E-03 1.9E-04 0.17

NMI 0.19 2.3E-03 0.01 0.01 0.01 0.15

mRMR 500 ARI 0.16 0.26 0.23 0.27 0.28 0.27

NMI 0.14 0.17 0.09 0.34 0.24 0.24

2000 ARI 0.18 0.22 0.06 0.13 0.27 0.22

NMI 0.16 0.20 0.01 0.14 0.23 0.21

MCFS 500 ARI 0.18 0.23 0.32 0.07 0.21 0.18

NMI 0.18 0.20 0.25 0.13 0.19 0.18

2000 ARI 0.01 0.12 0.28 0.00 0.25 0.21

NMI 0.03 0.14 0.22 0.01 0.21 0.20
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criterion. In this case, PINS, NMF or SNF are also good choices for subtype identifi-
cation. Otherwise, when unsupervised feature selection is used due to insufficient 
phenotypic information, NMF and SNF are still good choices as subtype identification 
methods. In this case, it is recommended not to use NMF alone without variable selec-
tion, and not to use SNF together with the DIP and MED methods. Second, in terms of 
the significance test for survival times among groups, small p-values were shown when 
CC or NEMO was used with VAR. However, when the number of selected genes was 
sufficiently large, NMF showed stable, small p-values unless DIP was used for feature 
selection. Third, in terms of computation time, MCFS does not seem to be suitable for 
large datasets. All other feature selection methods have very short running times, and 
there is no difference in time except for DIP. Among the subtype identification methods, 
NMF and ICB took much more time than others.

In summary, as a feature selection method, we recommend VAR, which shows good 
performance for most subtype identifications. For subtype identification, we recom-
mend NMF, which stably shows good performance in many cases.

Discussion
We compared six subtyping methods, two of which are used only for single-omics data 
sets, and four for both single-omics and multi-omics data sets. This study is different 
from previous comparative research in that it compared the performance of cancer sub-
typing methods combined with various feature selection methods. Rather than a single 
method dominating the others, the best methodology depended on the data used, the 
number of features selected, and the evaluation method.

This result is supported by the study of Dhal and Azad [24], which showed that 
the performance of the feature selection methods varied significantly across differ-
ent data types. In a comparative study of subtype identification methods, different 
methods were selected as the best for each task. For example, multiple canonical cor-
relation analysis was selected as the best for multi-omics data among seven subtyping 
methods in terms of p-values for the log-rank test in differential survival [59], while 
the regularized multiple kernel learning algorithm showed the best performance for 
single omics data [60]. PINS [18] and CIM showed the largest number of significant 

Table 8 Time complexity for feature selection methods and subtyping methods

Numbers indicate running time (unit: second)

Subtyping Identification Methods without FS
CC PINS NMF ICB SNF NEMO

AML 5.18 20.64 1130.33 870.40 2.19 2.18

GBM 37.29 131.21 1982.45 870.40 6.00 5.87

BIC 53.33 95.90 7573.64 1334.64 9.76 9.25

COAD 8.83 33.84 1809.96 1058.59 1.41 1.36

Feature Selection Methods
MED VAR MAD DIP mRMR MCFS

COAD 500 0.87 0.78 1.15 7.43 0.53 30,078.44

2000 0.86 0.18 1.15 5.49 2.05 30,078.44

BRCA 500 2.71 0.90 3.10 8.12 1.53 108,000.00

2000 1.06 1.53 2.40 8.64 3.72 108,000.00
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p-values in another study [43]. However, moCluster showed the best performance in 
a simulation study [58]. The authors compared the ability of the methods to classify 
the samples into the correct subgroups, rather than using p-values of the log-rank 
test [38]. ICluster and moCluster showed better performance than other methods 
[39]. Sensitivity and the ability to recover the number of clusters and common spe-
cific structures across datasets were considered as evaluation criteria. Since each 
evaluation criterion has its own advantages and disadvantages, no single criterion 
can be considered as the gold standard. It has been reported that the silhouette value 
decreases and approaches zero as the number of dimensions increases [18]. Silhou-
ette values do not necessarily indicate a clinical association itself, and its usefulness 
is limited for high-dimensional data due to noise [18]. Meanwhile, the p-value for the 
log-rank test may not fully represent the clustering ability of the algorithms, since 
some patient groups may have a similar survival distribution even though they fall 
into different cancer subtypes or vice versa.

The number of clusters chosen for each clustering method was not set to be the same 
for all methods, as being able to evaluate the optimal number of clusters is also consid-
ered as an aspect of the algorithm’s performance. Except for CC and ICB, which require 
the user to evaluate the optimal number of clusters subjectively, all methods used their 
inherent algorithms to assess the number of clusters, with the maximum number of 
clusters set as 10 for all algorithms.

Although the results of all four datasets tell us that there is no single combination 
of methods that outperforms others, the CC and NMF methods were generally good 
choices among the six clustering methods when informative genes were selected prior to 
clustering in terms of differences in the survival curves. Especially for CC, the combina-
tion of CC with variance as a feature selection method showed the best performance in 
terms of p-values of the log-rank test in the two datasets of AML and BIC, and the com-
bination of CC with DIP showed the best performance in the GBM dataset.

The variance method and DIP were often included in the best combinations. In the 
COAD dataset, the combination of DIP and the PINS clustering method showed the 
best performance in terms of p-values of the log-rank test. The drawback of CC is that 
the number of clusters k is subject to the user’s opinion, and that its performance is sen-
sitive to the value of k. Therefore, it is recommended to carefully set k using additional 
measures such as the silhouette score. Overall, the results of selecting 500 and 2000 
genes differed by combinations and datasets.

We acknowledge that our study has some limitations. Firstly, we only utilized filter 
methods for feature selection; these methods have the advantage of reducing compu-
tational time and being efficient for high-dimensional datasets, but they may overlook 
certain relevant features. Secondly, our analysis employed only a subset of TCGA data 
(namely, single-omics datasets), limiting the generalizability of our findings. Future 
research could explore the use of embedded feature selection methods or incorporate 
multi-omics data. In our opinion, it is also crucial to investigate more novel and recent 
feature selection methods to further enhance the performance of subtype identification 
in gene selection.
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