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Introduction
During gene expression, the information encoded in a gene is used for the synthesis of a 
protein or of another functional gene product. In biological sciences, gene expression is 
considered as the activity of a gene: the higher its expression, the more active the gene.

The measurement of gene expression is called gene expression profiling, and can be 
performed through several techniques and technologies, including DNA microarrays. A 
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indicated an association between the signature genes and a protein-protein interac-
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both of them.
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microarray is a grid of microscope slides with thousands of tiny spots in defined posi-
tions, with each spot containing a known DNA sequence or gene [1].

Since microarrays can be generated through multiple different techniques, each gene 
expression dataset is associated to a particular platform on which the gene expression 
was measured. Each microarray platform has its own gene expression coordinates for 
the positions of the genes in the genome. These coordinates are indicated by probesets, 
that are sets of fragments of DNA known as hybridization probes [2]. Each microarray 
platform therefore has its own probeset system, which is usually incompatible with the 
probeset system of other platforms. Only platforms of the same brand can have com-
patible probesets between each other, and this the is case of the Affymetrix platforms 
GPL96, GPL97, and GPL570, for example.

In most of the cases, a probeset corresponds to one specific gene symbol. A gene sym-
bol, instead, can be related to multiple probesets. This aspect represents a problem in 
bioinformatics: given a gene symbol alone, it is impossible to know to which probeset of 
a specific platform it refers. On the contrary, given a probeset and a platform, it is always 
possible to identify the related gene symbol.

To alleviate this problem, Qiyuan Li and colleagues [3] recently released Jetset, a bioin-
formatics tool that associate a probeset to its most likely gene symbols for some specific 
platforms. Even if useful, this tool does not completely solve the probeset-gene associa-
tion problem.

Even though most of scientific studies still rely on gene symbols, an article by 
Li  Li  et  al.  [4] showed that using different probesets related to the same gene symbol 
would lead to different results, and advocated for the usage of probesets instead of gene 
symbols in bioinformatics analyses. We agree with that approach and decided to build 
our whole analyses on probesets rather than gene symbols.

Genetic signatures Groups of particular of genes together can have an important role 
in the characterization of diseases; these groups of genes are usually called a genetic sig-
natures. When a signature can be used to differentiate patients from healthy controls, it 
is called a diagnostic signature. When a signature can be employed to differentiate sur-
vived patients from deceased patients, instead, it is called prognostic signature. Here we 
focus on the latter kind.

Cancer affects around 20 million people and causes approximately 10 million deaths 
globally each year [5], and the study of potential cancer signatures has been widespread 
in bioinformatics research worldwide. In the past, prognostic signatures have been used 
for specific cancer types, such as lung cancer [6] and breast cancer [7].

Here, instead, we propose a prognostic pan-cancer signature able to identify surviv-
ing patients and death-risk patients on gene expression datasets of any possible cancer 
types. In fact, an analysis done on multiple cancer types is called pan-cancer [8].

Several researchers already proposed pan-cancer signatures and pan-cancer studies in 
the past. Jia  and  colleagues  [9], for example, investigated the role of a gene signature 
related to the COL11A1 gene for the identification of pan-cancer associated fibroblasts. 
Xu et al. [10] proposed a 154-gene expression pan-cancer signature derived from a tran-
scriptome data analysis.

In another study, de  Almeida  and  coauthors  [11] proposed a centrosome ampli-
fication-related signature for clinical outcome across different cancer types. 
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Izzi and colleagues [12] analyzed matrisome data of the extracellular matrix (ECM) 
to propose 29 cancer types-specific signatures. Data from the ECM were used 
by Yu  and  colleagues  [13] as well to propose a 5-gene pan-cancer signature for 
prognosis.

Luo  et  al.  [14] analyzed telomerase reverse transcriptase (TERT) activation data 
from The Cancer Genome Atlas (TCGA) to propose a TERThigh-specific mRNA 
expression signature for multiple cancer types.

Yuanyuan Li and coauthors [15] analyzed RNA-Seq data of the The Cancer Genome 
Atlas to detect a 20-gene pan-cancer signature for survival prediction. More recently, 
Nagy et al. [16] analyzed the same data to detect an 8-gene pan-cancer signature.

A list of prognostic genes for a specific disease can be found not only through gene 
expression, but by also integrating multi-omics data. Zhou  et  al.  [17], for example, 
applied deep machine learning models to data of gene expression, copy number alter-
ations  (CNAs), and messenger RNA  (mRNA) and detected 12 prognostic genes for 
breast cancer [17].

A genetic signature can be applied to a bioinformatics dataset mainly in two ways: 
through statistics survival models  [13, 16] or supervised machine learning mod-
els [10–12, 14, 15]. Our approach belongs to the latter group: in our analysis, in fact, 
we employed the Random Forests [18] ensemble machine learning method. Random 
Forests resulted being effective in numerous computational biology studies  [19] and 
on gene expression data in particular [20].

Our proposed pan-cancer prognostic signature In this study, we propose a pan-
cancer prognostic signature merged from 5 already-existing cancer type-specific 
prognostic signatures available in the literature  (breast cancer, lung cancer, prostate 
cancer, colon cancer, and neuroblastoma).

Three aspects make our proposed pan-cancer signature an effective tool for progno-
sis on gene expession data: (i) The usage of probesets instead of gene symbols; (ii) The 
207 probesets derived from 5 different signatures related to a different cancer type; 
(iii) The application of the signature with Random Forests.

We applied our proposed pan-cancer prognostic signature on 57 gene expression 
datasets publicly available on GEO, made of 12 different cancer types. Moreover, to 
better understand the roles and the functions of the genes of our proposed signature, 
we then employed a gene set enrichment tool and a protein-protein interaction analy-
sis tool, and elaborated their results [21].

Our results confirm the predictive power of our proposed pan-cancer prognostic 
signature, and the functional validation task unveiled relevant information about the 
signature genes, that can pave the way for further studies on this topic.

This study We organize the result of this study this way. After this Introduction, 
we describe the 5 original cancer type-specific signatures that we used to generate 
our pan-cancer signature and the 57 datasets we employed for testing  (Section  2). 
We then describe the machine learning method we used to predict the survival of 
the patients and the network and pathway analysis techniques we employed for 
functional validation  (Section  3), and the results obtained in these two steps  (Sec-
tion 4). Lastly, we outline some conclusions about these study and its potential future 
developments (Section 5).
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Datasets
In this section, we first explain how we retrieved the gene expression cancer datasets 
we employed in our study (Section 2.1) and then we describe how we generated our 
proposed pan-cancer signature (Section 2.2).

Gene expression data of multiple cancer types

We collected gene expression datasets of the most common cancer types  [5] from 
Gene Expression Omnibus  (GEO) through Bioconductor  [22, 23] packages such as 
GEOquery [24] and BioMart [25]. We selected only the prognostic datasets, that are 
the ones which include a feature about the status of the patient: alive or deceased. 
We filtered in only the datasets derived from platforms compatible with our pan-
cancer signature probesets, that are Affymetrix Human Genome U133 platforms HG-
U133A (GPL96), HG-U133B (GPL97), or HG-U133 Plus 2 (GPL570).

For this scope, we developed a Perl script [26] that retrieved 57 different prognos-
tic cancer datasets: 17 of breast cancer, 13 of lung cancer, 10 of colorectal cancer, 5 
of lymphoma, 4 of leukemia, 2 of multiple myeloma, and 1 of adrenocortical cancer, 
bladder cancer, neuroblastoma, ovarian cancer, skin cancer, and stomach cancer.

We included the 11 most common cancer types, plus a rare children cancer, neu-
roblastoma, to verify both the universal effectiveness of our pan-cancer signature in 
most cancer types and in one specific rare disease. We wanted to include a dataset of 
prostate cancer, but we could not find any prognostic one compatible with the GPL96, 
GPL97, or GPL570 platforms unfortunately.

We reported all the information and the quantitative characteristics of these data-
sets in Table 1.

Our pan‑cancer signature

To generate our proposed pan-cancer prognostic signature, we joined five different 
prognostic signatures available in the scientific literature. Each of these five signatures 
was proposed for a specific cancer type, and its probesets are compatible with the 
GPL96, GPL97, and GPL570 Affymetrix platforms.

In particular, the five known prognostic signatures contribute to our pan-cancer 
signature this way (Fig. S1):

• The sigCangelosi2020 signature for neuroblastoma, with 9 probesets  (Table 
S1) [27] contributes to our pan-cancer signature for 4.33%;

• The sigChen2012 signature for prostate cancer, with 7 probesets  (Table S1)  [28] 
contributes to our pan-cancer signature for 3.37%;

• The sigGyorffy2013 signature for lung cancer, with 15 probesets  (Table S1)  [29] 
contributes to our pan-cancer signature for 7.21%;

• The sigHallett2012 signature for breast cancer, with 14 probesets  (Table S1)  [30] 
contributes to our pan-cancer signature for 6.73%;
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Table 1 List of gene expression datasets employed in our analysis, sorted by cancer type

dataset name GEO code cancer type neg# pos# samples# neg% pos%

1 dataHeaton2011 GSE33 371 adrenocortical cancer 16 7 23 69.57 30.43

2 dataReister2012 GSE31 684 bladder cancer 38 27 65 58.46 41.54

3 dataDedeurwaerder2011 GSE20 711 breast cancer 63 25 88 71.59 28.41

4 dataDesmedt2007 GSE73 90 breast cancer 141 56 197 71.57 28.43

5 dataHatzis2009 GSE25 066 breast cancer 152 45 197 77.16 22.84

6 dataHuang2014 GSE48 390 breast cancer 11 69 80 13.75 86.25

7 dataIvshina2006 GSE49 22 breast cancer 160 89 249 64.26 35.74

8 dataJezequel2015 GSE58 812 breast cancer 29 77 106 27.36 72.64

9 dataKarn2011 GSE31 519 breast cancer 22 41 63 34.92 65.08

10 dataKim2020 GSE13 5565 breast cancer 7 76 83 8.43 91.57

11 dataLin2009 GSE19 697 breast cancer 6 17 23 26.09 73.91

12 dataLoi2008 GSE91 95 breast cancer 63 13 76 82.89 17.11

13 dataMetzgerFilho2016 GSE88 770 breast cancer 19 97 116 16.38 83.62

14 dataMiller2013 GSE45 255 breast cancer 116 18 134 86.57 13.43

15 dataSabatier2010 GSE21 653 breast cancer 168 83 251 66.93 33.07

16 dataSchmidt2008 GSE11 121 breast cancer 154 45 199 77.39 22.61

17 dataSinn2019 GSE12 4647 breast cancer 43 96 139 30.94 69.06

18 dataWang2010 GSE19 615 breast cancer 14 100 114 12.28 87.72

19 dataYenamandra2015 GSE61 304 breast cancer 38 20 58 65.52 34.48

20 dataBeauchamp2014 GSE38 832 colorectal cancer 28 93 121 23.14 76.86

21 dataChen2020 GSE16 1158 colorectal cancer 145 59 204 71.08 28.92

22 dataDelRoi2017 GSE72 970 colorectal cancer 32 91 123 26.02 73.98

23 dataGotoh2018 GSE92 921 colorectal cancer 53 5 58 91.38 8.62

24 dataMarisa2013 GSE39 582 colorectal cancer 384 194 578 66.44 33.56

25 dataShinto2020 GSE14 3985 colorectal cancer 75 15 90 83.33 16.67

26 dataSieber2010 GSE14 333 colorectal cancer 50 176 226 22.12 77.88

27 dataSmith2009a GSE17 536 colorectal cancer 73 103 176 41.48 58.52

28 dataSmith2009b GSE17 537 colorectal cancer 20 34 54 37.04 62.96

29 dataStaub2009 GSE12 945 colorectal cancer 12 49 61 19.67 80.33

30 dataHerold2011 GSE22 762 leukemia 26 17 43 60.47 39.53

31 dataHerold2013 GSE37 642 leukemia 307 109 416 73.80 26.20

32 dataMetzeler2018 GSE12 417 leukemia 103 59 162 63.58 36.42

33 dataSpivak2014 GSE47 018 leukemia 7 13 20 35.00 65.00

34 dataBild2005 GSE31 41 lung cancer 57 53 110 51.82 48.18

35 dataBotling2012 GSE37 745 lung cancer 144 51 195 73.85 26.15

36 dataHeiskanen2015 GSE68 465 lung cancer 236 207 443 53.27 46.73

37 dataKohno2011 GSE31 210 lung cancer 35 191 226 15.49 84.51

38 dataMicke2011 GSE28 571 lung cancer 52 47 99 52.53 47.47

39 dataPhilipsen2010 GSE19 188 lung cancer 49 32 81 60.49 39.51

40 dataPintilie2013 GSE50 081 lung cancer 75 105 180 41.67 58.33

41 dataPotti2006 GSE35 93 lung cancer 54 143 197 27.41 72.59

42 dataRousseaux2013 GSE30 219 lung cancer 199 93 292 68.15 31.85

43 dataSon2007 GSE88 94 lung cancer 68 69 137 49.64 50.36

44 dataTsao2010 GSE14 814 lung cancer 60 72 132 45.45 54.55

45 dataXie2011 GSE29 013 lung cancer 18 36 54 33.33 66.67

46 dataZChen2020 GSE15 7011 lung cancer 219 264 483 45.34 54.66

47 dataIqbal2015 GSE58 445 lymphoma 76 50 126 60.32 39.68

48 dataKawaguchi2012 GSE34 771 lymphoma 23 10 33 69.70 30.30

49 dataLeich2009 GSE16 131 lymphoma 91 88 179 50.84 49.16

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33371
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20711
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7390
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48390
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4922
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58812
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31519
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135565
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19697
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9195
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88770
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45255
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21653
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11121
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124647
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19615
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61304
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38832
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161158
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72970
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92921
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143985
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14333
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17536
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17537
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12945
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22762
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37642
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12417
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47018
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3141
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68465
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28571
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19188
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3593
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8894
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14814
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29013
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157011
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58445
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34771
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16131
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• The sigVanLaar2010 signature for colon cancer, with 163 probesets  (Table S2, 
Table S3, Table S4, and Table S5) [31, 32] contributes to our pan-cancer signature 
for 78.37%.

As one can notice, the sigVanLaar2010 colon cancer signature makes a large part of our 
signature. We decided to include signatures of common cancer types (lung cancer, breast 
cancer, colon cancer, and prostate cancer) plus a signature of a rare cancer (neuroblas-
toma) because we wanted to create a prognostic signature that could work effectively 
both on common cancer types and on rare cancer types.

The first step we did was to check the probesets and genes shared by multiple source 
signatures and therefore present multiple times in our aggregate pan-cancer signa-
ture. We used geneExpressionFromGEO  [33], and BioGPS  [34] for the probeset-gene 
annotations.

Our proposed pan-cancer signature contains the probeset 203072_at (MYO1E gene 
ENSG00000157483, myosin IE) [35, 36] that is present twice in our signature because it 
is located both in the sigVanLaar2010 signature for colorectal cancer and in the sigHal-
lett2012 signature for breast cancer.

Our proposed signature contains 207 unique probesets related to 187 unique gene 
symbols in total. Some gene symbols occur multiple times:

• 3 gene symbols appear four times (CTSB, FN1, and TM4SF1);
• 7 gene symbols appear three times (ANXA2, CD55, DUSP6, KLF6, PLAUR, RPL3, 

and RPL3P4);
• 17 gene symbols appear twice  (APOE, BGN, C10orf99, CD59, CH507-513H43, 

CH507-513H44, CH507-513H46, DNAJA3, IGFBP3, IRS2, NNMT, PDK1, PGK1, 
PRDX5, TMBIM4, TNFRSF21, VCAN, and VEGFA9);

• All the other gene symbols appear only once.

All these datasets are based on the GPL96, GPL97, or GPL570 Affymetrix platforms and were downloaded from Gene 
Expression Omnibus (GEO) in April and May 2021.Positive sample: survived patient diagnosed with cancer. Negative sample 
deceased patient diagnosed with cancer. pos# number of positive samples in the dataset. neg# number of negative samples 
in the dataset. pos% percentage of positive samples in the dataset. neg% percentage of negative samples in the dataset. 
These prognostic datasets refer to 12 different cancer types: 17 breast cancer datasets, 13 lung cancer datasets, 10 colorectal 
cancer datasets, 5 lymphoma datasets, 4 leukemia datasets, 2 multiple myeloma datasets, 1 dataset for adrenocortical 
cancer, bladder cancer, neuroblastoma, ovarian cancer, skin cancer, and stomach cancer

Table 1 (continued)

dataset name GEO code cancer type neg# pos# samples# neg% pos%

50 dataLenz2008 GSE10 846 lymphoma 165 249 414 39.86 60.14

51 dataVanLoo2009 GSE77 88 lymphoma 6 9 15 40.00 60.00

52 dataMulligan2007 GSE97 82 multiple myeloma 103 160 263 39.16 60.84

53 dataShi2010 GSE24 080 multiple myeloma 78 480 558 13.98 86.02

54 dataHiyama2009 GSE16 237 neuroblastoma 11 39 50 22.00 78.00

55 dataUehara2015 GSE65 986 ovarian cancer 6 48 54 11.11 88.89

56 dataBogunovic2009 GSE19 234 skin cancer 20 23 43 46.51 53.49

57 dataPasini2021 GSE38 749 stomach cancer 9 5 14 64.29 35.71

average 77.70 79.68 157.39 48.29 51.71

median 53 56 121 49.64 50.36

minimum 6 5 14 8.43 8.62

maximum 384 480 578 91.38 91.57

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16237
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65986
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19234
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38749
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We report our pan-cancer signature in the Supplementary information (Table S1, Table 
S2, Table S3, Table S4, and Table S5).

Methods
In this section, we first describe how we applied ensemble machine learning for the 
prediction of the survival (Section  3.1), and then we report the methods we used for 
the protein-protein network and pathway analysis of our pan-cancer signature genes 
(Section 3.2).

Survival prediction through machine learning

In our survival prediction, we first selected the probesets of a specific signature and the 
survived/deceased label on each gene expression dataset, and we then applied Random 
Forests  [18] for binary classification. Random Forests is an ensemble machine learn-
ing method based on decision trees: at each execution, it selects random subsets of the 
training set (randomly picking some features and some data elements), and trains a deci-
sion tree on each of these subsets. At the end of the execution, Random Forests applies 
each of these decision trees, which generate a binary response. Random Forests eventu-
ally applies a majority vote to these responses: if most of these decision trees generated a 
true outcome, Random Forests will return a true outcome; if most of these decision trees 
produced a false outcome instead, Random Forests will return a false results too.

Since it is known that changes in the hyper-parameters of Random Forests do not sig-
nificantly affect results when the method is applied to small datasets [37], we used the 
default values of the R method, with 500 trees to grow [38].

In this phase we employed traditional best practices for machine learning, by splitting 
the data into training set (80% of the patients, randomly selected) and test set (remain-
ing 20%) [39, 40]. For imbalanced dataset, with one of the two classes greater than 70%, 
we applied the ROSE oversampling technique [41]. We measured the results on the test 
set with several confusion matrix rates, focusing on the Matthews correlation coeffi-
cient (MCC) [42], since it is more informative than other scores [43–47]. To avoid hav-
ing results due to a particular configuration of the training set and of the test set, we 
repeated the execution of Random Forests 100 times, and reported the average results 
obtained for each statistic.

Moreover, we also applied several alternative methods to Random Forests: Cat-
Boost  [48], lightGBM  [49], k-Nearest Neighbors  [50], and Decision Tree  [51]. Since 
Random Forests obtained better average MCC results than the other algorithms (Sup-
plementary File S4), we decided to base our study on Random Forests.

Network and pathway analysis

To better understand the biological functions associated to our pan-cancer signature, 
we employed g:Profiler g:GOSt  [52], an online web tool for functional enrichment 
analysis [29, 53]. g:Profiler g:GOSt reads in a list of genes and associates functions and 
pathways from several bioinformatics databases, such as the Gene Ontology  (GO), 
WikiPathways (WP), and the Human Protein Atlas (HPA). g:Profiler g:GOSt associates a 
p-value to each term annotated to the input gene list. We used its g:SCS significance algo-
rithm with 0.005 as significance threshold, as suggested by Benjamin and colleagues [54].
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Knowledge about the function and the behavior of the genes of our pan-cancer sig-
nature can come from their protein-protein interactions (PPIs), too. For this reason, we 
looked for the protein-protein interactions associated to our pan-cancer signature on 
the STRING [55] database. We decided to use only the real, physical interactions pro-
vided by STRING, with confidence threshold 0.4, and to discard the predicted interac-
tions. This way, we can focus only on the real, existing protein-protein interactions, with 
a high level of confidence regarding our scientific discoveries.

For network analysis, we used experimentally detected physical protein-protein 
interactions (PPIs) obtained from the Integrated Interactions Database (IID, June 2021 
version)  [56]. For pathway enrichment analysis we used two pathway sets from path-
DIP (version 4) [57], core and extended pathways (predictions based on experimentally 
detected physical connectivity of proteins with pathway members at an association-
score 0.95 and higher).

Results
In this section, we first report and describe the results on the survival prediction 
obtained by our pan-cancer signature (Section 4.1), and the results obtained through the 
functional validation of the genes of our pan-cancer signature (Section 4.2).

Survival prediction on all the datasets

Our prognostic pan‑cancer signature

 We applied our pan-cancer signature with several machine learning methods: Random 
Forests, CatBoost, lightGBM, k-Nearest Neighbors, and Decision Tree. Among them, 
Random Forests obtained the highest average Matthews correlation coefficient (MCC) 
on average, and therefore we highlighted this method’s results. We list the results 
obtained with CatBoost, lightGBM, k-Nearest Neighbors, and Decision Tree in Supple-
mentary File S4.

We report the results obtained by our prognostic signature with Random Forests on 
the 57 datasets in Table 2 and Fig. 1. Our pan-cancer signature achieved at least a suf-
ficient score among the employed rates (MCC, F 1 score, accuracy, sensitivity, specificity, 
precision, negative predictive value, PR AUC, and ROC AUC) on 55 out of 57 data-
sets (all except the dataMicke2011 and dataLeich2009 datasets).

As expected, our signature achieved its best results among the colon cancer datasets, 
with 6 datasets out of 10 where the MCC is above +0.2. Our proposed signature obtained 
good MCC results also on the single datasets of neuroblastoma, skin cancer, and stomach 
cancer. It was able to generate good predictions measured with MCC on 2 leukemia data-
sets out of 4. Overall, regarding the Matthews correlation coefficient, our pan-cancer sig-
nature obtained sufficient results on 19 datasets out of 57, corresponding to the 33.33%.

Regarding sensitivity, our prognostic signature obtained sufficient results (TPR > 
0.6) on 58.18% of the datasets, confirming its capability to recognize survived patients 
with cancer in the gene expression datasets. Our signature, however, obtained sufficient 
results for specificity only on 21.82%, showing that it is not well performing when clas-
sifying deceased patients with cancer.

We also computed the precision-recall curve AUC and the ROC curve AUC to 
evaluate the performances when no confusion matrix threshold is provided. Our 
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Fig. 1 Barcharts of the average results obtained by our pan-cancer signature on each cancer type. 
Adrenocortical cancer: results on the dataHeaton2011 dataset. Bladder cancer: results on the dataReister2012 
dataset. Breast cancer: average results on 18 breast cancer datasets. Colorectal cancer: average results on 11 
colorectal cancer datasets. Leukemia: average results on 5 leukemia datasets. Lung cancer: average results on 
14 lung cancer datasets. Lymphoma: average results on 6 lymphoma datasets. Multiple myeloma: average 
results on 3 multiple myeloma datasets. Neuroblastoma: results on the dataHiyama2009 dataset. Ovarian 
cancer: results on the dataUehara2015 dataset. Skin cancer: results on the dataBogunovic2009 dataset. 
Stomach cancer: results on the dataPasini2021 dataset. We reported the complete suvival prediction results 
in Table 2. normMCC: normalized Matthews correlation coefficient (normMCC = (MCC + 1)/2 ). TPR: true 
positive rate, sensitivity, recall. TNR: true negative rate, specificity. PPV: positive predictive value, precision. NPV: 
negative predictive value. PR: precision recall curve. ROC: receiver operating characteristic curve. AUC: area 
under the curve. normMCC, F 1 score, accuracy, TPR, TNR, PPV, NPV, PR AUC, and ROC AUC have worst value 0 
and best value 1. The formulas of MCC, F 1 score, accuracy, TPR, TNR, PPV, NPV, PR AUC and ROC AUC can be 
found in the Supplementary information. We report additional information about these datasets in Table 1
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pan-cancer signature obtained sufficient scores for the PR AUC and the ROC AUC on 
almost 60% of the datasets, confirming its predictive power.

Among the rankings generated with all the employed rates (Fig. 1), four cancer types 
result being among the first four positions on average: neuroblastoma, stomach cancer, 
skin cancer, and colorectal cancer. Our prognostic signature obtained more sufficient 
results on multiple rates on the datasets of these cancer types.

Other cancer type‑specific signatures and pan‑cancer signatures

 To further verify the predictive efficacy of our prognostic pan-cancer signature, we 
applied each original cancer type-specific signatures with Random Forests to each can-
cer type-specific dataset, and compared its results with the results obtained by our pan-
cancer signature. We measured the results with the Matthews correlation coefficient.

Our pan-cancer signature outperformed the sigVanLaar2010 signature on 9 colon can-
cer datasets out of 10 (all except the dataSmith2009a dataset).

Our prognostic pan-cancer signature also defeated the sigHallett2021 signature on 13 
breast cancer datasets out of 17 (all except the dataSinn2019, dataKarn2011, dataLin2009, 
and dataMetzgerFilho2018 dataset). Our proposed pan-cancer signature outplayed the sig-
Gyorffy2013 signature on 7 lung cancer datasets out of 13 (all except the dataPhilipsen2010, 
dataRousseaux2013, dataSon2007, dataTsao2010, dataXie2011, dataZChen2020 dataset).

However, our prognostic pan-cancer signature was outperformed by the sigCan-
gelosi2020 signature on the only neuroblastoma dataset. We do not have prognostic 
datasets of prostate cancer unfortunately so we cannot test the sigChen2012 signature 
singularly.

Table 3 Pathways associated to our pan-cancer signature genes

List of pathways enriched with genes mapped to the probesets in the combination signature. Enrichment analysis was done 
using pathDIP (core pathways). p‑value: probability value of the association. q‑value: minimum false discovery rate at which 
the test may be considered significant [63]

q‑value q‑value
source pathway name p‑value (FDR) (Bonferroni)

WikiPathways Photodynamic therapy-induced 1.05× 10
−7

1.82× 10
−4

1.82× 10
−4

HIF-1 survival signaling

WikiPathways Androgen receptor signaling 4.43× 10
−5

1.54× 10
−2

7.67× 10
−2

PID Direct p53 effectors 1.93× 10
−5

1.67× 10
−2

3.34× 10
−2

REACTOME Extracellular matrix organization 3.97× 10
−5

1.73× 10
−2

6.90× 10
−2

PID HIF-2-alpha transcription factor network 3.19× 10
−5

1.85× 10
−2

5.54× 10
−2

PID Beta1 integrin cell surface interactions 7.02× 10
−5

2.03× 10
−2 1.22× 10

−1

PID Beta3 integrin cell surface interactions 9.88× 10
−5

2.45× 10
−2 1.72× 10

−1

WikiPathways Primary Focal Segmental 1.15× 10
−4

2.48× 10
−2 1.99× 10

−1

Glomerulosclerosis FSGS

PID Alpha9 beta1 integrin signaling events 1.31× 10
−4

2.52× 10
−2 2.27× 10

−1

REACTOME ECM proteoglycans 2.01× 10
−4

3.18× 10
−2 3.50× 10

−1

KEGG MicroRNAs in cancer 1.90× 10
−4

3.30× 10
−2 3.30× 10

−1

ACSN2 MOMP_REGULATION 3.22× 10
−4

4.30× 10
−2 5.59× 10

−1

WikiPathways Mammary gland development pathway 3.12× 10
−4

4.51× 10
−2 5.42× 10

−1

– Puberty (Stage 2 of 4)
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Finally, we compared the results obtained by our proposed pan-cancer signature with 
the results obtained by other pan-cancer signatures found in the literature: the sig-
Nagy2021 signature [16] (Table S6) and the sigYu2021 signature [13] (Table S7).

Our pan-cancer signature outperformed the sigNagy2021 signature on 71.93% of 
the datasets  (Supplementary File S1). Moreover, our prognostic signature defeated the 
sigYu2021 signature on 75.44% of the datasets (Supplementary File S2).

Analysis of associated pathways and protein‑protein interactions

Pathway analysis

 We input gene symbols of the probesets of our signature to pathDIP [57], and found 
that 139 of these genes were present in core (literature-based) pathways and were 
enriched in 13 pathways (Table 3). These pathways related to hypoxia-inducible fac-
tors 1 and 2 (HIF1A and HIF2A) and cell-surface signaling (ECM and integrin signal-
ling) both of which have been shown to be implicated in cancer  [58–62]. The latter 
also suggests potential role of protein products of these genes in interaction of cancer 
cells with other cells present in the tumour micro-environment. Enrichment analysis 
using extended pathways highlights immune system pathways (such as TLRs, inter-
leukins, NFKB, and PDGF) as well as cell-death (apoptosis and autophagy) (Fig.  S2 
and Supplementary File S3).

However, despite these findings are interesting, they are highly biased due to the 
imbalance in the sizes of the five source signatures. In order to subdue this bias, in the 
next step of pathway analysis we considered genes in each of the five source signatures 
separately. Using PPIs available in IID  [56], we identified proteins that have physical 
interactions to at least one protein in each source signature. Four proteins (FANCD2, 
EEF1A1, YWHAE, PGLS) have PPIs with at least one protein in all signatures and one 
protein in the breast cancer signature (ALDOC) interacts with all other four signa-
tures. Pathway enrichment analysis of these four genes (core pathDIP) returned a list 
of 88 pathways. At the top of this list there is “HSF1 activation”, whose importance in 
several cancer types has been demonstrated [64]. The most highlighted keyword in titles 
of these 88 pathways are pentose phosphate, glycolysis, and fanconi all of which have 
strongly been linked to several cancer types [65–69].

Furthermore, we identified 42 proteins interacting with four out of five source signa-
tures. One of these proteins (TRIM25) is a member of the colorectal cancer signature. 
Except for ALDOC and TRIM25, no other signature member interacts with more than 
three signatures. Figure 2 shows membership of proteins that interact with protein prod-
ucts of genes that are members of more than three (out of five) signatures.

Intriguingly, the pathway enrichment analysis of these genes returned pathways that 
belong to main cancer hallmarks [70]. Examples of these pathways include metabolism 
(glycolysis, gluconeogenesis, pentose phosphate cycle, citrate-cycle), cell proliferation 
and maintenance (M2G, DNA-damage checkpoint, growth factors, WNT, PI3K-AKT-
mTOR), cell-death (apoptosis, autophagy), immune system (TLRs, cytokine signaling, 
neutrophils), cell invasion (focal-adhesion, extracellular vesicle-mediated signaling, 
EMT), inflammation (fibroblast, integrins, TRAFs), angiogenesis (VEGF, HIF). This cov-
erage for cancer hallmarks can partly explain reasonable performance of our combined 
signature on most cancer datasets (Fig. 3 and Supplementary File S3).



Page 15 of 23Chicco et al. BioData Mining           (2022) 15:28  

STRING protein‑protein interaction networks

 To better understand the relationships between the genes of our proposed pan-cancer 
signature, we insert it into STRING [55] and generated a network of physical protein-
protein interactions (Fig. 4).

Fig. 2 Network of integrated interactions of proteins associated to our pan-cancer signature genes. 
Membership of proteins that interact with protein products of genes that are members of more than three 
(out of five) signatures. Four proteins (FANCD2, EEF1A1, YWHAE, PGLS) have PPIs with at least one protein 
products of genes in all signatures and one protein in breast cancer signature (ALDOC) interacts with all other 
four signatures. These five genes are shown with orange labels. Genes in different signatures are shown with 
different outline colors: grey for colorectal cancer, red for lung cancer, carbon blue for neuroblastoma, orange 
for breast cancer, and green for prostate cancer. Nodes with pink outline show interacting proteins with 
protein products of genes of different signatures. We produced this network with IID [56]

Fig. 3 Key-term enrichment analysis. Key-term enrichment analysis of proteins that interact with protein 
products of genes of at least four different signatures signatures. Size of different key-terms is proportional 
with -log of statistical significance of appearance of each key-term in title of enriched pathways. We 
generated this image with pathDIP [57]
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The network produced by STRING showed some interesting relationships between 
proteins. PIK3R2 and FN1 resulted being the proteins with the highest number of pro-
tein-protein interactions, and therefore can be considered as pan-cancer gene hubs.

The PIK3R2 gene  (ENSG00000105647, phosphoinositide-3-kinase regulatory subu-
nit 2  [71, 72]) that has 5 physical interactions in the protein-protein interaction net-
work of STRING, which is the highest number of edges. PIK3R2 belongs to a family 
of genes known to be involved in pan-cancer [73]. The protein subnetwork of PIK3R2 
could be used for further pan-cancer studies in the future: DUSP10, DUSP6, FHL2, 
IRS2, PIK3R2, and RIPK2.

The FN1 gene (ENSG00000115414, fibronectin 1 [74, 75]), that occurs 4 times in the 
signature (top occurrence), has 4 interactions in the STRING physical interaction net-
work. FN1 has a key role in phosphaturic mesenchymal tumors [76]. The subnetwork of 
FN1 could be used for further pan-cancer studies in the future: CTGF, CYR61, DDIT4, 
DSTN, FN1, IGFBP3, LCP1, PAPSS1, PLAUR, SPP1, VCL, and VEGFA.

Fig. 4 Protein-protein physical interaction network of our proposed pan-cancer signature. We generated 
this network with STRING [55]: each node represent a protein generated by a protein-coding gene of our 
proposed pan-cancer signature, and each edge represents a physical interaction between two proteins. 
Some nodes contain the known or predicted 3D structure of their proteins. The colors of the edges can 
represent several types of interactions [55]. Confidence threshold: 0.4 medium
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Addditionally, in the STRING physical protein-protein interaction network there are 
7 proteins with 3 physical interactions, 13 proteins with 2 physical interactions, and 44 
proteins with 1 physical interaction.

Functional enrichment analysis

 The functional enrichment tool g:Profiler g:GOSt associated to our prognostic pan-can-
cer signature several pathways related to pan-cancer (Fig. 5). Gene Ontology annotations 
related to cancer, such as response to hypoxia apoptotic process, negative regulation of 
kinase activity, cellular response to hypoxia, extracellular matrix organization, extracel-
lular structure organization, response to oxygen levels, and extracellular matrix, clearly 
confirm the relationship between our prognostic signature and pan-cancer. This tool 
also detected lung and adrenal gland as tissues from the Human Protein Atlas. g:Profiler 
g:GOSt associated to our pan-cancer signature several annotations related to the immune 
system, confirming the relevance of the genes of our pan-cancer signature in this context.

To discover additional aspects about the functional annotations related to our signa-
ture, we applied Enrichr [77] to our signature gene list. Among the annotations found by 
Enrichr, we found two diseases from PheWeb  [78] of interest for our analysis. PheWeb 
associated macular degeneration to our signature gene list. We know vascular endothelial 
growth factor (VEGF)-A can affect cancer treatment and age-related macular degenera-
tion [79]. PheWeb also associated lipoma of skin and subcutaneous tissue to our signature 
genes; a lipoma is a benign tumor made of fat. Both g:Profiler g:GOSt and Enrichr con-
firmed the relationship between our prognostic signature gene list and pan-cancer.

Fig. 5 Functional annotation analysis terms associated to the genes of our proposed pancancer signature. 
We generated this list of functional annotations using g:Profiler g:GOSt [52] with the following options 
and list of abbreviations. Statistical domain scope: only annotated genes. Significance threshold: 0.005, as 
suggested by Benjamin and colleagues [54]. Significance method: g:SCS algorithm. GO: Gene Ontology. 
BP: biological process. CC: cellular component. MF: molecular function. WP: WikiPathways. TF: Transcription 
Factors. HPA: Human Protein Atlas
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Discussion and conclusions
In this study, we proposed a prognostic pan-cancer signature of probesets merged 
together from 5 different cancer type-specific signatures available in the scientific litera-
ture. Our prognostic pan-cancer signature is made of 207 unique probesets related to 
187 unique gene symbols, and is based on the Affymetrix platforms GPL96, GPL97, and 
GPL570. We applied our proposed signature, with Random Forests and other machine 
learning methods, to 57 different gene expression datasets related to 12 different cancer 
types, and noticed that Random Forests outperformed the other algorithms with respect 
to the average MCC results. We analyzed the results obtained by Random Forests and 
our prognostic pan-cancer signature on these 57 datasets to verify its capability to clas-
sify deceased patients and survived patients. Our pan-cancer signature achieved a suf-
ficient MCC on 33.33% of these datasets, at least one sufficient confusion matrix rate on 
55 datasets out of 57, and sufficient ROC AUC and PR AUC on almost 60% of these 57 
datasets.

We then compared these results with the results obtained by each specific cancer 
type signature on its corresponding cancer type datasets. Our signature outperformed 
the sigVanLaar2010 colon cancer signature on most colon cancer datasets, the sigHal-
lett2021 breast cancer signature on most breast cancer datasets, the sigGyorffy201 lung 
cancer signature on most lung cancer datasets, and was outperformed by the sigCan-
gelosi2009 neuroblastoma signature on the only neuroblastoma dataset.

Afterwards, we compared the results attained by our pan-cancer signature with the 
results obtained by other pan-cancer signatures that we found in the literature on the 
same 57 datasets: the sigNagy2021 signature and the sigYu2021 signature. Our prognos-
tic pan-cancer signature outperformed these two signatures on more than 70% of the 
datasets.

These results show that, even if not perfect, the genes of our genetic signature have a 
relevant role in pan-cancer prognosis, and they can serve as an effective starting point 
for future studies on this theme. In the future, in fact, researchers can explore the genes 
of our pan-cancer signature to extrapolate new signatures from subgroups of the signa-
ture genes. A clear limitation of our signature is that it obtained sufficient MCC results 
only on 20 datasets out of 57. Our initial goal, however, was so ambitious that this out-
come results being relevant in any case: we initially wanted to create a pan-cancer signa-
ture made of a list of genes able to discriminate between survived patients and deceased 
patients for all the possible cancer types. To this ambitious end, having a prognostic sig-
nature working well on 33.33% of the datasets represents already a sufficient and rel-
evant result.

Additionally, as mentioned earlier, our prognostic pan-cancer signature was able to 
outperform other two pan-cancer signatures on most of the datasets, and almost each 
cancer type-specific signature on its corresponding cancer type-specific datasets. Our 
proposed pan-cancer signature was outplayed only by the sigCangelosi2009 neuroblas-
toma signature on the dataHiyama2009 neuroblastoma dataset. We believe this result 
is due to the orientation of our pan-cancer signature to general common cancer types, 
such as lung cancer, breast cancer, and colon cancer. Neuroblastoma is a rare, genetic, 
pediatric cancer disease, and its genetic specificity makes it different from the main 
cancer types such as colon cancer. We therefore believe our prognostic signature can 
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be considered effective on common cancer types, but less effective than cancer type-
specific signatures on cancer type-specific datasets of rare children cancer diseases.

Our results also confirmed the efficacy of Random Forests, a relatively-new ensem-
ble machine learning method which has become widespread in biomedical informatics 
studies.

To better understand the pan-cancer role of our signature, we then investigated the 
pathways, the protein-protein interactions, and the functional annotations associated to 
our signature’s gene list.

The pathway enrichment analysis carried out with pathDIP and g:Profiler g:GOSt 
suggested that the genes of our signatures are related to interaction of cancer cells 
with each other and with other cell types present in the tumour micro-environment 
and to other fundamental biological aspects such as immune system and cell death. 
Moreover, the analysis of protein-protein interactions related to our pan-cancer sig-
nature carried out with IID highlighted the role of proteins known to be associated 
to several cancer types and to cancer hallmarks. The additional analysis on the pro-
tein-protein physical interactions found by STRING highlighted the proteins of the 
PIK3R2  (phosphoinositide-3-kinase regulatory subunit 2) and FN1  (fibronectin 1) 
genes as fundamental hubs in our signature, indicating an important role of these 
genes for pan-cancer.

Moreover, it is interesting to notice that the most relevant pathways found by path-
DIP for our pan-cancer signature are known to be related to general aspect of cancer, 
and their association has been shown through wet lab non-computational techniques 
in the past: photodynamic therapy-induced HIF-1 survival signaling [80, 81], androgen 
receptor signaling  [82], direct p53 effectors  [83], HIF-2-alpha transcription factor net-
work [84], for example.

Regarding limitations, we report that we employed here only microarray gene 
expression data, and did not use RNA-Seq data, which is a more modern data type. 
Additionally, we could not use the TCGA data [8], a dataset employed often nowadays 
for pan-cancer studies, because we based our study on Affymetrix probesets compat-
ible among different GEO datasets, which would not have found direct compatibility 
with probesets on TCGA. For the same reason, we decided to use no data from Array-
Express [85], which is a large alternative repository of gene expression.

In the future, we plan to use subgroups of genes indicated by the protein-protein inter-
action analysis as potential novel pan-cancer signatures.
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