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Abstract 

Background:  Loss-of-Function (LoF) variants in human genes are important due 
to their impact on clinical phenotypes and frequent occurrence in the genomes 
of healthy individuals. The association of LoF variants with complex diseases and 
traits may lead to the discovery and validation of novel therapeutic targets. Current 
approaches predict high-confidence LoF variants without identifying the specific 
genes or the number of copies they affect. Moreover, there is a lack of methods for 
detecting knockout genes caused by compound heterozygous (CH) LoF variants.

Results:  We have developed the Loss-of-Function ToolKit (LoFTK), which allows 
efficient and automated prediction of LoF variants from genotyped, imputed and 
sequenced genomes. LoFTK enables the identification of genes that are inactive in 
one or two copies and provides summary statistics for downstream analyses. LoFTK 
can identify CH LoF variants, which result in LoF genes with two copies lost. Using data 
from parents and offspring we show that 96% of CH LoF genes predicted by LoFTK in 
the offspring have the respective alleles donated by each parent.

Conclusions:  LoFTK is a command-line based tool that provides a reliable computa‑
tional workflow for predicting LoF variants from genotyped and sequenced genomes, 
identifying genes that are inactive in 1 or 2 copies. LoFTK is an open software and is freely 
available to non-commercial users at https://​github.​com/​Circu​lator​yHeal​th/​LoFTK.
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Introduction
Loss-of-function (LoF) variants are determined to have a critical effect on gene func-
tion by inactivating protein-coding genes [1]. Remarkably, recent analyses of the 
human genome have uncovered that individuals harbor many dozens of LoF vari-
ants, including stop-gained, frameshift variants and splice site disruptions [2, 3]. On 
average, LoF variants are deleterious, and thus usually tend to be found at very low 
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frequencies in the human population. These variants can have a profound impact on 
the gene transcripts and translated proteins. The association of LoF variants with 
complex diseases and phenotypic traits may lead to the discovery and validation of 
novel therapeutic targets [3]. However, hundreds of LoF variants are functionally 
neutral with no detectable influence on phenotypes [4, 5].

Several difficulties emerge when evaluating LoFs on a broad scale. False positives in 
the prediction of LoF variants can arise due to artifacts that may occur during geno-
type calling, mapping, imputation and annotation [3]. To annotate high-confidence 
(HC) LoF variants only, Loss-Of-Function Transcript Effect Estimator (LOFTEE) [6] 
can be used. LOFTEE is a plugin implemented in the Ensembl Variant Effect Predic-
tor (VEP) [7] that imposes stringent filtering criteria to annotate HC LoF variants, 
eliminates nonsense mutations that are unlikely to impact protein function, and 
excludes LoF variants that are enriched with annotation artifacts.

However, LoF variants discovery can also be used to predict single-copy losses (het-
erozygous LoF variants) that inactivate a single copy of a gene, or two-copy losses 
that completely knockout a gene. Two-copy losses can be caused by homozygous and 
compound heterozygous (CH) LoF variants. CH variants appear when parents both 
donate a LoF-causing allele that locates at different loci in the same gene [8]. There is 
mounting evidence that CH LoF variants have a role in complex diseases. For exam-
ple, both homozygous and CH LoF variants have been found to increase the risk of 
autism spectrum disorder [9, 10].

Current tools, such as LOFTEE and ALoFT, only annotate LoF variants and pro-
vide variant-level output [6, 11]. They do not identify genes and distinguish between 
single-copy and two-copy loss genes. Furthermore, the collection of available tools 
to identify and annotate LoF variants require in-depth computational skills imped-
ing the usage by scientists less skilled in bioinformatics. As far as we are aware, no 
user-friendly, automated bioinformatics pipeline exists to identify CH LoF variants, 
and single-copy and two-copy LoF genes, and that also provides the necessary input 
for downstream (association) analyses. The development of a bioinformatics pipeline 
that automatically parses the VEP-LOFTEE result files in a single workflow to the 
input required for downstream analyses, would democratize the use of LoF data to a 
broader range of biomedical scientists that would only require limited bioinformatic 
skills.

Here we present an open source tool, the Loss-of-Function ToolKit (LoFTK), which 
allows efficient and automated prediction of LoF variants and identifies genes that are 
inactive in one or two copies using genetic data derived through array-based genotyping 
imputed or whole-genome sequencing. LoFTK analyzes and parses genetic data in four 
steps as explained in the Implementation and depicted in Fig. 1; 1) Annotation of HC 
LoF variants from large-scale sequencing and array-based data using VEP and LOFTEE; 
2) Identification of one-copy loss and two-copy loss of genes by parsing the CSQ field 
for each HC LoF variant in the VCF file as generated by VEP-LOFTEE; 3) Generation of 
a summary data for LoF-wide association analyses; and 4) Creating a statistical report 
describing the total number of LoF variants (homozygous, heterozygous and CH), LoF 
genes (single-copy and two-copy loss), and the average, minimum and maximum num-
bers of LoF variants and genes per sample. LoFTK aids to bridge the divide between 
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computational scientists and wet-lab based trained biomedical scientists by simplifying 
the processing of VCF-based data to a useful format for downstream analyses in statisti-
cal tools like R.

Implementation
Main workflow

The LoFTK workflow consists of 4 analytical steps visualized in Fig.  1 and described 
below.

Preprocessing: conversion of IMPUTE2 to VCF

The first step depends on the input data formats. Two common file formats are permit-
ted as inputs; IMPUTE2 [12, 13] output format and the Variant Call Format (VCF). The 
input data has to contain phased genotypes for distinguishing compound heterozygotes 
from two variants on the same allele. LoFTK uses two quality metrics for imputed geno-
types: the imputation quality (info score) and imputed allele probability. The imputation 
quality contains values between 0 and 1, where higher values mean that a variant has 
been imputed with more certainty. Besides, imputation methods generate a probabilistic 

Fig. 1  The workflow of LoFTK pipeline. Four steps involved in LoFTK; (1) preprocessing from IMPUTE2 to VCF, 
(2) LoF annotation and vep.vcf.file creation, (3) filtering HC LoF variants and counting LoF variants and genes, 
and (4) descriptive analysis
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prediction of the missing genotypes, which stands for the likelihood of carrying geno-
types combinations of A/A, A/B, and B/B in a particular individual. The supreme esti-
mated genotype is the genotype that has the highest likelihood of being correct [14]. 
LoFTK has cut-off options to filter based on the optimal imputation quality metrics 
(Supplementary Material). After filtering, IMPUTE2 files are converted to VCF files. The 
VCF files that are generated from IMPUTE2 files or introduced directly by the user are 
applied as an input to the next step.

LoF annotation

The second step consists of annotation of LoF variants using VEP and LOFTEE. 
LOFTEE utilizes the Ensembl API framework to annotate HC LoF variants. LoFTK 
is highly customizable, with the ability to change VEP and LOFTEE flags in a con-
figuration file. We designed LoFTK to be capable of processing data with Homo 
sapiens (human) genome assemblies GRCh37 and GRCh38, and it can easily be 
upgraded to future genome builds. The VEP will return results as VEP VCF for-
mat, which is similar to the input VCF, but in addition shows LoF information in 
the INFO field, such as LoF flags and LoF filtering outcome (high-confidence or 
low-confidence).

Calculation of LoF variants and genes

From the VEP output, the HC LoF variants are filtered, followed by parallel deter-
mination of homozygous and heterozygous LoF variants (Table  2) and allele fre-
quencies, as well as the copy number loss (single-copy or two-copy) of LoF genes 
(Table 1). LoFTK recognizes CH LoF variants, which result in LoF genes with two 
copies losses. The LoF genes are extracted by parsing the CSQ field for each HC LoF 
variant in the VCF file that produced from the VEP. Optionally, LoFTK can be used 
to determine ‘mismatched genes’ between samples; these are genes that are active in 
one or two copies in one sample and completely inactive in the other sample. This 
feature helps study interactions between human genomes, for instance during preg-
nancy (maternal vs fetal genome) and after stem cell or solid organ transplantation 
(donor vs recipient genome).

Table 1  The output of predicted LoF variants from WES in UKBB. High-confidence LoF variants 
are listed in the first column, followed by their consequences in the second column. The third and 
fourth columns show frequencies of heterozygous and homozygous LoF variants, respectively. 
The rest of columns indicate the zygosity of LoF variants for each individual; 0 for not carrying LoF 
variant, 1 for heterozygous LoF variant and 2 for homozygous LoF variant

SNP_ID Consequence heterozygous_
LoF_frequency

homozygous_
LoF_frequency

Sample 1 Sample 2 Sample 3

chr19_52300416_CT_C frameshift_variant 0.386 0.539 1 1 2

chr7_21543345_G_T stop_gained 0.499 0.250 0 1 1

chr10_72508273_T_C splice_accep‑
tor_variant

0.425 0.450 2 1 0

chr1_3602477_AC_A frameshift_variant 4.98E-06 0 1 0 0

chr7_21543345_G_T stop_gained 0.499 0.250 0 2 1
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Descriptive analysis

Finally, descriptive statistics of LoF variants are calculated, such as the total number of 
LoF variants, number of single-copy and two-copy LoF genes, and median of LoF vari-
ants per participant.

Imputation quality threshold

The imputed genotype data provides two quality metrics: the INFO score and the imputed 
alleles probability. UK Biobank (UKBB) was used as the gold standard for determining the 
optimal quality metrics for obtaining the most genuine LoF variants from imputed genotypes 
data. We retrieved whole exome sequencing (WES) and array genotypes data from 4,476 ran-
domly selected UKBB participants. Both data were phased using SHAPEIT2 [15] and array 
genotypes were imputed by IMPUTE2 [12, 13]. A combined reference panel from the 1000 
Genome project phase 3 [4] and Genome of the Netherlands (GoNL) study [16] was used for 
phasing and imputation. We used LoFTK for LoF analysis in phased WES and three data-
sets of variants in imputed genotypes data. These subsets were divided based on variants with 
INFO scores above: 0.3, 0.6, 0.9. for each individual, predicted LoF variants in the WES were 
compared to LoF variants in each subset with considering the imputed allele probabilities 
ranging from 0.01 to 0.1 for that variant (Supplementary Fig. 1), in order to count the number 
of false negatives (average of LoF variants predicted in WES data but not in imputed data) and 
false positives (average of LoF variants predicted in imputed data but not in WES data).

Validity of predicted CH LoF in trios

LoFTK is capable of annotating CH LoF variants, which introduce two inactive cop-
ies of a gene. To confirm the transmission of genuine CH LoF variants from parents 
to probands, we used trio-family genotype data from the Genome of the Netherlands 
(GoNL) cohort (Illumina Immunochip microarray SNP data) [16]. We performed a qual-
ity control step as preprocessing filtrations to impute genotypes data (Supplementary 
Material). We used the TOPMed imputation server [17] to impute untyped variants in 
760 individuals from 250 families. LoFTK predicted LoF variants from imputed geno-
types and we investigated transmission of CH LoF variants from parents to offspring.

Exome sequences in UKBB

UKBB data were made available under the North West Multi-centre Research Ethics 
Committee (reference 11/NW/0382). UKBB data used in this study were obtained under 
application number 24711. We applied LoFTK on exome sequences of 200,643 UKB par-
ticipants that were released in October 2020 [18]. We filtered participants exome data 
restricted to unrelated homogeneous white British population (Field IDs: 22,018 and 
22,006) and removed singleton variants (MAC < 2). We phased exomes genotypes of 
166,991 homogeneous white British participants using Eagle2 [19] followed by LoFTK 
analysis in order to identify CH knockout genes. Several genes were selected as positive 
controls that known to be associated with specific traits in UKBB [20]. We tested the 
association between these LoF genes and traits using linear regression for quantitative 
data and logistic regression for binary data with age, sex, and principal components 1–16.
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Results and discussion
LoFTK software

LoFTK is a command-line tool that provides a robust computational workflow pipe-
line for predicting LoF variants from array-based (genotyped or imputed) and sequenced 
genomes, discovering genes that are inactive in 1 or 2 copies. LoFTK was developed 
using Perl and BASH scripting languages which make the code easily understandable, 
modifiable and extendable when needed. Instructions on how to install and run LoFTK 
as well as example datasets are publicly available at https://​github.​com/​Circu​lator​yHeal​
th/​LoFTK. The code-setup of LoFTK is such that it is highly customizable through 
options and directories settings explained in the LoF.config file and GitHub README. It 
is designed to run as a command line program with user-friendly flags, which helps non-
experts users to get quickly familiarized. LoFTK requires pre-installed tools, including 
BASH and Perl (> = version 5.10.1) which are commonly installed on Linux-based sys-
tem, and the more specialized tools Ensembl VEP (https://​github.​com/​Ensem​bl/​ensem​
bl-​vep) and LOFTEE (https://​github.​com/​konra​djk/​loftee) which both come with exten-
sive installation documentation. We tested LoFTK on a computer cluster using CentOS 
7 and managed by SLURM or SGE.

Generation of LoF variants and genes

LoFTK uses the information present in large-scale sequencing and genotyping data 
to generate four files; two matrices of LoF variants and their respective genes, a list of 
LoF variants allele frequencies, and a report with descriptive statistics on the variants 
and genes. In the LoF variants matrix, the variants are represented as rows, and indi-
viduals are represented as columns. Each matrix’s cell contains a number that represents 
the homozygous or heterozygous status of a given LoF variant for a given individual 
as shown in Table  1. Similarly, the columns in the LoF genes matrix define individu-
als except the rows represent the LoF genes, and each number in the matrix cell indi-
cates that either the gene has no copy loss (0), single-copy loss (1) or two-copy loss (2) 
(Table  2). The frequencies in both matrices represent the frequency of heterozygous 
and homozygous LoF variants among the provided samples (Table 1), as well as the fre-
quency of one-copy and two-copy LoF genes (Table 2). Finally, LoFTK generates infor-
mation file with “.info” extension to show descriptive statistical report for predicted LoF 
variants and genes, such as the total LoF variants and genes, total heterozygous and 
homozygous LoF variants, total single-copy and two-copy LoF genes, and median of LoF 
variants and genes per participant.

Imputation quality cut‑off points

We assessed imputation quality metrics for obtaining the most genuine LoF variants in 
imputed genotype data by comparing existence of each predicted LoF variant between 
WES and three imputed datasets (INFO > 0.3, 0.6, 0.9) with considering the imputed 
allele probability cutoffs between 0.01 to 0.1 (see Sect. 2.2.).

LoFTK analysis for imputed dataset with INFO > 0.9 shows an optimal prediction of 
true LoF variants, because it has less false positive 2-copy LoF variants compared to 
the others (0.3 and 0.6) (Supplementary Fig. 1). However, choosing an optimal imputed 
allele probability was difficult due to the lack of apparent variations.

https://github.com/CirculatoryHealth/LoFTK
https://github.com/CirculatoryHealth/LoFTK
https://github.com/Ensembl/ensembl-vep
https://github.com/Ensembl/ensembl-vep
https://github.com/konradjk/loftee
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CH LOF variants in trios

CH LoF variants occur when both parents donate a single LoF allele to proband at dis-
tinct loci within the same gene. We used trio-families from the GoNL [16] to evaluate 
the accuracy of obtaining two inactive copies in genes caused by CH LoF variants (see 
Sect. 2.3.).

We predicted LoF variants and genes in 250 families’ imputed genotypes (760 indi-
viduals). We found 642 LoF variants affecting 571 genes (Table 3). In 164 probands, we 
identified 250 events of CH LoF variants producing 2-copy LoF genes. There were 240 
(96%) true transmissions of CH LoF in parent-offspring, whereas there were 10 false 
transmissions.

LoF variants and genes in ~ 200 K exomes from UKBB

We predicted LoF variants and genes in unphased exomes of 200,643 participants 
(mixed populations). We identified 398,377 heterozygous LoF variants affecting 17,796 
genes and 2,383 homozygous LoF variants affecting 1,798 genes. Next, to determine CH 
variants, we phased exomes of 166,991 homogenous, unrelated white British individu-
als and found 16,464 1-copy LoF genes and 1,510 2-copy LoF genes. Of the 2-copy LoF 
genes, 481 were caused by homozygous variants only, 307 by CH variants only, and 722 
by both homozygous and CH variants. To prove that we correctly identified homozygous 

Table 2  The output of predicted LoF genes from WES in UKBB. This table shows the predicted LoF 
gene ID and symbol in columns 1 and 2, respectively. The third column represents the frequency of 
single-copy loss gene, while the fourth represents the frequency of two-copy losses gene. The rest 
of columns indicate the number of copy losses for each individual; 0 for not carrying LoF gene, 1 for 
sigle-copy LoF gene and 2 for two-copy LoF genes

gene_ID gene_symbol 1_copy_LoF_
frequency

2_copy_LoF_
frequency

Sample 1 Sample 2 Sample 3

ENSG00000198464 ZNF480 0.388 0.535 2 1 1

ENSG00000105877 DNAH11 0.502 0.251 1 0 1

ENSG00000152936 IFLTD1 0.013 0 0 1 0

ENSG00000039537 C6 4.47E-04 2.23E-04 0 0 0

ENSG00000221938 OR2A14 0 2.23E-04 0 0 0

Table 3  Predicted LoF variants and genes in the GoNL. LoF genes column shows numbers of total 
LoF genes, one copy inactive genes (1-copy) and two copies inactive genes (2-copy). LoF variants 
shows total number of predicted LoF variants, heterozygous and homozygous variants

LoF genes LoF variants

Total 571 642

1-copy 571 -

2-copy 196 -

Median 1-copy per individual 49 -

Median 2-copy per individual 21 -

Heterozygous - 641

Homozygous - 213

Median heterozygous per individual - 54

Median homozygous per individual - 21
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and CH LoF genes, we examined nine LoF genes (as positive controls) that are known to 
be associated with specific traits. All of them showed a significant association and the 
expected direction of effect (Supplementary Table 2).

Limitations

Some limitations of the current LoFTK version should be considered: LoFTK relies on 
preexisting methods for phasing, imputation, genotype calling, and variant effect predic-
tion, which means results can be affected by errors generated by these software. Errors 
rate varies from one sequencing platform to another in the variant calling step, making 
it difficult to predetermine error rates. Lastly, predicting LoF variants and genes from 
unphased data will not allow the detection of CH LoF variants, which means users will 
have to input phased data to make full use of LoFTK.

Conclusions
Prediction of LoF variants and genes provide important insight into the discovery of 
possible disease-causing mutations and potential therapeutic targets. LoFTK is easy to 
use and helps users to predict LoF variants from genotyped and sequenced genomes, 
identifying genes that are inactive in 1 or 2 copies, and providing summary statistics 
report describing the total number of LoF variants, LoF genes, and their average, mini-
mum and maximum per sample. LoFTK is highly customizable and extra features for 
the identification of knockout genes in copy number variation (CNV) and predicting the 
pathogenicity of predicted LoF variants can be easily added.
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