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Abstract 

Background:  Tuberculosis is a dangerous infectious disease with the largest number 
of reported cases in China every year. Preventing missed diagnosis has an important 
impact on the prevention, treatment, and recovery of tuberculosis. The earliest pul-
monary tuberculosis prediction models mainly used traditional image data combined 
with neural network models. However, a single data source tends to miss important 
information, such as primary symptoms and laboratory test results, that is available 
in multi-source data like medical records and tests. In this study, we propose a multi-
stream integrated pulmonary tuberculosis diagnosis model based on structured and 
unstructured multi-source data from electronic health records. With the limited num-
ber of lung specialists and the high prevalence of tuberculosis, the application of this 
auxiliary diagnosis model can make substantial contributions to clinical settings.

Methods:  The subjects were patients at the respiratory department and infectious 
cases department of a large comprehensive hospital in China between 2015 to 2020. 
A total of 95,294 medical records were selected through a quality control process. 
Each record contains structured and unstructured data. First, numerical expressions of 
features for structured data were created. Then, feature engineering was performed 
through decision tree model, random forest, and GBDT. Features were included in the 
feature exclusion set as per their weights in descending order. When the importance 
of the set was higher than 0.7, this process was concluded. Finally, the contained 
features were used for model training. In addition, the unstructured free-text data was 
segmented at the character level and input into the model after indexing. Tuberculosis 
prediction was conducted through a multi-stream integration tuberculosis diagnosis 
model (MSI-PTDM), and the evaluation indices of accuracy, AUC, sensitivity, and speci-
ficity were compared against the prediction results of XGBoost, Text-CNN, Random 
Forest, SVM, and so on.

Results:  Through a variety of characteristic engineering methods, 20 characteristic 
factors, such as main complaint hemoptysis, cough, and test erythrocyte sedimenta-
tion rate, were selected, and the influencing factors were analyzed using the Chinese 
diagnostic standard of pulmonary tuberculosis. The area under the curve values for 
MSI-PTDM, XGBoost, Text-CNN, RF, and SVM were 0.9858, 0.9571, 0.9486, 0.9428, and 
0.9429, respectively. The sensitivity, specificity, and accuracy of MSI-PTDM were 93.18%, 
96.96%, and 96.96%, respectively. The MSI-PTDM prediction model was installed at a 
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doctor workstation and operated in a real clinic environment for 4 months. A total of 
692,949 patients were monitored, including 484 patients with confirmed pulmonary 
tuberculosis. The model predicted 440 cases of pulmonary tuberculosis. The positive 
sample recognition rate was 90.91%, the false-positive rate was 9.09%, the negative 
sample recognition rate was 96.17%, and the false-negative rate was 3.83%.

Conclusions:  MSI-PTDM can process sparse data, dense data, and unstructured text 
data concurrently. The model adds a feature domain vector embedding the medical 
sparse features, and the single-valued sparse vectors are represented by multi-dimen-
sional dense hidden vectors, which not only enhances the feature expression but also 
alleviates the side effects of sparsity on the model training. However, there may be 
information loss when features are extracted from text, and adding the processing of 
original unstructured text makes up for the error within the above process to a certain 
extent, so that the model can learn data more comprehensively and effectively. In addi-
tion, MSI-PTDM also allows interaction between features, considers the combination 
effect between patient features, adds more complex nonlinear calculation considera-
tions, and improves the learning ability of the model. It has been verified using a test 
set and via deployment within an actual outpatient environment.

Keywords:  Electronic health records, Clinical decision support, Predictive model, 
Tuberculosis

Introduction
Tuberculosis is a common and extremely dangerous infectious disease. Unless treated 
in time, it may lead to pulmonary failure and even be life-threatening. If a patient with 
infectious pulmonary tuberculosis is not treated, he or she can infect an average of 
10–15 healthy people in one year [1]. According to the global tuberculosis report (2019) 
released by WHO the positive rate of the global average TB etiology (including bacte-
riology and analytical biology) is 55% [2]. From 2015 to 2019, the positivity rate of eti-
ology in China increased from 31 to 47%, but it is still lower than the global average 
[2]. Although CT and other imaging methods can quickly diagnose tuberculosis, the 
imaging manifestations of some cases are atypical. Isolation of Mycobacterium tubercu-
losis from sputum culture is the main method for the diagnosis of tuberculosis, but the 
culture cycle of Mycobacterium tuberculosis is long and the positivity rate is low. Spu-
tum cultures of some patients show up as negative (bacteria-negative tuberculosis) [3]. 
Tuberculin tests are widely used in the diagnosis of Mycobacterium tuberculosis infec-
tion, but they cannot distinguish between the natural infection of Mycobacterium tuber-
culosis and the immune response after BCG vaccination. In China, 34.61% of hospitals 
are primary medical institutions [4, 5]. The main examinations for pulmonary tubercu-
losis include X-ray examination, direct smear examination of acid-fast bacilli, tubercu-
lin skin test (TST), and pleural effusion examination. Among the medical institutions, 
8.46% were large general hospitals, and the main examinations included chest CT, tuber-
culosis culture, interferon gamma release assay (IGRA) and tuberculosis antibody detec-
tion, PCR technology, bronchoscopy, or other histopathological examinations [6]. Note 
that IGRA, PCR, and other methods are only used in large general hospitals in Chinese 
medical institutions, and cannot be widely implemented throughout the country [7, 8].

Therefore, there is an urgent need for rapid auxiliary diagnostic tools for tubercu-
losis, especially bacterial negative tuberculosis. The diagnosis of tuberculosis with 
positive etiology is relatively clear, while the diagnosis of tuberculosis with negative 
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etiology lacks clear laboratory test support. A doctor needs to make a diagnosis 
based on the patient’s overall clinical manifestations, including the patient’s contact 
history of tuberculosis, clinical symptoms, and imaging features. However, owing to 
the lack of clinical experience of some doctors and atypical clinical manifestations, 
missed diagnosis and misdiagnosis are inevitable. Early and timely auxiliary diagnos-
tic tools can effectively control the spread of pulmonary tuberculosis and improve the 
effectiveness of diagnosis and treatment [9]. Neural networks have been widely used 
in clinical decision-making, such as brain tumor detection [10], citric acid poison-
ing monitoring, early warning in ICUs [11], and bone age assessment [12]. Studies 
[13, 14] have also verified the effectiveness of neural networks in the real-world clini-
cal auxiliary effect of the hospital based on the time of diagnosis and the length of 
hospital stay. Therefore, it is feasible to apply neural networks for clinical auxiliary 
prediction.

In earlier times, tuberculosis early warnings were based on questionnaire evaluations 
[15]. However, the information thus gathered could not be automatically combined with 
the actual medical records of patients, and there was a disconnect from real clinical set-
ups. In addition to writing medical records, doctors needed to fill in the evaluation ques-
tionnaire independently, which increased their workload. A quicker low-cost method 
was needed to quickly identify tuberculosis within a clinical practice setup. Lee [16] 
proposed an image-based tuberculosis prediction model. The automatic detection algo-
rithm (DLAD) was used to predict tuberculosis within 19 samples. The positive predic-
tive values (PPVs) and negative predictive values (NPVs) were 0.959 and 0.997. Another 
study [17, 18] demonstrated that DLAD has a good classification performance in active 
tuberculosis under a high incidence rate (i.e., TB incidence rate of 9.1%), with the area 
under the receiver operating characteristic curve (AUC) being 0.94. Abiyev [19] used a 
deep convolution neural network (CNN) to predict the possibility of lung lesions based 
on images, and classified 12 common diseases. However, most of the aforementioned 
models use a dataset based on a single standard image, and the strict requirements 
for objective data lead to a lack of flexibility in the method, wherein the patient’s com-
plete medical record information cannot be used. Some key characteristic information 
in the medical record content, such as past history, current medical history, laboratory 
test results, and diagnosis, is lost, which makes these methods unsuitable to be directly 
applied to real medical records.

The development of natural language processing (NLP) and information extraction 
(IE) has immense application potential in the field of medical information [20, 21]. Elec-
tronic health records (EHRs) contain important information such as medical process 
data over the patient’s entire course of the disease, including admission examination, 
methods used for examination, surgery, medication, and treatment effectiveness. Auto-
matic semantic analysis of information can obtain effective information from unstruc-
tured text in EHRs, such as symptom set [22], contact history, adverse drug reactions 
[23], and diagnosis recommendation [24]. Sweidan [25], based on the fuzzy extended ER 
modeling model, used the unstructured content of EHRs to study liver fibrosis through 
entity extraction. Therefore, a neural network method based on EHR full text data can 
be used to predict the early stage of tuberculosis.
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The initial clinical manifestations of tuberculosis are similar to those of pneumonia 
and lung cancer. In order to improve the accuracy of the model, a very large sample size 
is required. We must overcome the issue of a single image data source and adopt pre-
diction based on comprehensive medical record information. Therefore, this study pro-
poses a tuberculosis prediction model that uses structured as well as unstructured data 
to determine the possibility of tuberculosis infections. A multi-class data integration 
diagnosis model is used for prediction, so as to improve the efficiency of the prediction 
model.

Methods
Study design

In this study, the subjects were patients at the respiratory department and infectious 
cases department of a large comprehensive hospital in China between 2015 to 2020. The 
medical records used for inpatients include patient information, medical history, admis-
sion records, and medical laboratory examination and examination report. The medi-
cal records used for outpatients include outpatient information, outpatient treatment 
records, and medical laboratory examination and examination report.

First, we applied the quality control process to review the qualification of EHRs. Medi-
cal records with incomplete entries, inconsistent information, or follow-up medical 
records were discarded; 8,497,159 medical records remained. The dataset was then fil-
tered according to the following inclusion criteria, as shown in Fig.  1: (1) The admis-
sion department is the respiratory department and infection-related department. (2) At 
least one inspection has been conducted in the hospital. (3) Those younger than 14 years 
are excluded. (4) Other categories of statutory infectious diseases are excluded. (5) Data 
related to tuberculosis but not infectious tuberculosis (such as obsolete pulmonary 
tuberculosis) is excluded. After screening, there were 95,294 medical records that met 

Fig. 1  Flowchart of enrollment
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the criteria, with the average age being 46.92 years old. 48.89% were men and 51.11% 
were women.

The complete data were randomly divided into a training set and a verification set, and 
a fivefold cross-verification strategy was carried out using the classical 2–8 principle. In 
each fold experiment, the training set accounted for 80% and the test set accounted for 
20%.

There are 2457 cases of pulmonary tuberculosis and 92,837 cases of non-pulmonary 
tuberculosis in this dataset. There is an obvious sample imbalance, which may easily 
lead to sample overfitting and make the model more inclined to incorrectly predict non-
pulmonary tuberculosis. In this study, two methods were used to address this concern: 
down/oversampling and category weight. Random oversampling was conducted thrice 
for pulmonary tuberculosis samples with a small number of samples, and the sample size 
increased from 2457 to 7371 cases. Furthermore, the large number of non-tuberculosis 
samples were downsampled to 1/3 of the level, that is, they were downsampled based on 
the proportion of characteristics. For example, the sample was first divided into multi-
ple sets according to the residential city, then downsampling was conducted 1/3 times 
from multiple sets to obtain multiple subsets, and finally multiple subsets were merged 
to obtain the final dataset. At this time, the proportion of residential cities in the dataset 
remained at the original proportion, which can reduce the negative impact of downsam-
pling to a certain extent. Furthermore, category weight was added to increase the weight 
of tuberculosis samples and reduce the weight of non-tuberculosis samples in training. 
If the impact of a wrong prediction of tuberculosis is higher, the model will pay more 
attention to the prediction of tuberculosis category samples. Based on the parameter 
adjustment process, the category weight of pulmonary tuberculosis in this study was 8.5 
and that of non-pulmonary tuberculosis was 0.75.

Data processing

An electronic medical record contains two kinds of data, i.e., structured data such as 
gender, age or laboratory test results, and unstructured data in the form of free text writ-
ten by doctors. Structured data is a key feature representation, and each field has a clear 
representative meaning. By contrast, free text represents the overall judgment of doctors 
on the current health status of patients and contains more comprehensive information. 
Based on the aforementioned characteristics of data, this study uses structured as well 
as unstructured data. On the basis of using the characteristics of structured data, this 
study uses unstructured data as a supplement to improve the prediction performance of 
tuberculosis.

In order to avoid the issue of label leakage when training the model, only docu-
ments such as Patient Information, Medical History, and Medical Laboratory Exami-
nation and Examination Report that can quantify the patient’s physical indicators 
are used as model input data, and the data fields that clearly reflect the negative or 
positive etiology of pulmonary tuberculosis are filtered out. In addition, the diagnosis 
made by the doctor is used as the data label for model training. In the application pro-
cess, the structured data are processed by feature engineering in many ways, includ-
ing digitization, standardization, normalization, and feature screening. The technical 
process is illustrated in Fig. 2. For the use of unstructured text, specifically, the free 
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text of patient cases is segmented according to the character level to obtain the word 
sequence, and then the words are counted to obtain a dictionary containing all words, 
in which each word is mapped into various serial number index values and finally 
applied to the model in the form of a word vector. At this time, the case information 
can be obtained from the free text without information loss, which helps overcome 
the concerns related to structured data. Finally, the two methods are combined, and 
the structured key features and full-text information are used to train the model con-
currently, so as to make full use of the data to enhance the prediction performance of 
the model.

The study was approved by the Medical Science Research Ethics Committee of 
Peking University Third Hospital (serial number: IRB00006761-M2020318). All meth-
ods were performed in accordance with the relevant guidelines and regulations.

Feature engineering

First, the data of each document and field are cleaned and encoded. One-hot encoding 
[26] is performed on discrete feature data. The outliers in continuous feature data are 
detected. For features having a clear value range, the outliers must be identified accord-
ing to the value range and then replaced with the mean value of the feature. For example, 
the result of a laboratory examination cannot have a negative value. When a negative 
value appears, it will be regarded as an abnormal value. In addition, comprehensive use 
3σ Based on the normal distribution theory, μ is the characteristic mean value, and σ is 
the characteristic standard deviation, with μ ± 3σ as the detection boundary. If the value 
is beyond the boundary, it will be regarded as an outlier and replaced with the mean 
value. After the above processing, the feature dimension of the data used in this research 
reached 68,313 dimensions. At this time, the dimension of data features is high, and high 
sparsity is caused by the existence of a large number of one-hot encoding features. When 
the input feature dimension in machine learning is high-dimensional sparse, the model 
is prone to over-fitting and poor generalization ability, resulting in better results in the 
training set and lack of accuracy in the test set. In order to solve the high-dimensional 
sparsity problem, a variety of feature engineering methods are used. This study uses two 
different strategies of algorithms: one is a single decision tree model, and the other is an 
integrated model. The integrated model selects random forests with relatively high vari-
ance and gradient boosting decision tree (GBDT) with relatively low deviations.

Fig. 2  Technical infrastructure
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Time series standardization for history of present illness (HPI)

In structured data, the time nodes stored in HPI have obvious time series characteris-
tics. If the current medical history characteristics are directly one-dimensional, the orig-
inal time-allowed characteristics will be lost. Time series standardization can effectively 
preserve the data characteristics of current medical history. Specifically, first the visit 
date of the current case is selected as the base date, and the negative and positive data 
of tuberculosis are clearly identified in the medical record or examination. Then the field 
is formatted about the time node in HPI and converted into the standard date format, 
and the time nodes are sorted from earlier to later, as shown in Fig. 3. Finally, the value 
of the feature in each time node is divided by the total number of time nodes of the 
case and multiplied by the ordinal number of time nodes where the feature is located for 
standardization. After this, order normalization is applied, with the weight of the feature 
closest to the current time being higher. After standardization based on time series, the 
model pays different amounts of attention to the features with different distance, and 
will either avoid paying too much attention to the features with long time distance or 
completely ignore them. As for the characteristics of near time, while retaining their 
relative importance, they will not be fully trusted. Furthermore, the sensitivity of this 
method to the features with short time distance is relatively stronger than that with long 
distance, and it also conforms to common sense logic.

The calculation process is given in Formula 1. Here, Xi represents the characteristic 
value of the ith feature, T represents the total number of time nodes in the HPI of the 
sample, and t represents that the feature Xi appears at the tth time node.

Processing one‑hot encoding feature based on Naive Bayesian method

Based on the outpatient and inpatient historical medical records, the characteristic 
information such as relevant symptoms, diseases, and signs under all main diagnoses 
are gathered. First, the logarithmic Bayesian probability value of each feature under the 
condition that the sample label is tuberculosis is calculated, and then the logarithmic 
probability of this feature under the condition that the sample label is not tuberculo-
sis is calculated. Finally, the difference between the two is taken as the weight value of 
the feature relative to the disease. In tuberculosis prediction, the feature of each medical 

(1)Wi,t =
t

T
Xi, t ∈ T

Fig. 3  Time series standardization for HPI
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record is taken as the feature value of the corresponding feature based on the weight 
value calculated in the above steps. The feature value can reflect the correlation between 
the corresponding feature and the label, and improve the characterization ability of the 
feature while overcoming the issue of high-dimensional sparsity of the feature. The spe-
cific process is given in formula 2, where Xi represents the ith feature, Y represents the 
sample label, Pulmonary Tuberculosis (PT) represents tuberculosis, and Healthy (HY) 
represents the health data of non-tuberculosis. Wi represents the ith feature:

Finding feature subsets based on feature importance

Feature selection can eliminate irrelevant or redundant features, so as to reduce feature 
dimension, reduce feature data sparsity, improve model accuracy, and reduce running 
time [27]. Therefore, when we go to the feature input model, we often need to perform 
feature selection first to select and retain the features that are meaningful to the tar-
get task. At present, the most commonly used feature selection method is to use some 
machine learning models (such as tree model or integration method) to train, obtain the 
importance weight coefficient of each feature, and screen certain features according to 
the coefficient and set the threshold. However, as the internal structure and objective 
function of each model are different, there are differences in the selection of features. 
There is a certain deviation in the features selected by a single decision tree model. This 
study adopts the method of multiple models to select features together.

The single decision tree model, random forest, and GBDT of the integrated model 
used in this study have diverse characteristics and can calculate feature importance more 
comprehensively. The importance weights of each feature in the three model results are 
sorted from high to low, as shown in Fig. 4. Then, the feature set is established, and the 
features are included in the feature exclusion set from high to low as per their weights. 
When the total importance of the set is higher than 0.7, the inclusion is stopped. Then, 
the three feature sets obtained by the three models are combined to obtain the final fea-
ture set. At this time, the features in the original feature set are filtered according to the 
result set to obtain the last used features (the sum of feature importance is higher than 
or equal to 0.7) for model training, as shown in Fig. 5. Based on the results of the impor-
tance of the characteristics of the three models, it can be observed that the proportion of 
main complaints is substantially higher than that of laboratory tests and image reports. 
Thus, a large amount of effective information exists in unstructured medical records.

After the feature processing, the following features will be obtained (partially listed in 
Table 1).

Tuberculosis diagnosis model

In order to use the high-dimensional sparse feature to predict whether the patient has 
tuberculosis, in this study, a multi-stream integration tuberculosis diagnosis model 

(2)

P(Xi | Y = PT) =
P(Y = PT |Xi) P(Xi)

P(Y = PT)

P(Xi|Y = HY) =
P(Y = HY | Xi) P(Xi)

P(Y = HY)

Wi = log(P(Xi | Y = PT)) − log(P(Xi | Y = HY))
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(MSI-PTDM) is constructed, which can process sparse data, dense data, and unstruc-
tured text data concurrently. The model structure is shown in Fig. 6.

Fig. 4  Top 20 feature names and corresponding importance weights of the three models

Fig. 5  Proportion of symptoms in the characteristics is significantly higher than that in laboratory tests and 
imaging reports

Table 1  Features after processing

Gender Age Symptoms / 
fever

Symptoms/ 
headache

Symptoms/ 
cough

Symptoms/ chest 
tightness

Symptoms/ 
chest pain

1 45 0.25 0.5 1 0 0

0 33 0.2 0.4 0 1 0

0 65 0.1 0.8 0 1 1
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The structured field data in EHRs, such as structured test reports and basic informa-
tion, is divided into two parts: sparse field data and dense field data. For example, with 
regards to the field ’check organ’, there are many organs in the human body, which are 
discrete variables with a large number of categories, and the vector is sparse after one-
hot coding. In processing sparse data, this model initializes a normally distributed dense 
eigen domain matrix for each field. In the calculation process, one-hot one-dimensional 
sparse vector and eigen domain matrix are multiplied to obtain a one-dimensional dense 
vector. This process transforms the discrete value of the original feature into an implicit 
vector represented by multiple dimensions. The specific process of converting a sparse 
vector into a dense vector is shown in Fig. 7, where N represents the dimension of the 
original sparse vector, d represents the dimension of the dense vector, and d is less than 
N. After the category features are converted through the one-hot method, each dimen-
sion of the sparse vector represents distinct feature values. The initialized feature domain 
matrix corresponds to a dense vector for each dimension of the sparse vector, so that the 
dense vector with dimension d is obtained after matrix multiplication. While reducing 
the feature dimension, the original one-hot sparse vector is changed into a dense vector. 

Fig. 6  Multi-stream integration tuberculosis diagnosis model

Fig. 7  Process of converting a sparse vector into a dense vector
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The feature domain matrix is trained in the process of subsequent binary classification 
model training. In addition, the dense field data is max absolute scaled and then spliced 
with multiple calculated one-dimensional dense vectors to form a field vector. Finally, 
linear operation and cross operation between features are performed on the field vector. 
The features after cross operation are incorporated into the model calculation process 
as new features to improve the nonlinear calculation ability of the model. The model not 
only calculates the influence of each feature on the prediction target, but also considers 
the combined interaction between features, so as to improve the feature learning space 
of the model and adapt to more complex feature interactive learning.

In addition, considering the possible accuracy and information loss in the process of 
structuring text data to obtain field data, this model also uses unstructured text data to 
extract the original data information and try to extract the hidden information contained 
in the text, which is used to make up for the information loss in the process of text data 
structuring to a certain extent. Specifically, the text data is segmented at the character 
level, and the document density vector carrying text information is calculated by using 
word embedding technology and a Text-CNN model constructed via one-dimensional 
convolution. Each dimension of the vector expresses the comprehensive information of 
the case text to some extent. At the end of the model, the dense vector result of the field 
feature flow is connected with the text dense vector, which is input into the shallow feed-
forward neural network. Then the sigmoid activation function is used to output whether 
it is the binary prediction result of pulmonary tuberculosis.

Field-based structured features are formal key information abstracted and extracted 
from free text. Each one-dimensional feature only represents one item of information 
in patient data and is the key point data. The task of medical diagnosis cannot be com-
pletely performed using a single feature, so the feature perception domain of the model 
should be expanded. Based on this idea, this research integrates feature interaction and 
unstructured text data. Feature interaction is the cross calculation between two features, 
after which further linear and nonlinear transformation is carried out through the net-
work structure, which expands the scope of feature consideration. The unstructured 
text data is completed by Text-CNN, and finally the vector representing the entire case 
text is calculated. Given the existence of a convolution kernel, the receptive field of the 
model network layer continues to expand, and the text vector finally output has strong 
globality. This model uses field features or text word vectors concurrently, which not 
only makes up for the loss of information, but also takes into account the locality and 
globality of data, so as to support the model to better learn data and better complete the 
target diagnosis task.

The final results of the adjustable superparameters of the MSI-PTDM model proposed 
in this study are marked in the model diagram, and the specific parameter adjustment 
range is presented in the parameter optimization table, i.e., Table 2.

Model evaluation

The model evaluation test set is used to evaluate the performance of four different mod-
els. In this study, four model evaluation indices were used, namely, sensitivity, specificity, 
accuracy, and AUC.
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True positive (TP) denotes the positive samples whose prediction answer is correct, 
true negative (TN) denotes the negative samples whose prediction is correct, false posi-
tive (FP) denotes the samples that are incorrectly predicted as positive, and false nega-
tive (FN) denotes the samples that are incorrectly predicted as negative.

Results
In order to verify the superiority of the MSI-PTDM proposed in this study, we 
selected eight models for comparative experiments. In order to carry out an abla-
tion experiment, we constructed a structured stream pulmonary tuberculosis diag-
nosis model (SS-PTDM) model that only retains the calculation flow of structured 
text data in MSI-PTDM and deleted the unstructured stream pulmonary tuberculo-
sis diagnosis model (US-PTDM) of structured text data calculation stream in MSI-
PTDM. The introduction of the above two ablation models makes it convenient to 
verify the prediction performance of the combined model of structured field data 
stream and unstructured text data stream. In addition, we select the commonly used 
models for text processing, such as Text Convolution Neural Network (Text-CNN) 
[28], Gated Recurrent Unit (GRU) [29], Long Short-Term Memory (LSTM), and Bi-
directional Long Short-Term Memory (Bi-LSTM) [30] as a comparison to explore 
the performance of US-PTDM model under the condition of using only unstructured 
data. The Text-CNN model can focus more on local text information. By changing the 
filter size, it can calculate local information in various ranges. LSTM and GRU are 
good at describing text sequences. Bi-LSTM can calculate the positive and reverse 
order of text simultaneously. The aforementioned models have no restrictions on the 
length of input text sequences. They are classic models in the field of text prediction. 
In addition, we also select the machine learning model SVM, as well as the integrated 
models XGBoost [31] and random forest [32], to compare the prediction perfor-
mance. SVM can perform different nonlinear calculations according to different ker-
nel functions and is a common and effective model for machine learning; XGBoost is 
a model that has emerged in recent years and has achieved good results in many data 

(3)

Sensitivity SE =
TP

(TP + FN )

Specificity SP =
TN

(TN + FP)

Accuracy =
(TP+ TN)

P + N

Table 2  MSI-PTDM parameter optimization

Field Domain 
Embedding

Non-Linear-1 Filter Size 
Combination

Non-linear-2 Feature-Cross Doc Vector Hidden-Layer

32 128 (1, 2) 32 128 256 64

64 256 (1, 3) 64 256 512 128

128 512 (1, 5) 128 512 1024 256

256 1024 (2, 3) 256 1024 2048 512

(2, 5) 512 2048 1024

(3, 5) 1024
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competitions and industrial applications. The XGBoost, random forest, and SVM are 
used to predict the activity of Mycobacterium tuberculosis (Mtb) in tuberculosis and 
compare the prediction performance with our proposed SS-PTDM in structured data 
scenarios.

In order to conduct the comparative experiment fairly, we also optimized the 
parameters of the comparative model. For the Text-CNN model, a value within [1–5, 
7, 9] is selected as the size alternative of the filter. On this basis, the number of com-
bined stacked blocks of the convolution layer and the pooling layer is selected from 
[2, 4, 8, 12, 16], and average pooling and maximum pooling are the different choices 
of the pooling layer. The final optimal Text-CNN consists of four stacked blocks. 
The configuration of each block is Filter (5) + MaxPool, Filter (5) + MaxPool, Filter 
(3) + MeanPool, and Filter (3) + MaxPool.

For GRU, LSTM, and Bi-LSTM, Hidden_Size is selected from [128, 256, 384, 512, 
1024]. For num_, the optional range of layers is [1, 2, 4, 6, 8, 16, 32], the value range of 
dropout is [0–0.5], and the step size is 0.05. The final optimal GRU has 16 layers, its 
Hidden_ Size is 512, and dropout is 0.2; the optimal LSTM has 8 layers, its Hidden_ 
Size is 384, and dropout is 0.2; the optimal parameter configuration of Bi-LSTM is 8 
layers, its Hidden_ Size is 512, and dropout is 0.25.

Under the condition of structured data, the model is mainly optimized through Grid-
Search. For SVM, the kernel is selected from [rbf, poly], the value range of the regulari-
zation parameter C is [1–5], the step size is 0.5, and the gamma is selected from [0.01, 
0.1, 1, 5]. When the kernel is poly, the degree is also searched from among [2–5]. Finally, 
the optimal parameter configuration of SVM is that the kernel is set to rbf, C = 1.5, and 
gamma is 1. For XGBoost, for max_, the deep selection range is [3–5, 7, 9], for learning_, 
the rate ranges from [0.05–0.3], and the step length is 0.05. In addition, it also includes 
a variety of super parameters. The final optimal XGBoost parameters are max_deep = 5, 
learning_rate = 0.15, n_estimators = 250, min_child_weight = 1, and gamma = 0.

Before model training, feature screening is required. First, the optimal threshold 
including the sum of feature importance is studied. Table 3 summarizes the experimen-
tal results of prediction using various thresholds and MSI-PTDM, where a threshold of 
1 indicates no feature selection. When the sum of included feature importance is 0.7, the 
predicted result is in the optimal position. When the threshold is more than 0.7, each 
evaluation index decreases slightly. Consider the over-fitting of some samples caused by 
some too-sparse features. When the threshold is lower than 0.7, the reduction of various 
indicators is large, and some representative features are excluded.

Table 3  Experimental results of the sum of importance of different including features

Threshold Accuracy AUC​ Sensitivity Specificity

0 0.9591 0.9633 0.9227 0.9591

0.9 0.9588 0.9657 0.9227 0.9588

0.8 0.9602 0.9762 0.9273 0.9602

0.7 0.9691 0.9858 0.9318 0.9692

0.6 0.9325 0.9426 0.9101 0.9325

0.5 0.9000 0.9254 0.8636 0.9001
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Based on the above threshold experiment, the total threshold of feature importance is 
selected as 0.7. Furthermore, a prediction experiment is carried out for the model under the 
fivefold cross validation. The average test results are summarized in Tables 4, 5 and 6. For 
each Fold in 1–5 Fold, the calculation formula used is:

where n is the number of samples in the test set (n = 7663).
In addition, the corresponding confidence interval is calculated for the overall result of 

cross validation, which is listed in Mean column. The calculation formula is:

where μ is the mean value, σ is the standard deviation, and n is the number of samples in 
one experiment.

The final average test results are presented in Table 7, and the ROC curve is shown in 
Fig. 8. In the comparison of models using only structured data as input data and using 
unstructured data, SS-PTDM and US-PTDM models are better than other models, and 
the average accuracy is 0.9498 and 0.9451 respectively. In addition, in the ablation com-
parison experiment, the MSI-PTDM has the best performance in various evaluation 
indices, which is better than the single branch SS-PTDM and US-PTDM models, reflect-
ing the advantages of the simultaneous application of structured data and unstructured 
data. The standard deviation of MSI-PTDM in the fivefold cross validation experiment is 
only 0.0044, which is generally lower than other models, indicating that the model also 
has good stability. In conclusion, this study proposes the optimal auxiliary task of MSI-
PTDM for the diagnosis of pulmonary tuberculosis.

Discussion
The disease characteristics of model screening are consistent with the guidelines

This study analyzed 20 characteristic indices related to tuberculosis, screened out 
disease-related factors, and established a diagnostic model for preliminary diagnosis 
and auxiliary diagnosis of tuberculosis. Some studies [33–37] showed that neutrophil 
to lymphocyte ratio (NLR), A\B antigen stimulated interferon detection, IGRA, and 
serum CA-125 were of definite significance in distinguishing tuberculosis from non-
tuberculous pulmonary diseases. The features extracted from medical records in this 
study are consistent with the above studies. According to the standard of "WS 288–
2017 diagnosis of tuberculosis" [38], the clinical symptoms, signs and related medi-
cal history, chest CT scanning findings, laboratory related examinations, and other 
clinical data of patients with initially diagnosed tuberculosis with negative etiology 
were classified into 12 observation indices. The characteristic results of tuberculosis 
obtained using decision tree, random forest, and GBDT are consistent with the crite-
ria of WS 288–2017 pulmonary tuberculosis diagnosis such as Mycobacterium tuber-
culosis antibody test and TBAb; A \ B antigen stimulated interferon assay and IGRA; 
emaciation, night sweat, anorexia, cough, hemoptysis; and white globulin ratio and 

(4)1.96×

√

Accuracy ×
(

1− Accuracy
)

n
,

(5)µ− 1.96×
σ
√
n
,µ+ 1.96×

σ
√
n

,
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serum albumin globulin ratio (A/G). Lung shadows and the diagnostic criteria of pul-
monary nodules were found in the findings. There are some features in the model that 
are not in the diagnostic criteria but are also meaningful for the diagnosis of tuber-
culosis, such as erythrocyte sedimentation rate and C-reactive protein. The increase 
of erythrocyte sedimentation rate is generally seen in various inflammatory diseases, 
tissue injury and necrosis, malignant tumors, and the relative or absolute increase of 
plasma globulin caused by various reasons [39]. The increase of fibrinogen and immu-
noglobulin significantly accelerated the erythrocyte sedimentation rate. The concen-
tration of C-reactive protein in plasma increases rapidly and significantly in cases of 
acute myocardial infarction, trauma, infection, inflammation, surgery, and malignant 
tumors. It is a very sensitive index of acute phase response [40]. The concentration in 
plasma can reflect obvious inflammatory signals or the initiation stage of acute phase 
reaction, or chronic low-level inflammation and the beginning of acute phase reac-
tion. Tuberculosis being an infectious disease, C reactive protein may also increase, 
but for different types of tuberculosis in different stages of disease, the C reactive 

Table 7  Comparison of diagnostic accuracy between MSI-PTDM and other models of tuberculosis

Accuracy AUC​ Sensitivity Specificity

MSI-PTDM 0.9696 (0.9657, 0.9735) 0.9858 (0.9777, 0.9939) 0.9318 (0.9296, 0.9340) 0.9696 (0.9657, 0.9735)

SS-PTDM 0.9482 (0.9458, 0.9538) 0.9674 (0.9356, 0.9514) 0.8352 (0.8329, 0.8375) 0.9483 (0.9443, 0.9523)

US-PTDM 0.9453 (0.9433, 0.9469) 0.9605 (0.961, 0.9738) 0.8284 (0.8257, 0.8311) 0.9453 (0.9433, 0.9473)

Text-CNN 0.9185 (0.9128, 0.9242) 0.9486 (0.9513, 0.9697) 0.8251 (0.8225, 0.8277) 0.9186 (0.9130, 0.9242)

GRU​ 0.9122 (0.9097, 0.9147) 0.9354 (0.9414, 0.9558) 0.8208 (0.8164, 0.8252) 0.9122 (0.9095, 0.9149)

LSTM 0.9047 (0.898, 0.9114) 0.9292 (0.9244, 0.9464) 0.8142 (0.8081, 0.8203) 0.9047 (0.8981, 0.9113)

Bi_LSTM 0.9180 (0.9133, 0.9227) 0.9435 (0.9198, 0.9386) 0.8104 (0.8067, 0.8141) 0.9182 (0.9135, 0.9229)

XGBoost 0.9305 (0.9288, 0.9322) 0.9571 (0.9511, 0.9631) 0.8068 (0.8038, 0.8098) 0.9305 (0.9288, 0.9322)

Random Forest 0.8996 (0.8924, 0.9068) 0.9428 (0.9298, 0.9558) 0.8318 (0.8250, 0.8386) 0.8997 (0.8925, 0.9069)

SVM 0.9311 (0.9266, 0.9356) 0.9429 (0.9333, 0.9525) 0.7844 (0.7813, 0.7875) 0.9312 (0.9267, 0.9357)

Fig. 8  ROC of models
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protein manifestation needs further study. NLR is a common index to evaluate infec-
tion. The clinical value of NLR combined with lymphocytic reduction in the confir-
mation of bacteremia in an emergency is better than CRP, white blood cell count, and 
neutrophil count. NLR is of immense value in distinguishing bacterial pneumonia 
from tuberculosis, and is of considerable significance for early detection and early 
treatment of tuberculosis in primary hospitals [41, 42]. IGRA is mainly used to detect 
latent infections of tuberculosis, but is also used for the diagnosis, prediction, and dif-
ferential diagnosis of active pulmonary tuberculosis [43]. IGRA is more accurate than 
TST in judging whether there is latent tuberculosis infection in patients with rheuma-
toid arthritis, especially for those who have been vaccinated with BCG vaccine and 
those infected with NTM [44]. This is of immense significance for the diagnosis and 
prevention of tuberculosis, especially in countries with high BCG vaccination rates.

The model is applied to the diagnosis and treatment in hospitals

The proposed model was applied to the doctor workstation of a large general hospital in 
China to make predictions in real time while medical records were being written. The 
overall architecture is shown in Fig. 9. MSI-PTDM was installed upon a doctor worksta-
tion and operated in the real clinic for four months. When the doctor writes and saves 
the medical records at the doctor station, it will call the services. After the services and 
models deployed in the cloud complete their calculations, the results will be fed back 
to the doctor station. The experimental model was deployed and operated in the real 
environment of the hospital for 4 months, with 73 doctors from the respiratory depart-
ment, emergency medical department, and thoracic surgery participating in the experi-
ment (including 28 with senior professional titles and 45 with intermediate professional 
titles). Considering the respiratory department as an example, every day, 12 doctors in 
the respiratory department receive 30 patients in the outpatient and emergency depart-
ment. A total of 692,949 patients were treated by 73 doctors in 4 months. The detailed 
records of the department’s diagnosis and diagnosis of pulmonary tuberculosis are pre-
sented in Table  8. Hospital doctors’ computers are uniformly configured, the configu-
ration being as follows: DELL desktop: Intel (R) core (TM) i7-7500u CPU @ 2.70Ghz, 

Fig. 9  The architecture of combination of MSI-PTDM and EHRs
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2.90 GHz, running memory 8G, hard disk 256G. The average time to predict the pres-
ence of pulmonary tuberculosis from a complete medical record is 10 s.692949 patients 
were monitored, including 484 patients with confirmed pulmonary tuberculosis. MSI-
PTDM predicted 440 cases of pulmonary tuberculosis. The positive sample recognition 
rate was 90.91%, the false positive rate was 9.09%, the negative sample recognition rate 
was 96.17%, and the false negative rate was 3.83%.

This study is the first to research tuberculosis prediction based on EHR text using arti-
ficial intelligence. It also integrates the model into doctor workstations and applies it in 
clinical work, which suggests the potential for text-based prediction of other diseases in 
the future.

Limitations
There are some limitations in this study. 1. Only patients from the respiratory depart-
ment and infectious cases department have been considered in this study, and the results 
are different from other departments. 2. Machine learning based on medical records 
needs medical records having higher quality, and the overall integrity of inpatient medi-
cal records must be better, including detailed records such as examination and inspec-
tion over a period of time. For medical records with fewer outpatient first visits or lesser 
medical record information, such as follow-up medical records, the prediction results 
may be inaccurate. 3. In view of the comprehensive limitations of the medical record 
template, some factors do not reflect significant differences, such as gene data. 4. For the 
time series standardization used for current medical history, the order of different time 
nodes is considered. However, the size of the time interval is not considered. 5. MSI-
PTDM only uses structured field features and unstructured text data. In the future, more 
data streams must be integrated, such as patient image data, which will enable a more 
objective and three-dimensional prediction by the model.

Conclusions
A neural network is designed based on multi-stream EHR data for the preliminary diag-
nosis of tuberculosis. First, specific and detailed feature engineering is performed for 
the structured data, and the feature selection methods of multiple models is adopted. 
It also puts forward features that are not covered in the standard of "WS 288–2017 
diagnosis of tuberculosis" such as erythrocyte sedimentation rate and C-reactive pro-
tein, but are of considerable significance for diagnosis. Based on the high-dimensional 
sparse features, a multi-stream integrated diagnosis model that can concurrently 
process sparse field data, dense field data, and unstructured text data is constructed. 

Table 8  Receiving department and confirmed pulmonary tuberculosis record

Department 2021–6 2021–7 2021–8 2021–9 Total Confirmed 
patients with 
TB

Number 
of alerts

Respiratory department 9142 11137 11199 10629 42107 430 405

Emergency department 168362 145150 144951 166559 625022 39 27

Thoracic Surgery 6880 6191 7126 5623 25820 15 8

Total 692949 484 440
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Medical sparse features are embedded with feature domain vectors, and single-valued 
sparse vectors are represented by multi-dimensional dense hidden vectors. Simul-
taneously, the side effects of sparsity on model training are alleviated. MSI-PTDM is 
more suitable for the target research of current medical data as it involves the specific 
time series standardization of current medical history. However, structural features 
are extracted from the text, and it will suffer from information loss. Adding the pro-
cessing of the original unstructured text makes up for the error of the aforementioned 
process to a certain extent, and takes into account the local and global data, so that 
the model can learn the data more comprehensively and effectively. In addition, MSI-
PTDM also introduces the interaction between features, considers the combination 
effect between patient features, adds more complex nonlinear calculation considera-
tions, and improves the learning ability of the model. It has been verified in the test set 
and real environment deployment. Using the indicators of sensitivity, specificity, accu-
racy, and AUC, MSI-PTDM was compared with SS-PTDM, XGBoost, Text-CNN, Ran-
dom Forest, GRU, LSTM, Bi-LSTM, and SVM without an unstructured text processing 
data stream and achieved better results. MSI-PTDM was also installed in the respira-
tory clinic of a large general hospital in China. Combined with the doctor’s medical 
record system, the accuracy of real-time prediction of tuberculosis was 90.91%. These 
results show that this method has high accuracy and can be applied to the auxiliary 
decision-making of pulmonary tuberculosis in medical scenarios to reduce the prob-
ability of missed diagnosis.
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