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Abstract 

Introduction:  Bladder cancer assessment with non-invasive gene expression sig-
natures facilitates the detection of patients at risk and surveillance of their status, 
bypassing the discomforts given by cystoscopy. To achieve accurate cancer estimation, 
analysis pipelines for gene expression data (GED) may integrate a sequence of several 
machine learning and bio-statistical techniques to model complex characteristics of 
pathological patterns.

Methods:  Numerical experiments tested the combination of GED preprocessing by 
discretization with tree ensemble embeddings and nonlinear dimensionality reduc-
tions to categorize oncological patients comprehensively. Modeling aimed to identify 
tumor stage and distinguish survival outcomes in two situations: complete and partial 
data embedding. This latter experimental condition simulates the addition of new 
patients to an existing model for rapid monitoring of disease progression. Machine 
learning procedures were employed to identify the most relevant genes involved 
in patient prognosis and test the performance of preprocessed GED compared to 
untransformed data in predicting patient conditions.

Results:  Data embedding paired with dimensionality reduction produced prognostic 
maps with well-defined clusters of patients, suitable for medical decision support. A 
second experiment simulated the addition of new patients to an existing model (par-
tial data embedding): Uniform Manifold Approximation and Projection (UMAP) meth-
odology with uniform data discretization led to better outcomes than other analyzed 
pipelines. Further exploration of parameter space for UMAP and t-distributed stochastic 
neighbor embedding (t-SNE) underlined the importance of tuning a higher number 
of parameters for UMAP rather than t-SNE. Moreover, two different machine learn-
ing experiments identified a group of genes valuable for partitioning patients (gene 
relevance analysis) and showed the higher precision obtained by preprocessed data in 
predicting tumor outcomes for cancer stage and survival rate (six classes prediction).

Conclusions:  The present investigation proposed new analysis pipelines for disease 
outcome modeling from bladder cancer-related biomarkers. Complete and partial 
data embedding experiments suggested that pipelines employing UMAP had a more 
accurate predictive ability, supporting the recent literature trends on this methodol-
ogy. However, it was also found that several UMAP parameters influence experimental 
results, therefore deriving a recommendation for researchers to pay attention to this 
aspect of the UMAP technique. Machine learning procedures further demonstrated 
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the effectiveness of the proposed preprocessing in predicting patients’ conditions 
and determined a sub-group of biomarkers significant for forecasting bladder cancer 
prognosis.

Keywords:  Data-driven biomarker research, Polygenic risk modeling, Non-linear 
dimension reduction, Tree ensemble embedding

Introduction
Machine learning (i.e., ML) and bio-statistics offer a wide range of methodologies to 
build models able to estimate several aspects of cancer from gene expression data (i.e., 
GED). A distinguishing feature of machine learning models is that they afford to pre-
dict from data rather than infer, a typical paradigm of statistics [1]. Predictive models 
that contextualize disease risk by accounting for the heterogeneity of changes in patient 
bodies lead to individual-specific medicine. This emerging branch of medical science 
is called precision or personalized medicine aiming to produce preventative strategies 
to tackle illnesses [2]. Genomics, and more in general, omics techniques, offer large 
amounts of data to assess the risk of disease progression. In cancer, genomics can reveal 
molecular underpinnings and provide insights into possible targets for future therapies. 
However, biorepositories should provide standardized and quality samples for ML mod-
els to capture the significant individual genetic variants found between human popula-
tions and accomplish proper individual-based diagnosis and prognosis [3, 4]. Polygenic 
risk models gather contributions from a set of genes to create a single model capable of 
summing up the complexity of the different biological changes connected with a dis-
ease [5]. When single markers cannot provide proper support to construct risk predic-
tion scores, gene ensembles can summarise genetic effects more accurately. However, 
polygenic datasets aggregate data in high-dimensional spaces sparser than those built 
in lower dimensions, thus suffering from geometric distortion [6]. Consequently, the 
high-dimensionality of GED data could negatively impact the generalization ability of 
standard machine learning methods, impairing the scalability and interpretability of the 
model. The association of different ML and bio-statistical sequential methods in bioin-
formatics data analysis workflows offers the possibility of modeling biological processes, 
overcoming linear and parametric approaches limitations, and transforming raw gene 
expression values into helpful information for clinicians.

Aim of the study

Previous work introduced double discretization procedures to characterize GED appli-
cable when modeling bladder cancer survival rate (supervised binary classification) 
[7]. The present manuscript employed the same dataset of bladder cancer biomarkers, 
integrating initial numerical discretizations into a new bioinformatics framework. It 
enclosed forest embedding and manifold dimensionality reduction to produce graph-
like forecasts exposing peculiar patterns suitable for extending patient categorization 
into six classes (three grades of tumor severity and two classes for overall survival) in 
an unsupervised fashion. The inclusion of cancer staging supports medical decisions 
regarding prognosis and treatment. Multiple numerical experiments will analyze and 
evaluate different aspects of the proposed procedure and the obtained results.
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Methods
Gene expression data were collected by [8] and released as a public domain data file. 
Authors evaluated genes related to bladder cancer and selected those most active dur-
ing different stages of the disease. They identified 14 hub genes, genetic buffers highly 
connected with others showing augmented genetic interaction, and also defined 11 seed 
genes, likewise the procedure of [9]. Seed genes were identified from the relevant sub-
networks recognized with FUNRICH software [10] by molecular complex detection 
analysis. Genetic profiles of the hub and seed genes came from 406 patients, but 20 sub-
jects could not be labeled, and they were removed because they had multiple missing 
entries for tumor stage or survival outcome. The patient’s descriptive information was 
added in Fig. 1, while the raw log2 expression levels were included in Fig. 2, with the cor-
relation among genes in Fig. 3. Log-transformation of raw gene expression data is usually 
accomplished to compensate for data skewness and approximate a normal distribution. 
Indeed, data showed a prominent right skewness treated applying deterministic math-
ematical functions during preprocessing. Generally, this step is accomplished to fulfill 
the assumptions of parametric inference, but it also helps learn and generalize specific 
ML models [11, 12]. All analysis was carried out with custom scripts in Python program-
ming language, partly employing umap-learn [13], imbalanced-learn [14], and scikit-
learn libraries [15]. An overview of the whole experimental sequence is shown in Fig. 4.

Preprocessing

Three alternative discretization approaches derived from the procedure previously 
investigated in [7] constituted the initial phase of the data handling scheme: 

Fig. 1  Descriptive information of the cohort of patients included in the dataset. In clockwise order, the pie 
charts show in the top left corner the lineage, the percentage of males or females, the rate of patients dead 
or alive, and the tumor stage at the time of data collection
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“Log-z”	� Each GED was log-transformed and values standardized. Continuous val-
ues were discretized by Classification and Regression Trees (i.e., CART 
[16]).

“Uniform”	� Cumulative distribution function of each GED was estimated and, through 
a quantile function, mapped to a uniform distribution with data nor-
malization in the interval [0;1]. The number of quantiles (51) introduced 
a pre-binning of the data followed by CART discretization after uniform 
mapping.

“Normal”	� Cumulative distribution function of each GED was estimated through a 

Fig. 2  The boxplots depict log2 expression levels for the hub and seed genes before preprocessing

Fig. 3  The heatmap reports the Pearson product-moment correlation coefficients of log2 expression levels 
for the hub and seed genes before preprocessing
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quantile function mapped to a normal distribution with data standardiza-
tion. The number of quantiles (51) introduced a pre-binning of the data 
followed by CART discretization after normal mapping.

 It should be noted that Uniform and Normal data mapping produced a “double discre-
tization” on data as demonstrated in the previous exploration: operational sequences are 
synthesized in Fig. 5. In general, discretization transforms values in intervals acting as 
a variable selection that benefits classification [17]. Usage of CART is not an arbitrary 
decision but offered remarkable performance during the earlier analysis run on the same 
data. Afterward, discretized GED was labeled in six categories, generated from tumor 
stage (II, III, IV) and disease outcome (alive or dead, abbreviated as “a” or “d” respec-
tively). This multiclass problem poses more challenges than the previously considered 
models targeting survival binary classification. A critical issue in multi-label classifica-
tion is the skewness of the labels, also called class imbalance, the biased distribution of 
examples across the known classes [18]. When classes are not equally represented, intro-
ducing new “synthetic” values could be a way to aid learning [19]. Re-balancing training 
set values by over-sampling or under-sampling is equivalent to altering the misclassi-
fication cost ratio and has little effect on Bayesian or decision tree learning methods 
[20]. Nonetheless, using sampling for cost-sensitivity learning has a few disadvantages, 
like dropping potentially profitable data or enlarging dataset size [21]. A methodology 
proposing a compromise to reduce sampling drawbacks is the Synthetic Minority Over-
Sampling Technique [22] (i.e., SMOTE). Here we enhanced SMOTE by pairing it with 
the Tomek link algorithm [23]. While SMOTE induced new synthetic minority class 
examples, Tomek links ensure the removal of sample pairs nearest neighbors belonging 
to two different classes. It happens when interpolated minority class examples invade 

Fig. 4  Outline of the analysis pipeline to produce complete and partial forest embeddings

Fig. 5  Overview of initial GED discretizations applied as preprocessing
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the majority class space. Pre-processing data with these two algorithms in sequence mit-
igates the effect of over-sampling by removing noisy values too close to the optimal deci-
sion boundary [24], leading to more defined class clusters during training (Table 1).

Tree ensemble embedding

Trees are hierarchical structures, starting with a root value (a feature or GED) and 
descendant sub-trees generated from parent nodes: each split into branches is called 
edge. The end of a branch is called a leaf. The characteristics of trees are the existence 
of exactly one path (connected sequence of edges) between any pair of nodes and their 
acyclicity because there is no loop in their topology. Large numbers of trees operating as 
an ensemble are called forests. Feature spaces could be represented by forest embedding, 
collecting leaf value sequence for each observation to obtain a similarity matrix resem-
bling the procedure applied by [25] on prostate tumor marker data with random for-
ests. Other successful tumor marker profiling with forest embedding could be found in 
[26], where authors explored random forest proximity matrix as input measure for clus-
tering algorithms, or in [27] for genomic data analysis. Within a multitude of decision 
trees, the similarity is computed by counting the number of times observations from dif-
ferent trees fall in the same leaf, normalizing the results by the total number of trees: 
the assumption is that feature points closer to each other will enter in the same leaf. 
In the current work, three possible tree ensembles were evaluated to build the proxim-
ity matrix: random forest [28], gradient boosting [29], and extremely randomized trees 
[30], all verified by 10-fold stratified cross-validation. Extremely randomized trees pro-
duce trees less correlated than random forests, while gradient boosting also combines 
decision trees but builds one tree at a time linking results during the process (not at 
the end by averaging as random forests do). For all three preprocessing transformations, 
the optimal number of trees was selected by grid search, balancing class instances by 
weighting their frequency as a penalization parameter and employing balanced accuracy 
as a comparison metric. The foremost model was the extremely randomized trees, there-
fore selected to build the proximity matrices in the two experimental conditions.

Dimensionality reduction

Dimensionality reduction produces a representation that helps identify relevant data 
patterns. For example, in [25], the authors applied multi-dimensional scaling to expose 
the peculiar structure of point clouds for each class in bi-dimensional space. Two differ-
ent methodologies were compared in the present work: heavy-tailed t-distributed sto-
chastic neighbor embedding (i.e., t-SNE) [31] or uniform manifold approximation and 
projection (i.e., UMAP) [32]. Stochastic neighbor embedding computes the probability 

Table 1  Number of examples in each class after preprocessing

IIa IIIa IVa IId IIId IVd Total

Original dataset 88 80 47 36 53 82 386

Log-z 69 72 87 87 82 77 474

Uniform 73 75 82 84 80 70 464

Normal 75 73 84 86 82 76 476
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distribution over pairs of points in both original data (high dimensional dataset) and low 
dimensional embedding space, minimizing the Kullback-Leibler divergence between 
probability distributions (usually performed using gradient-descent techniques), produc-
ing the low dimensional embedding. During the numerical experiments of this research, 
the Barnes-Hut SNE implementation was chosen due to its computational efficiency 
[33]. UMAP algorithm constructs a topological representation (fuzzy simplicial sets) 
of data approximated through the medium of Riemannian manifolds both for high and 
low dimensional spaces. Then the low dimensional space representation is optimized 
by minimizing fuzzy set cross-entropy via stochastic gradient descent to reduce the 
error between representations. Both t-SNE and UMAP produce maps of point clouds 
convenient to categorize GED in sub-populations and highlight significant differences 
between groups. However, hyperparameter tuning is not trivial for both algorithms. 
For this reason, during the dimensionality reduction phase, an extensive examination 
of the best parameters was attempted as a combination of grid and random search in 
hyperparameter space (studied parameters arranged in Tables 2 and 3). Another essen-
tial aspect is given by the nature of t-SNE that does not preserve the global geometry of 
the data even if it produces isolated groups attractive as input for clustering algorithms. 
To mitigate the arbitrary position effect of cloud points created by the algorithm in the 
embedded space, t-SNE was initialized with principal component analysis and learning 
rate included as a hyperparameter to be tuned (generally increased). In addition number 
of iterations was set to 3000 to enhance visualization, as suggested in [34]. In both t-SNE 
and UMAP, different metrics for calculating distance between instances were attempted 
because euclidean distance alone may not be adequate in multi-dimensional feature 
spaces [35]. For instance, the nearest neighbor concept is ill-defined as points become 

Table 2  t-SNE parameters

Parameter Abbreviation Levels

Angular size for Barnes-Hut θ 8

Early exaggeration EE 8

Learning rate LR 14

Metric for distance between instances Metr 9

Perplexity Perp 11

Table 3  UMAP parameters

Parameter Abbreviation Levels

Learning rate LR 8

Metric for high dimensional space distances calculation Metr 8

Number of nearest neighbors assumed at local level LC 5

Dispersion of points on manifold MiD 5

Size of neighboring sample points in manifold estimation NN 6

During optimization, ratio of negative samples per positive example NSR 3

Negative samples penalization while optimizing in low dimension RS 4

Ratio of fuzzy set operations to obtain global fuzzy simplicial sets Mix 5

Spread out scale of embedded points Sp 5
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uniformly distant from each other [36]. A further issue with t-SNE is adding new data 
to the embedding already learned; in its original form, t-SNE is a non-linear, non-para-
metric embedding that requires re-learning the whole dataset when appending unseen 
points. Rather than t-SNE, UMAP preserves global data structure and allows new data 
transformation into the learned space. In our partial embedding experiment, we are not 
adding new data to t-SNE or UMAP, as they continue to learn the whole dataset, but the 
tree ensemble embedding is achieved on a sub-sample of the dataset, then mapped in 
lower-dimensional space.

Clustering

Several clustering techniques were implemented to sub-divide the dimensionally reduced 
forest embedding matrix and assess the goodness of the resulting bi-dimensional maps: 
hierarchical density-based spatial clustering of applications with noise (i.e., hdbscan [37]), 
mini-batch k-means [38], spectral clustering (i.e., SC [39]), ordering points to identify the 
clustering structure (i.e., optics [40]), affinity propagation (i.e., AP [41]), balanced iterative 
reducing and clustering using hierarchies (i.e., birch [42]). Multiple algorithms were taken 
into account because, as stated by the “no free lunch theorems”, algorithm selection is prob-
lem-specific, and there are no generally superior algorithms [43]. Among those considered, 
few algorithms (for example, mini-batch k-means) required defining a predetermined num-
ber of clusters as an input parameter. In such a case, the elbow method was implemented 
to decide the number of clusters in the data. The performance of clustering algorithms was 
determined by internal cluster validation indexes like Davies-Bouldin index (i.e., DBI) [44], 
silhouette score [45], and Calinski-Harabasz index (i.e., CHI) [46]. Internal metrics catch 
separation (spacing between different groups) and, at the same time, compactness (points 
density inside each group) of clusters. A custom method that maximizes silhouette score 
and CHI while minimizing DBI was calculated to identify the best algorithm and parameter 
combination for dimensionality reduction and clustering. High CHI values mean dense and 
well-separated clusters, while a high silhouette coefficient implies appropriate grouping, 
with values adequately assigned. A small DBI embodies the concept that clusters are distant 
and compact. The customized methodology was performed by selecting the occurrence 
with the smallest mean difference from max(Silhouette score) , min(DBI) , and max(CHI) . 
During this operation, values of CHI were scaled in the range 0-1 to match the range of val-
ues of DBI and silhouette score. As a final check, the absence of the noise label introduced 
by certain clustering algorithms was verified; otherwise, the result was discarded, taking the 
next value in rank. The External cluster validation methods have been estimated for the 
final comparison between pipelines. Validation indicators included Fowlkes-Mallows index 
[47], Rand index adjusted for chance [48], adjusted mutual information between two clus-
terings to account for chance [49], normalized mutual information [50], homogeneity and 
completeness metrics of a cluster labeling together with their harmonic mean (also called 
v-measure) [51]. External validation metrics appraise clustering labels compared to ground 
truth. Fowlkes-Mallows index metric judges similarity of the clusters with values ranging 
from zero (random groups) to one (exact classification). Mutual information-derived met-
rics evaluate the entropy reduction obtained if a class label is assigned to the right group 
based on absolute and conditional probabilities related to class membership. The adjusted 
Rand and mutual information update the indexes account for agreement solely due to 
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chance; the former is more suitable for clusters of similar size while the latter can gauge 
unbalanced groups, a situation where the Rand index might be biased. Homogeneity of a 
partition considers if groups are uniform in their composition, while completeness checks 
if all class instances are assigned correctly. Both are desirable features during clustering 
and do not require assumptions regarding the cluster’s structures but might suffer random 
assignment to groups as they are not adjusted for the chance. Eventual label permutations 
do not influence the v-measure index being the harmonic mean between homogeneity and 
completeness. It is considered a more comprehensive measure of homogeneity and com-
pleteness and considers all data instances independently from cluster sizes or the number 
of clusters.

Experimental conditions

The investigation was subdivided into two experimental conditions, each with a different 
tree ensemble embedding. The first condition was a complete embedding of the GED by the 
tree ensemble from which t-SNE and UMAP generated a bi-dimensional prognostic map, 
revealing cancer patients’ population patterns. The second condition was a partial embed-
ding obtained by training the tree ensemble on 75% of the data. This situation simulates the 
addition of 25% unseen patients to an existing model to verify the behavior of each analysis 
pipeline under extreme circumstances. Indeed, it is unlikely that the model will categorize a 
large cohort of patients all at once; consequently, the second experimental condition could 
be interpreted as a “stress test” to check model reliability compared to the baseline condi-
tion of fully embedded data.

Results
The results of the numerical experiments on the dataset could be summarized into five 
main findings:

•	 Demonstration of how the proposed analysis sequence leads to the creation of bi-
dimensional prognostic maps to support medical decision-making (complete embed-
ded experimental condition)

•	 Evaluation of a partial GED embedding to simulate the addition of new patients to an 
existing forest embedding (partial embedding experimental condition)

•	 Investigation of the parameter space for t-SNE and UMAP to highlight those that 
impact the low dimensional embedding and should be tuned when employing these 
techniques

•	 Test the performance of a classification model on six classes of tumor outcomes using 
the original GED set ( log2 transformed) or preprocessed GED by single and double dis-
cretization approaches

•	 Machine learning–based gene relevance analysis to ascertain the existence of a subset of 
genes remarkably involved in determining disease’s states

Complete and partial forest embeddings

In both experimental conditions, values of optimal t-SNE and UMAP configura-
tions, together with clustering algorithms parameters and their internal scores, were 
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aggregated into Tables 4 and 5. After parameter optimizations, clustering outcomes of 
the embeddings have been evaluated by external clustering metrics as a final assessment. 
Complete GED embedding reached a score of 1 in all external evaluation metrics for 
t-SNE, and UMAP obtained the same score with Uniform transformation on all external 
criteria; Log-z and Normal transformations had all values above 0.9935. For example, 
Fig. 6 demonstrates the bi-dimensional embedded space of Log-z paired with t-SNE on 
the left and UMAP with Uniform preprocessing on the right. Both panels create well–
defined groups of patients and data transformation returns quickly interpretable prog-
nostic charts to support medical decisions. By comparison, the log2 unprocessed GED 
bi-dimensional plane of the two components with maximal explained variance from the 
principal component analysis was plotted in Fig. 7.

External scores during partial embedding were included in Fig. 8: Uniform distribu-
tion mapping inserted in a “double discretization” pipeline shows better outcomes than 
Log-z (single discretization stage) and Normal mapping both at t-SNE and UMAP. This 
observation is confirmed by performance measured with external indexes between full 
and partial embedding, appearing as a percentage of decay in Table 6.

Parameter space exploration

In this section, t-SNE and UMAP parameters applied to calculate dimensionality reduc-
tion during the complete embedding condition underwent a sensitivity analysis to 
determine the impact of algorithm parameters on clustering outcomes. The “metric” 
parameter has been transformed into scalar ordinal values for this investigation. Sil-
houette coefficient was selected as a concise measure of clustering appraisal (response 
variable) while scanning the configuration of parameters that optimizes data fitting. 
Traditionally parameter evaluation could be examined through linear regression to find 
non-deterministic linear relationships between parameter values [52]. In the current 
study, the nature of manifold-based dimensionality reduction poses the challenge of a 
nonlinear situation. For this reason, we reformulated the problem in terms of predic-
tive performance by employing ensemble regression techniques to find the combina-
tion of t-SNE or UMAP parameters that maximizes clustering outcomes. During this 
phase, parameters of the regressors were left in their standard configuration to avoid 
regressor-specific optimization that could add a source of bias in the comparisons. The 
experimental setup could be exemplified by a table, with rows containing all the avail-
able combinations of parameters previously acquired while columns represent the pos-
sible combinations of parameters. Combinations of parameters could range from 2 to 5 
for t-SNE (26 in total) and 2 to 9 for UMAP (502 in total). Parameter values previously 
collected, whose number is included under “available combinations” in Tables  7 and 
8, were initially subdivided into the train (75% ) and test sets (25% ). The train set went 
through a 5-fold cross-validation for regressor selection, while the test set was employed 
to estimate the importance of the t-SNE or UMAP parameters. Eight nonlinear regres-
sors were validated, and the best one was subsequently tested over each discretization 
pipeline’s parameter combinations. Tables 7 and 8 provide the parameter subset with the 
corresponding top R2 score (also called the coefficient of determination) at the test set. 
In the context of this GED investigation, regression analysis suggests that fine-tuning 
parameters of UMAP seem crucial because most of them contribute to the clustering 
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goodness of fit. This observation also confirms the findings of other authors on UMAP 
usage for GED data analysis [53]. Regarding t-SNE parameters, Metric and Perplexity are 
shared among different pipelines indicating their relative importance.

Classification using discretized data versus unprocessed GED

Prognosis prediction is still considered a challenge in bladder cancer [54]. In this 
machine learning experiment, a random forest classifier has been employed to deter-
mine the classification accuracy in discriminating patients based on the six labels that 
sum up tumor stage and survival (‘IIa’, ‘IId’, ‘IIIa’, ‘IIId’, ‘IVa’, ‘IVd’). The random forest clas-
sifier was already applied successfully in genomics [55–57], with profitable results also 

Fig. 6  GED full embedding generating prognostic maps using tSNE Log-z values (on the left), and Uniform 
UMAP transformation (on the right)

Fig. 7  The scatterplot displays the first two principal components of log2 expression levels for the hub and 
seed genes before preprocessing. Total explained variance is 63.8%
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on imbalanced data [58]. The labels produced by each pipeline were employed to score 
results for the preprocessed data, while the ground truth labels were used for the raw 
GED. The hyperparameters of the classifier have been optimized by Bayesian optimiza-
tion [59]. This technique explores the hyperparameter space of the classifier by adopting 
a gaussian process [60] that evaluates an objective function fitted for all combinations of 
hyperparameters, intending to exclude combinations that do not improve the classifier’s 
performance. The classifier’s parameters that underwent tuning were the number of 
trees in the forest, the maximal depth of each tree, the minimal number of instances 

Fig. 8  External evaluation metrics on partially embedded data

Table 6  External evaluation metrics

t-SNE UMAP

Metric Log-z Unif Norm Log-z Unif Norm

Fowlkes-Mallows index -56.3 -33.0 -52.3 -41.5 -21.6 -42.9

Adjusted Rand index -68.2 -39.7 -63.3 -51.0 -25.9 -52.8

Adjusted Mutual Information -60.6 -37.3 -54.5 -42.3 -27.9 -42.3

Normalized Mutual Information -59.7 -36.7 -53.7 -41.6 -27.5 -41.6

Homogeneity -60.2 -37.1 -54.4 -43.0 -27.5 -43.2

Completeness -59.2 -36.2 -53.0 -40.2 -27.5 -39.9

Harmonic mean (V-measure) -59.7 -36.7 -53.7 -41.6 -27.5 -41.6

Table 7  t-SNE Parameter space exploration

a Meta estimator fitting 100 randomized decision trees

 bAveraged individual predictions of Bagging, Random Forest and Gradient Boosting regressors

Available Reduced parameter set All 5 parameters

Pipeline Combinat. R2 Selected parameters Regressor R2 Regressor

Uniform 615 0.968 θ , LR, Metr, Perp ETRa 0.961 ETR

Log-z 601 0.835 Metr, Perp Bagging 0.814 ETR

Normal 608 0.884 LR, Metr, Perp Votingb 0.821 ETR
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needed to split a node or to determine leaf nodes, and the number of features to deter-
mine the best splitting. All experiments were carried out with a nested 5–fold stratified 
cross-validation with accuracies of the outer loop shown in Table 9, while the inner loop 
served for hyperparameter tuning. The random forest was programmed to account for 
class imbalance, weighting the input samples with stratification based on 

tot. samples
tot. classes× class samples

 . This numerical experiment reported that discretization pipelines 
produce values that ensure higher accuracies compared to the log2 raw GED from the 
original dataset. A Dummy classifier has been included as a baseline measure of chance 
level accuracy. The random forest classifier using log2 unprocessed GED reaches an aver-
age balanced accuracy of 26% , while data preprocessed by discretization achieved more 
than double this value. As a final remark, the balanced accuracies of the labels obtained 
by each preprocessing pipeline on full GED embedding compared to the ground truth 
accomplished 100% in all except the UMAP with Uniform transformation ( 99.79%).

Genes functional relevance

Two methodologies were employed to score the genes’ influence in predicting tumor 
stage and survival. It could be possible that genes of the set pre-selected by the database 
authors might have different involvement in the pathological status of the patients; thus, 
they could be evaluated concerning their importance in determining the disease out-
come. Using the labels obtained during the complete embedding by the single and dou-
ble discretization pipelines with t-SNE or UMAP and a forest of trees classifier, the genes 
after preprocessing (Fig. 5) were ranked by permutation importance [61, 62] (i.e., PI) and 

Table 8  UMAP Parameter space exploration

a Histogram-based Gradient Boosting Regression Tree

Available Reduced parameter set All 9 parameters

Pipeline Combinat. R2 Selected parameters Regressor R2 Regressor

Uniform 2173 0.825 LR,LC,Metr,MiD,NN HGBRa 0.820 HGBR

RS,Mix,Sp

Log-z 2170 0.825 LR,LC,Metr,MiD,NN HGBR 0.825 HGBR

RS,Mix,Sp,NSR

Normal 2173 0.810 LR,LC,Metr,MiD,NN HGBR 0.803 HGBR

RS,Mix,Sp

Table 9  Random Forest and Dummy classifiers balanced accuracy of preprocessed GED with 
discretizations pipelines vs. log2 GED (accuracies are expressed as percentages)

Pipeline RF Bal. Acc. Dummy Bal. Acc.

tSNE Uniform 61.4± 9.4 17.6± 3.4

tSNE Log-z 58.4± 9.3 17.4± 3.9

tSNE Normal 62.5± 9.0 13.9± 2.8

UMAP Uniform 61.4± 9.4 16.9± 2.8

UMAP Log-z 58.5± 8.5 13.3± 3.5

UMAP Normal 62.5± 9.0 14.2± 2.3

log2 GED 26.0± 3.1 17.7± 4.5
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ulteriorly confirmed by recursive feature elimination [63, 64] with cross-validation (i.e., 
RFECV). These operations evaluated if genes could be rated relevant or not in determin-
ing class membership from the classifier’s scores. A random forest classifier was chosen 
as an estimator due to its popularity in statistical genetics, as reported in [62]; recently, 
it has also been used as a baseline classifier in [65]. The random forest classifier assumed 
class weights to compensate for their imbalance. Table 10 collects the 5–fold stratified 
cross–validation balanced accuracy obtained by the Random Forest classifier employed 
to score gene importance: accuracies reported are those on the subset of genes identi-
fied by PI or RFECV. The Dummy classifier, a baseline classifier acting as a reference for 
the chance level, has been included in Table 10. Random Forest accuracies were fairly 
above the chance indicated by the Dummy classifier, ensuring the safe application of 
the procedure. Table 11 collects the number of occurrences for each gene selected by PI 
and RFECV using the six pipelines of the complete embedding experiment. Genes with 
values equal to six were present as most influential over all pipelines. The last column 
of Table 11 sums up the total number of times a gene was ranked important by PI and 
RFECV: including two scoring methods, PI and RFECV, ensures a consensus in selecting 
relevant genes. Four hub (KPNA2, KIF11, CCNB1, CDK1) and four seed genes (DMD, 
SLMAP, TAGLN, SH3BGR) gather the largest consensus, being selected by both PI and 
RFECV methods throughout all analysis pipelines. Included in almost all occurrences 
are also the hub genes KIF20A, CDC20, and CRYAB. The relevance of each gene derived 
from the last column of Table 11 has been plotted as a barplot in Fig. 9. In the barplot, 
genes were ranked in ascending order.

Discussion
Generally, discretization transforms features closer to a knowledge-level representation 
than continuous data [66]. In the current investigation, three discretization pipelines 
were merged with tree embedding and manifold reduction to check which experimen-
tal sequence could discriminate six groups of patients related to tumor stage and sur-
vival in bladder cancer. Full data embedding with decision trees paired with t-SNE or 
UMAP dimensionality reductions build bi-dimensional data representations with dense 
and well-separated point clouds. For instance, both t-SNE and UMAP techniques are 
available in a recently released software app for GED visualization [67], confirming they 
are well-established visualization approaches in the omics disciplines. On the contrary, 
during a partial embedding experiment simulating the addition of new patient data to an 

Table 10  Random Forest balanced accuracies during gene relevance investigation (as percentages)

Pipeline RF PI RF RFECV Dummy PI Dummy RFECV

tSNE Uniform 57.7± 10.9 61.3± 10.5 18.3± 3.5 16.3± 2.1

tSNE Log-z 54.2± 7.0 58.4± 8.2 16.6± 1.4 16.5± 0.5

tSNE Normal 53.2± 8.8 62.5± 8.8 15.3± 2.1 17.5± 1.9

UMAP Uniform 57.7± 10.5 61.4± 10.5 15.5± 4.9 19.3± 2.2

UMAP Log-z 56.5± 8.9 58.5± 8.9 16.5± 3.3 16.9± 3.9

UMAP Normal 53.2± 8.8 62.5± 8.8 18.9± 1.5 16.4± 5.4

Average 55.4± 9.1 60.7± 9.3 16.8± 3.3 17.2± 3.3
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Table 11  Occurrencies of the gene ranked most important by the six pipelines. Last column sums 
the number of times genes were top ranked by both PA and RFECV procedures

Gene Type Occur. PI top ranked Occur. RFECV top ranked Tot. occur. 
top ranked

KPNA2 HUB 6 6 12

KIF11 HUB 6 6 12

DMD SEED 6 6 12

SLMAP SEED 6 6 12

TAGLN SEED 6 6 12

SH3BGR SEED 6 6 12

CCNB1 HUB 6 6 12

CDK1 HUB 6 6 12

KIF20A HUB 5 6 11

CDC20 HUB 6 5 11

CRYAB HUB 6 5 11

MAD2L1 HUB 4 6 10

AURKA HUB 4 6 10

AP2S1 SEED 4 6 10

TUBA1C SEED 4 6 10

TCEAL2 SEED 3 6 9

PLAU SEED 2 6 8

ATP2B4 SEED 2 6 8

KIF2C HUB 1 5 6

CASQ2 HUB 0 6 6

TPM1 HUB 0 5 5

CCNA2 HUB 0 3 3

UBE2C HUB 0 3 3

HJURP SEED 0 1 1

SBSPON SEED 0 1 1

Fig. 9  Barplot of gene relevance in categorizing the prognosis of the patients (agreement between RFECV 
and PI methods)
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existing tree model, only Uniform transformation with UMAP maintains a certain pro-
portion between GED from new patients ( 25% ) and performance (metric scores ranged 
between 21.6% and 27.5% ). Furthermore, results on non-linear reduction techniques 
using partially embedded data showed that t-SNE behavior is less efficient than UMAP 
as measured by external clustering validation metrics. These findings get support from 
recent trends in literature that exploit UMAP methodology to display genetic interac-
tions [68], and gene variability [69]. The UMAP superiority is also confirmed by the out-
comes of the internal validation coefficients (Tables 4 and 5) with higher silhouette and 
CHI coefficients and lower DBI. However, according to the parameter space examina-
tion, multiple UMAP parameters play an essential role in the outcomes of dimensional-
ity reduction, thus requiring a procedure that searches for the best combination. The 
drawback is that parameter space search could be time-consuming, especially on off-
the-shelf hardware.

Medical doctors may not be acquainted with machine learning techniques; conse-
quently, an effective tool for GED interpretation might enhance the visual understand-
ing of multi-dimensional GED datasets (we also called them prognostic maps). Research 
presented by this study focuses on 2D t-SNE and UMAP reduction because we explored 
the possibility of producing discernible patterns in the data that summarize the disease 
progression in patients. Similar to other works in the literature, this investigation adopts 
an intermediate step to transform GED data distributions by decision tree embedding. 
This phase should pull out interesting characteristics in the input samples that are oth-
erwise not directly observable. For example, pathways of associated genes or gene pairs 
with combined effects may be reflected by high correlations or network attributes [70]. 
A different type of embedding could be obtained with autoencoders to learn structures 
in the data by exploiting deep architectures. In the intermediate layers of autoencoders, 
dimensionality is diminished to achieve a more dense representation of the data. This 
possibility has been examined by [71] or [72]. Other authors also suggest the application 
of graph embeddings (also called network representation learning) for GED transforma-
tion [73] to map nodes and edges of the gene network while preserving their properties 
and information.

The benefit of discretization was demonstrated by a supervised machine learning 
experiment that tried to classify the six classes of outcomes from the raw or preproc-
essed GED. While the original dataset resulted in a balanced accuracy slightly above the 
chance level ( 26% versus a chance level of 17.7% exemplified by the Dummy classifier), 
discretized data obtained higher results. Moreover, a little difference was found between 
the accuracies of the double discretization pipelines ( 61.4% and 62.5% ) compared to the 
single discretization pipeline involving Log-z ( 58.5% ), with marginally higher accura-
cies in the former case. The difficulties in classifying the original GED dataset might also 
be related to the high correlation between specific genes, as seen in Fig. 3. In machine 
learning, correlated features might be suboptimal to solve classification tasks as they 
provide little extra information. The transformations of the GED during the preprocess-
ing phase probably improved this aspect, also verified during the numerical experiments 
in [7] on the same dataset for binary classification.

The relevance characterization using relative gene importance identified a subset of 
genes by their prominence in defining tumor stage and patient survival. Results of this 
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machine learning experiment are included in Table  11. Eight genes collected the high-
est consensus and were ranked most relevant by the proposed analysis pipelines. Litera-
ture confirms the importance of the top-ranked genes as KPNA2, recently identified as 
involved in cancer progression in several studies [74–76], or KIF11 [77, 78]. The seed gene 
DMD seems more related to survival [79], while the transgelin gene TAGLN is closely 
connected to oncogenic transformation and, consequently, prognosis in bladder cancer 
patients [80, 81]. Another top-ranked gene was SH3BGR, a family of genes that might indi-
cate a low survival rate in bladder cancer in its subtype SH3BGRL3 [82]. Gene CCNB1 
seems related to aggressive forms of bladder cancer and cell proliferation [83], while the 
cyclin-dependent kinase CDK gene could be related to bladder tumor staging and prog-
nosis [84–86]. Apart from the top-ranked eight genes, three other genes were included as 
most influential by nearly all pipelines. They were KIF20A, a gene inducing proliferation 
[87], CDC20, which might be connected with radio-resistance, thus survival [88, 89], and 
CRYAB [90–92], whose overexpression was mentioned in cancer signaling pathways.

Estimated computational times

Table 12 contains the computational times of each step of the experimental pipelines for 
the complete data embedding. The average computational times of the dimensionality 
reduction phase should be multiplied by the t-SNE or UMAP total number of param-
eters investigated to get the total time spent in this step of the elaboration. Similarly, 
the table reports the tuning time of the clustering algorithms as an average of the six 
algorithms tested. Indeed, clustering is considered an “explorative” analysis requiring the 
evaluation of the results from different methods and tuned parameters. For example, the 
estimated computational times for investigating the parameter space of UMAP with the 
Normal preprocessing pipeline were approximately 282.15 hours, while the t-SNE pipe-
line took 36.86 hours. In addition, the total time should be doubled to include the com-
putations needed during the partial embedding experiment. All numerical experiments 
were carried out on commodity hardware (laptop computer with an i5 10th generation 
processor and 16Gb RAM).

Conclusion
This study evaluated if GED discretization approaches could be integrated into a new 
analysis pipeline extending patient identification by tumor stage and survival. Com-
plete data embedding created precise prognostic maps suitable for data-driven medical 

Table 12  Average computational times (in seconds) for each single operation performed in the 
analysis pipeline during the complete experimental embedding

Pipeline Forest Emb. Dim. Red. Clustering Param. Comb.

tSNE Uniform 7.17± 1.38 6.95± 0.55 34.14± 35.18 615

tSNE Log-z 7.16± 1.61 10.18± 8.65 33.39± 36.82 601

tSNE Normal 6.46± 1.38 9.54± 8.89 33.71± 37.63 608

UMAP Uniform 3.47± 1.12 8.15± 11.92 151.25± 305.05 2173

UMAP Log-z 3.72± 1.74 13.04± 15.78 73.27± 128.05 2170

UMAP Normal 4.19± 1.39 3.59± 0.67 76.61± 131.14 2173
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decision-making. In a second numerical experiment using partially embedded data to 
simulate new patients’ inclusion in the model, performance seems stable only applying 
the Uniform double stage discretization sequence and UMAP non-linear reduction. 
Findings on both experimental conditions support using the UMAP technique in omics 
data analysis as emerging in recent literature on the same topic. However, a further 
investigation of UMAP parameter space did not identify a significant subset of relevant 
parameters to consider for speeding up algorithm tuning. This situation underlines the 
importance of adjusting multiple UMAP parameters for precision medicine studies. A 
machine learning procedure to establish gene importance in determining six classes 
of outcomes has been demonstrated through feature permutation or recursive feature 
elimination. Through this methodologies, a subset of relevant genes for bladder cancer 
prognosis has been identified. Another machine learning experiment showed how the 
classification of patients using the preprocessed data with single or double discretiza-
tion pipelines achieved higher accuracy than unprocessed data. The numerical experi-
ments in the current investigation testing three distinct preprocessing sequences based 
on single or double discretizations helped to discriminate more effectively six possible 
patients’ outcomes given a bladder cancer GED dataset from a cross-sectional study.
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