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Method: This paper proposed a method, namely, positions first bootstrap step (PFBS)
random forest selection recursive feature elimination (RFS-RFE) and its abbreviation is
PFBS- RFS-RFE to enhance cancer classification performance. It used a bootstrap with
many positions included in the outer first bootstrap step (OFBS), inner first bootstrap
step (IFBS), and outer/ inner first bootstrap step (O/IFBS). In the first position, OFBS is
applied as a resampling method (bootstrap) with replacement before selection step.
The RFS is applied with bootstrap =false i.e., the whole datasets are used to build each
tree. The importance features are hybrid with RFE to select the most relevant subset
of features. In the second position, IFBS is applied as a resampling method (bootstrap)
with replacement during applied RFS. The importance features are hybrid with RFE. In
the third position, O/IFBS is applied as a hybrid of first and second positions. RFE used
logistic regression (LR) as an estimator. The proposed methods are incorporated with
four classifiers to solve the feature selection problems and modify the performance of
RFE, in which five datasets with different size are used to assess the performance of the
PFBS-RFS-RFE.

Results: The results showed that the O/IFBS-RFS-RFE achieved the best performance
compared with previous work and enhanced the accuracy, variance and ROC area
for RNA gene and dermatology erythemato-squamous diseases datasets to become
99.994%, 0.0000004, 1.000 and 100.000%, 0.0 and 1.000, respectively.

Conclusion: High dimensional datasets and RFE algorithm face many troubles in
cancers classification performance. PFBS-RFS-RFE is proposed to fix these troubles with
different positions. The importance features which extracted from RFS are used with
RFE to obtain the effective features.
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Introduction

Artificial intelligence (AI) is a science that plays an important role in all fields, especially
in the biomedical field, and it aims to simulate reality [1, 2]. Different AI applications
have been applied in this field for 20years due to many factors, including the availability
of different datasets in this field, computer devices with high capabilities and arithmetic
algorithms [2]. AI has great importance, as a survey has proven that it has great effec-
tiveness in health, and it will outperform the performance of specialists in this field. In
addition, it has proven effective in cancer research [2]. Furthermore, Al has become pro-
viding human specialists with many information and accordingly, the decision is taken,
as it has become one of the most important elements in the medical team [2]. It also
works to improve accuracy, speed up diagnosis and discover features or genes affecting
cancer as recommendations for human specialists to take into consideration [2]. Al is
considered a second decision that helps the specialist make their decision [2]. AI differs
from the manual method because it provides human specialists with more information
and details. Its diagnosis is more accurate and efficient and does not require more labor.

The manual method may be stressful for the patient, as it puts him under great pres-
sure and takes more time to know the results of the sample, which makes him tense [3].
Cancer has become very widespread in recent times, as it has become a major cause
of disease and death [4]. It can be defined as a group of more than one disease due to
abnormal cell growth or changes in genes, and it can occur anywhere in the body [5].
Many factors cause cancer including [6]: - (1) tobacco consumption, (2) poor diet, (3)
lack of physical activity, (4) alcohol, (5) radiation, (6) infection, (7) genetic factors, (8)
smoking and (9) age [6]. There are many different types of human cancer, but in this
paper, we used some types that included Breast Invasive Carcinoma (BR), Bladder
urothelial carcinoma (BL), Colon and rectum (CO), Glioblastoma multiform (GB), Head
and neck squamous cell (HN), Kidney renal clear-cell (KI), Parkinson’s disease (PD),
Prostate adenocarcinoma (PRAD) and Lung adenocarcinoma (LUAD).

There are enormous problems in big datasets involved in the features numbers, fit-
ting time, classification accuracy, and model performance. Feature selection is a process
for selecting the most relevant features and discarding insignificant ones. Feature selec-
tion plays a vital role in many directions to enhance the model performance [7-9]. This
process aims to select the most relevant subset r features from the original R features
set (r<R) in given datasets [9]. R includes all features in a dataset. It suffers from many
problems included in high dimension, noisy, repetitive and over-fitting. The ineffective
features are deleted. These features diminish the classification accuracy and waste time.
By deleting irrelevant features, all previous problems are solved and improved. Feature
selection procedures have three major types: filter, wrapper [9, 10], and embedded [11].
Filter procedure selects the features by evaluating their relevance of features. These fea-
tures are ranked in decreased order, and low-ranking features are omitted to obtain the
most relevant features [12]. The filter approach can use many measures included in gain
ratio, mutual information based feature selection (MIFS), information gain based feature
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selection (IGF), relaxed functional dependencies [9], and chi-square [10]. This procedure
does not depend on any machine learning and is faster than the wrapper procedure.
Despite its simplicity, it suffers from an over-fitting problem. The best subset of features
is selected depending on machine learning to estimate this subset [9, 10]. This procedure
suffers from expensive computationally when applied on high dimensions. On the other
hand, it guarantees to select the most relevant and effective subset of features. Feature
selection is an integral part of the classification model in the embedded procedure. It is
embedded in the phase of learning [11]. This procedure has many advantages, includ-
ing being less computationally expensive, reducing over-fitting problems, and selecting
the most accurate features. In this direction, we adopted the integration of wrapper pro-
cedure with embedded one to select the relevant features using proposed methods to
minimize the previous drawbacks and maximize the classification accuracy.

Selecting influencing features is an effective step in the classification process to obtain
accurate results. Many datasets always suffer from high dimensions problems, which
negatively affect the model performance’s accuracy. The feature selection step is consid-
ered one of the processes that positively impact solving many problems facing different
datasets. In this direction, many authors applied different feature selection algorithms
to minimize processing time, over-fitting, maximize classification accuracy and find the
most relevant features, which still need more researches to improve. Therefore, there are
numerous different methods for feature selection to fix the previous drawbacks included
in the filter, wrapper, and embedded methods. The filter method is simple, and it selects
the features based on their ranking according to a class. Still, it suffers from over-fit-
ting problems in high dimensions datasets and disregards feature dependencies. Elsadek
et al. [12] proposed a method using IGF to classify six human cancer types based on
DNA copy number variation (CNV) dataset. The proposed method selected 16,381 fea-
tures as the most relevant features. More than one learning algorithm is applied, such as
logistic regression (LR), support vector machine (SVM), random forest (RF), J48, neu-
ral network, bagging and dagging. LR learning algorithm achieved the best classifica-
tion accuracy of about 85% and ROC area 0.965. Rajit et al. [13] proposed selecting best
and select percentile filter methods. The proposed method used a breast cancer dataset.
There are more than one learning algorithms are used. LR classifier achieved a better
result. Furthermore, many filter methods are proposed by Pinar Yildirim [14]. Differ-
ent filter methods are applied in Cfs Subset eval, principal component analysis (PCA),
consistency subset eval, IGF, One-R attribute eval, and relief attribute eval. The pro-
posed method used the Hepatitis datasets and proved that the Consistency Subset, IGF,
One-R Attribute Eval, and Relief Attribute Eval filter methods achieved better results.
In addition, Alirezanejad et al. [15] proposed a filter method for gene selection using
two heuristic methods. These methods, namely, Xvariance and mutual congestion. The
Xvariance gave the best results with the standard datasets, while mutual congestion
enhanced the accuracy of high-dimensional datasets. Kuswanto et al. [16] proposed a
comparison method for feature selection using different filtering methods. Three filter-
ing methods included in MIFS, correlation based feature selection (CFS) and fast cor-
relation based feature selection (FCBF) are applied. The results of these methods are
forwarded to K-nearest neighbors (KNN) classifer. The results showed that the FCBF
selected a small number of features, while other methods performed well. Furthermore,
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Ghasemi et al. [17] proposed a method using IGF and gini index to select important
features. These features are used to early predict of heart disease. This proposed method
aimed to minimize the dimension and maximize the performance of the diagnosis of
heart disease with less medical experiments. Mahmood [18] proposed a method to
minimize a dimension for facial expression recognition dataset. Two feature selection
methods are applied to obtain minimum number of features included in Chi-Square
and Relief-F. These methods selected the first highest six features. Four different clas-
sifiers are applied to evaluate the performance. In addition, Spencer et al. [19] proposed
a method to predict heart disease dataset. Four proposed methods are used for feature
selection included in ReliefF, Chi-squared, symmetrical uncertainty and PCA. Different
machine learning classifiers are applied to create models for comparison. The best pre-
diction with less subset of features is selected using Chi-Square. Mohamed et al. [20]
proposed a method to obtain the most important subset of feature rather than the whole
dataset. Chi-square, IG and Bat algorithm are applied for feature selection. Many varie-
ties of classifiers are used to evaluate the model performance. Vikas et al. [21] proposed
a method to minimize processing time and maximize classification accuracy using lung
cancer detection. To select the most relevant features, Chi-square algorithm is applied.
Two different classifiers are used to evaluate the performance included in SVM and RE.
Many authors applied wrapper methods to solve the optimization problems and to
get the most important subset features using different datasets. AH et al. [22] proposed
an algorithm using the wrapper approach. The proposed algorithm enhanced the basic
salp swarm algorithm (SSA) to improve reliability, convergence speed, and classification
accuracy. The algorithm was enhanced by adding inertia weight to achieve better results.
Hegazy et al. [9] used the hybrid wrapper method by applying chaotic maps to improve
the performance of the salp swarm algorithm (SSA) and overcome its drawbacks. To
control the exploitation/exploration rates, they used five chaotic maps. The proposed
algorithm (CSSA) was applied on twenty-seven datasets and gave the best results.
Although it gave the best results using twenty-seven datasets, it did not achieve good
results using high-dimensional datasets. Sanaa et al. [8] proposed a wrapper method
included in particle swarm optimization (PSO) and genetic algorithm (GA) to classify
six human cancers types using DNA CNV dataset. The hybrid proposed method was
applied to minimize the features and maximize the classification accuracy. It selected
2051 features from 16,381 features. The selected features achieved 84.6% classification
accuracy. However, it suffered from many problems included in over-fitting, fitting time,
relevant features, and classification accuracy. RFE is considered a wrapper method for
feature selection. It suffers from time-consuming, especially when using big data. Li et al.
[23] proposed fixing the support vector machine recursive feature elimination (SVM-
RFE) problem. They first proposed random value-based oversampling as a resampling
method. The proposed variable step size (VSSRFE) to speed up the feature selection
process. Another method is proposed called linear SVM (LLSVM). The two proposed
methods are used together for feature selection. Jeon et al. [24] proposed a hybrid RFE
method using benchmark datasets. This proposed method used SVM-RFE, random for-
est RFE (RF-RFE), and gradient boosting machines RFE (GBM-RFE) methods which
combined the feature-importance-based RFE methods. There were two types of weight-
ing functions used in the proposed methods. The first type sums the weight of three
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proposed RFE methods, and the second one reflects the classification accuracies and
weights of features. Rani et al. [25] proposed a hybrid wrapper method by integrating
GA and RFE algorithms. This method is compared with other feature selection methods.
The proposed method improved the classification performance after canceling irrelevant
features. Zvarevashe et al. [26] proposed a method to select the most relevant subset
features using RFE algorithm based on RF. The proposed method was compared with a
deep learning algorithm. It proved its powerful for selecting features. Senan et al. [27]
proposed a method to select the relevant features using RFE algorithm for a kidney dis-
ease dataset. Four classification algorithms are applied for the classification step. The RF
algorithm gave the best results.

Many researchers used a hybrid method which combined filter and wrapper methods to
select relevant features, but it had many limitations that filter method may cancel impor-
tant features and wrapper methods take more time. High dimensional is another limita-
tion when applying this hybrid [28]. Ansari et al. [10] used filter and wrapper approaches
as a feature selection process. They proposed two different hybrid methods. F-score feature
ranker and Chi-square feature ranker are applied in the first method and took the intersec-
tion between them. The intersection between these features is applied to obtain the most
important features. The results of the intersection process are applied on binary particle
swarm optimization (BPSO) as a feature optimization approach. In the second one, after
the intersection between features, RFE approach is applied. Zhang et al. [7] proposed a
method to classify six human cancer types using CNV level values. Zhang selected the fea-
tures using the methods of mRMR (minimum Redundancy Maximum Relevance Feature
selection) and IFS (Incremental Feature Selection). The first method selected features by
ranking the importance of these features. This method selected 200 features. The second
method used IFS to select the optimal set of features. IFS selected 19 features with an accu-
racy value 0.75. However, this proposed method gave insufficient classification accuracy.
Pirgazi et al. [29] proposed a hybrid method using filter and wrapper for feature selection
in high dimensional datasets. In the first stage, they applied a filter method using the Relief
method to weight the features. In the second stage, they applied a wrapper method using
shuffled frog leaping algorithm (SFLA) and IWSSr algorithms. Mandal et al. [30] proposed
a hybrid method for feature selection using the filter and wrapper method. They applied
MIES, ReliefF, Chi-Square, and Xvariance for the filter method. The union for four filter
methods is applied to obtain the most important features. The wrapper method is applied
using Whale Optimization Algorithm to overcome any limitation in the filter method. Ven-
katesh et al. [31] proposed a hybrid method using MIES as a filter method and RFE as a
wrapper method. The hybrid method gave better results than the individual algorithms.
Gakii et al. [32] proposed comparison methods using three algorithms for feature selection
included in the PCA, RFE and graph-based feature selection. The results proved that the
graph-based feature selection enhanced the performance of sequential minimal optimiza-
tion and multilayer perceptron classifiers. In addition, researchers applied a hybrid method
using the advantages of both wrapper and embedded methods to obtain the most effective
features to solve the drawbacks in the previous studies. Liu et al. [28] proposed a hybrid
method using GA as a global search with an embedded regularization approach as a local
search. They proposed this method to solve the over-fitting problems and select relevant
features. It is compared with individual algorithms, proving its effectiveness for feature
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selection. Aruna et al. [33] proposed a hybrid method using LR and RFE algorithms for the
diabetes dataset. The RFE is based on LR as an estimator. The RF is applied for a classifi-
cation step. Venkatachalam et al. [34] proposed a hybrid method that combined the ridge
regression and RFE algorithms. It solved the problem of over-fitting for feature selection.
The proposed method is compared with other models. RF is applied for the classification
step.

Due to the previous research gaps, this paper presents the proposed method PFBS-RFS-
RFE with three positions to fix feature selection problems and improve the classification
model over different datasets. It tries to enhance many issues included in time consuming
using RFE algorithm, classification accuracy, over-fitting problems, fitting time and select
the most effective features to know the chromosome that is considered the most developing
human cancers in the datasets. Furthermore, we applied a resampling method to enhance
the classification accuracy and improve the over-fitting problem [35]. The bootstrap is a
resampling method that reduces the variance and bias between features; therefore, the
over-fitting problem is minimized, and classification accuracy is maximized. We utilize
PEBS as a resampling step with the hybrid RFS-RFE to reduce the over-fitting problem and
improve the classification accuracy. We compared the proposed methods with RFE, RFS,
and with previous work over five datasets. Four efficient supervised machine learning were
used to evaluate the model performance of the proposed hybrid feature selection methods.

The main contributions are summarized as follows: -

1. We propose hybrid methods, namely, positions first bootstrap step random forest
selection recursive feature elimination (PFBS-RFS-RFE) based on feature selection
that combines the advantages of the wrapper and embedded methods to solve many
feature selection problems, including over-fitting, time consuming, relevant features,
classification accuracy and solving the problem in RFE algorithm, which suffers from
time-consuming with high-dimensional datasets.

2. The motivation behind the proposed methods is to know the genes or features asso-
ciated with cancers; therefore, we can know the chromosome that is considered the
most developing human cancers by taking the average number of runs and the inter-

section between features.

The structure of the article is as follows. The “Introduction” section presents the feature
selection troubles and how previous work tried to solve them. The “Results” section pre-
sents the results of hybrid algorithm and the comparison with other studies using the same
datasets. The “Discussion” section summarizes and discusses the application of the hybrid
algorithm. The “Conclusions” section presents the main idea and the importance of the
proposed methods. The “Method” section presents the hybrid algorithm to enhance and
solve these troubles.

Results

The hybrid proposed methods applied two important stages included in feature selec-
tion and model performance. They are applied using proposed datasets to select the
effective cancer genes and improve the drawbacks included in over-fitting and classifica-
tion accuracy. The selected features are utilized to feed more than one classifier using 10
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cross-validations. The proposed classifiers are LR, support vector machine (SVM), RF and

bagging (Bagg). The proposed method is compared with the individual algorithm such as

RFE and RF and with the previous work. The proposed methods confirmed the results.

Performance metrics

Performance evaluation is a very important step in machine learning. Selecting the most

relevant features increases the classification accuracy and decreases the classification error.

We proposed a hybrid method to obtain the accurate classification value, therefore; we

fixed any previous drawbacks. The proposed methods are compared with individual algo-

rithms included in RFE and RES using the following metrics: -

The size of feature selection: - is the number of selected features.

Processing time: - is the time of the fitting process in second.

Performance accuracy is the percentage of the samples that are correctly evaluated by a
classifier.

Performance evaluation included: - Precision, F1-score, Recall, variance, Receiver oper-
ating characteristic (ROC) area, and Area under curve (AUC) [8, 12] is used to measure
the classification performance by plotting the relationship between True Positive (TP)
and False Positive (FP) rates.

The calculation formula is applied to evaluate the model performance using ensemble
and regularization classifiers with 10 cross-validation. Table 1 presents the meanings of
the symbols that used in the proposed methods. The calculation formula is as follows: -

TP
Precisi PPV) = ——
recision (PPV) TP L TP (1)
Recall (Sensitivity) 1P 2
eca ensitivl = ——
)= TP EN @

F1-Score — 2 % Prcclslon * Recall 3)
Precision + Recall

TP +TN
TP + TN + EN + FP

ACC (Accuracy) =

Table 1 The meanings of the symbol

Symbol Meaning

PPV
TP
™
FN
FP
SF
TF

Positive predictive value

Tue positive (cancer type diagnosed correctly as a cancer type)

True negative (non-cancer type diagnosed correctly non-cancer type)
False-negative (cancer type diagnosed incorrectly as non-cancer type)
False-positive (non-cancer type diagnosed incorrectly as a cancer type
The size of the selected features after applying the algorithm

The total size of features

Page 7 of 54
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Parameter setting

The experiments were run in Python on a pc with windows 10, R TM CPU 1.80 GHz,
and 8GB memory. All parameter values are determined based on domain-specific
knowledge or trial and error. The parameter setting for all proposed methods is given in
Table 2, with a simple declaration for each parameter.

Numerical results and discussion

The fundamental goal of these proposed methods is to enhance the performance of RFE
to reach the optimum subset features that show the most associated features (genes)
with cancers. Another goal of the proposed methods is to solve and fix the problem of
over-fitting between training and testing data. The proposed method was compared with
the original algorithms included in RFE and RFS. Table 3 presents the performance of
the individual algorithms such as RFE and RF using the proposed classifiers LR with 10
folds stratified cross-validation before applying the feature selection proposed methods.
Stratified cross-validation splits data into folds to ensure that the ratio between label
classes is the same in each fold as in the full data.

In Table 3, the RFE algorithm spent more time on feature selection with high-dimen-
sional datasets. Therefore, it did not achieve good results for classification accuracy. The
Parkinson’s disease dataset shows that the classification accuracy achieved low results
before applying the proposed methods. Using the BreastEw dataset, we can notice that
both RFE and RFS achieved the best results before applying the proposed methods. Still,
we need to reach optimal classification accuracy with the smallest subset features. The
terms Algo., over-fitting Diff.,, Pre, Rec, NO.E, F-Time, C-Time, and var. referred to pro-
posed algorithms, difference percentage between training and testing dataset, Precision,
Recall, Number of selected features, Fitting time of feature selection, classification fitting
time and variance, respectively.

We noticed the previous results that the single algorithms suffered from many
problems in the fitting time of feature selection (F-Time), classification fitting time
(C-Time), number of selected features, over-fitting, and classification accuracy. There-
fore, we proposed the methods to fix any previous problems in original algorithms

Table 2 The meaning of parameter setting

Parameter Value Definition

NRuns 20 No of runs

Problem Dimensions - No of features in the dataset.

X 2916 The number of data produced after the bootstrap resamples method.
M 100 The number of trees using in the Random Forest algorithm.
Criterion - The method which measures the quality of split, Entropy is applied.
min_samples_leaf 100 The minimum number of samples required to be at a leaf node.
RFE estimators - A supervised learning algorithm. LR is applied.

C 0.05 Regularization parameter.

Max-iteration 100 Max iteration in LR classifier.

Tol 0.0001 Tolerance to stop criteria in LR classification.

v 10 No of folds in cross-validation.
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when run as a single algorithm and obtain the most effective cancers genes. In addi-
tion, we noticed that the single algorithms did not give the best results, so we applied
a hybrid method using the wrapper and embedded procedure.

In Table 4, the average results of the proposed method OFBS-RFS-RFE are pre-
sented using stratified cross-validation with proposed classifiers included in LR,
SVM, RF and Bagg. The proposed methods are run 2o times to obtain the best
results. The PFBS has many positions of the first bootstrap step included in OFBS,
IFBS and both outer and O/IFBS. The following table presented the OFBS-RFSRFE
after 20 runs.

For more illustration, in Table 4, the proposed method using OFBS-RFS-RFE
enhanced the performance of RFE algorithm. The over-fitting percentage was
reduced from the RNA gene dataset after applying previous classifiers, so the
accuracy difference between training and testing dataset was reduced compared
with the single algorithm. The LR classifier achieved the best classification accu-
racy result with 99.981%, while the SVM classifier gave the best variance result
with 0.0000002. From DNA CNYV dataset the difference between training and test-
ing became 2.442 and 2.763% using LR and Bagg classifiers, respectively, and the
accuracy results were increased with 91.020 and 92.762%, respectively using the
same classifiers. In addition, the variance between features was reduced using the
same classifiers to become 0.00028 and 0.00023, respectively. The OFBS-RFS-RFE
enhances the over-fitting and variance and minimizes features’ fitting time and
number. From the Parkinson’s disease dataset, the classification accuracy, preci-
sion, recall, fl1-score, AUC and variance are enhanced to 95.000%, 0.945, 0.906,
0.922, 0.985 and 0.00062, respectively using RF classifier. It suggested that only
113.85 features were good enough for the classification step with 1.134's as a com-
putational time. In addition, for dermatology erythemato-squamous diseases data-
set, RF classifier gave the best classification accuracy, precision, recall, f1-score,
AUC and variance to become 100.000%, 1.000, 1.000, 1.000, 1.000 and 0.0. On the
other hand, the OFBS-RFS-RFE using the BreastEw dataset achieved the best com-
putational time after applying LR and SVM in contrast with the other optimizer.
We can notice that the RF gave the best over-fitting percentage, precision, recall,
f1-score, AUC, variance, and accuracy to become 2.00%, 0.983, .979, 0.982, 0.997,
0.000302 and 98%, respectively.

In Table 5, the average results of the proposed method PFBS-RFS-RFE using IFBS after
20 runs are presented. The different positions of bootstrap lead to different results. The
IFBS used the bootstrap step inside the RFS algorithm for feature selection.

For more illustration, in Table 5, the SVM classifier achieved the best classification
accuracy and variance results with 99.988% and 0.0000002, respectively. Although the
inner position gave the best results using RNA gene dataset, but it did not give the
best result for other datasets.

In Table 6, the average results of PFBS-RFS-RFE using O/IFBS after 20 runs are pre-
sented. In this position the FBS is placed before selecting the features and during the
feature selecting algorithm.
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For more illustration, in Table 6, the accuracy and variance results are increased from
the RNA gene dataset to 99.994% and 0.0000004, respectively, using LR classifier. Bagg
classifier gave the best accuracy and variance results using DNA CNV dataset to become
92.834% and 0.00027, respectively. In addition, RF classifier gave the best accuracy and
variance using dermatology erythemato-squamous diseases dataset to become 100% and
0.0, respectively. At the same time, the O/IFBS-RFS-RFE did not give good results for
other datasets.

In Fig. 1, the classification accuracy using the proposed methods is illustrated using
all datasets. We can notice that RNA gene dataset achieved the best results with O/
IFBS using LR classifier, while the DNA CNV dataset achieved the best results with O/
IFBS using Bagg classifier. In addition, the Parkinson’s disease dataset achieved the best
results with OFBS using LR classifier. The dermatology erythemato-squamous diseases
and breast datasets achieved the best result using RF classifier with both OFBS and O/
IFBS.

In Fig. 2, the number of selected features using the proposed methods is showed on
all datasets. From this figure, we can note that the best algorithm that gave the smallest
number of features was O/IFBS with RNA gene, Parkinson’s disease, dermatology ery-
themato-squamous diseases and breast datasets. On the other hand, the IFBS algorithm
achieved the smallest number of features using DNA CNV dataset.

In Fig. 3, the variance of the proposed methods is illustrated. We can notice that the
RNA gene dataset using LR and SVM classifiers gave the best variance results with all
position of bootstrap. On the other hand, the DNA CNV dataset achieved the best
variance result using the Bagg classifier with OFBS. In addition, the Parkinson’s disease
dataset achieved the best variance result using SVM classifier with OFBS. OFBS and O/
IFBS achieved the best variance result using RF and Bagg classifiers for dermatology ery-
themato-squamous diseases dataset. For Breast dataset, the RF classifier gave the best
results with OFBS.

Comparison with other studies

The results before and after PFBS-RFS-RFE are compared. In addition, these results are
compared with the previous work using the same datasets. Table 7 showed the com-
parison before and after applying PFBS-RFS-RFE after 20 runs. The proposed methods
improved the results and solved feature selection problems in high dimensions. Table 8
presented the results of the previous studies using the same dataset.

The proposed methods were compared with filter ones methods using MIFS, IGF and
mRMR. Tables 9, 10 and 11 showed the results of MIFS, IGF and mRMR for all data-
sets. For MIFS method, the results proved that the LR classifier gave the best accuracy
for RNA gene and DNA CNV datasets, while the RF classifier gave the best accuracy
for Parkinson’s disease and BreastEW datasets. In addition, SVM classifier gave the
best results for dermatology erythemato-squamous diseases dataset. For IGF method,
LR classifier gave the best accuracy for RNA gene dataset. SVM classifier gave the best
results for DNA CNV and dermatology erythemato-squamous diseases datasets, while
the RF classifier gave the best accuracy for Parkinson’s disease and BreastEW datasets.
Furthermore, mRMR achieved the best results for RNA gene dataset using LR classifer,
while SVM classifier gave the best results for DNA CNV dataset. In addition, RF classifer
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Classification accuracy for all datasets

120

mOFBS mIFBS mO/IFBS
Fig. 1 Comparison between proposed methods on all datasets using classification accuracy

Number of selected features using all datasets
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Fig. 2 Number of the selected features using all datasets

Variance for all datasets using proposed method
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Fig. 3 Variance of the proposed methods using all bootstrap positions
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Table 8 Achievement of accuracy in different research for cancer classification using the same
datasets [7-9, 12, 36, 37]

Reference Dataset FS Approach No of Var. AUC ACC
selected %
features

Garcia-Diaz et al. [36] RNA gene GGA 49 0000303 - 98.810

Zhang et al. [7] DNA CNV MRMR & IFS 19 0.000580 0.973 75.000

Sanaa et al. [8] PSO & GA 2050 - 0.961 84.600

Sanaaetal. [12] IG 16,381 - 0.965 85.900

Sakar et al. [37] Parkinson’s disease 'mMRMR 50 - - 85.000

Hegazy et al. [9] BreastEw CSSA 5.200 - - 97.080

achieved the best results for dermatology erythemato-squamous diseases, Parkinson’s
disease and BreastEW datasets. Although filter ones methods improved the results, they
did not give better results than the PFBS-RFS-RFE.

The proposed methods were compared with many different filters methods as cited in
the introduction section included in CfsSubsetEval, ReliefAttributeEval, OneRAttribu-
teEval, ConsistencySubsetEval and PCA methods. Tables 12, 13, 14, 15 and 16 showed
the results of these different filters methods. The ReliefAttributeEval method achieved
the best results for RNA gene and BreastEW datasets, while ConsistencySubsetEval
method gave the best results for DNA CNV dataset. In addition, CfsSubsetEval method
gave the best results for Parkinson’s disease dataset, while the PCA method gave the best
results for dermatology erythemato-squamous diseases dataset. Although filter methods
improved the results, they did not give better results than the PFBS-RFS-RFE.

Table 17 showed the comparison between the proposed methods, MIFS, CBF and
FCBF methods as cited in the introduction section. The CBF gave the best results
for RNA gene dataset, while FCBF method gave the best results for DNA CNV, Par-
kinson’s disease and BreastEW datasets. In addition, MIFS gave the best results for
dermatology erythemato-squamous diseases dataset. These methods did not give the
best results when compared with the PFBS-RFS-RFE.

Table 18 showed the proposed methods compared with the Chi-square method as
cited in the introduction section using SVM and RF classifiers. The SVM classifiers
gave the best results for RNA gene and DNA CNV datasets, while RF classifier gave
the best results for, Parkinson’s disease, BreastEW and dermatology erythemato-squa-
mous diseases datasets. This method did not give the best results when compared
with the PFBS-RFS-RFE.

Table 19 showed the proposed methods compared with the IGF, Chi-square and Bat
algorithm as cited in the introduction section. The Bat algorithm gave the best results
for RNA gene, DNA CNV and BreastEW datasets, while Chi-square method gave the
best results for Parkinson’s disease dataset. In addition, the IGF method gave the best
results for dermatology erythemato-squamous diseases dataset. These methods did
not give the best results when compared with the PFBS-RFS-RFE.

Table 20 showed the comparison between the PFBS-RFS-RFE and other filter ones
methods. The results showed that the PFBS-RFS-RFE gave the best results when com-
pared with other filter ones methods.
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Table 20 The comparison between the PFBS-RFS-RFE and other filter ones methods

Algorithm ACC% NO.F Pre Rec F1-score AUC Var.
MIFS 99.875 10,000 0.999 0.998 0.988 1.000 0.000016
IGF 99.875 3576 0.999 0.999 0.998 1.000 0.000016
mRMR 99.750 650 0.999 0.997 0.998 1.000 0.000028
CfsSubsetEval 99.627 4083 0.998 0.996 0.997 1.000 0.000036
ReliefAttributeEval 99.873 10,000 0.999 0.999 0.999 1.000 0.000031
OneRAttributeEval 99.627 7000 0.998 0.996 0.997 0.999 0.000036
ConsistencySubsetEval 97.380 3 0.972 0.970 0.970 0.994 0.000188
PCA 99.740 700 0.999 0.997 0.998 0.999 0.000059
MIFS, CBF and FCBF 99.748 900 0.999 0.997 0.998 1.000 0.000092
Chi-square 99.625 7555 0.997 0.995 0.996 1.000 0.000036
IGF, Chi-square and 99.752 6483 0.999 0.997 0.998 1.000 0.000027
Bat algorithm

Proposed method 100.000 10.000 1.000 1.000 1.000 1.000 0.0

(PFBS-RFS-RFE)

The proposed methods were compared with some hybrid-recursive feature elimina-
tion methods as cited in the introduction section. Table 21 showed the resultsof the
hybrid-recursive feature elimination methods for all datasets using RFE and LR. The
results proved that this hybrid method gave the best results for RNA Gene, dermatol-
ogy erythemato-squamous diseases and BreastEW datasets. This hybrid method did
not give the best results when compared with the PFBS-RFS-RFE.

Another hybrid method is applied to show the comparison between the proposed
method and hybrid method using GA and RFE. Table 22 showed the results of the
hybrid method using GA and RFE. The results proved that this hybrid method gave
the best results for RNA gene and BreastEW datasets. This hybrid method did not
give the best result when compared with the PFBS-RFS-RFE.

In addition, the proposed method was compared with another hybrid method using
ridge regression and RFE. Table 23 showed the results of the hybrid method using
ridge regression and RFE. The results proved that this hybrid method gave the best
results for RNA gene, dermatology erythemato-squamous diseases and BreastEW
datasets. This hybrid method did not give the best result when compared with the
PFBS-RFS-RFE.

Table 24 showed the comparison between the PFBS-RFS-RFE and other RFE hybrid
methods. The results showed that the PFBS-RFS-RFE gave the best results when com-
pared with other RFE hybrid methods.

After the number of runs, the selected features are intersected to know the genes
(features) associated with cancers which considered the most developing human can-
cers. Table 25 presented the features after the intersection, which played an impor-
tant role in knowing the most genes and features developing human cancers.

For DNA CNV dataset, the PHACTR4 was associated with prostate, breast andcolon
cancer [59], while RPA2 was associated with breast cancer [41]. We can noticethat the
proposed method achieved the best results and reached the most effectivegenes that
develop human cancer. For dermatology erythemato-squamous diseasesdataset, the age,
itching and spongiosis features were associated with psoriasis dis-ease [56, 58].
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Table 24 The comparison between the PFBS-RFS-RFE and other RFE hybrid methods

Algorithm ACC% NO.F Pre Rec F1-score  AUC Var.
MIFS and RFE 99.501 4500 0794 0715 0723 1.000  0.000041
GA and RFE 99.750 3123 0.999 0.997 0.998 1.000 0.000028
Ridge regression and RFE 99.627 10265 0998 0830 0831 1.000  0.000036
Proposed method (PFBS-RFS-RFE) 100.000 10.000 1.000 1.000 1.000 1.000 0.0
Discussion

The proposed PFBS-RFS-RFE was applied to classify different human cancer using big,
medium and small datasets and other medical dataset. It used five different datasets.
PFBS-RFS-RFE was proposed to enhance drawbacks included in over-fitting, time-con-
suming, high dimension, variance and classification accuracy. The PFBS was applied in
different position to obtain different results. It was applied using three positions outer,
inner and outer/inner. After applying PFBS, the RFS algorithm for feature selection was
applied to select the most relevant features and reduce time consumption in RFE algo-
rithm. RFE algorithm was used to obtain the final relevant subset of features with higher
classification accuracy results.

The OFBS-RFS-RFE method achieved the best results using all datasets. The RF classi-
fier achieved the best classification accuracy with 100% using dermatology erythemato-
squamous diseases dataset with 0.0 variance results. The features and time were reduced
to become 16.000 and 0.500, respectively. Furthermore, LR classifier achieved the best
classification accuracy result with 99.981% using RNA gene dataset, while the SVM clas-
sifier gave the best variance result with 0.0000002. The number of features and time were
reduced to become 142.500 and 0.192s, respectively. From DNA CNV dataset the dif-
ference between training and testing was reduced using LR and Bagg classifiers, and the
accuracy results were increased with 91.020 and 92.762%, respectively using the same
classifiers. In addition, the OFBS-RFS-RFE reduced the variance between features to
become 0.00028 and 0.00023, respectively, using the previous classifiers. The number of
features and time were reduced to become 675 and 2.147s, respectively.

From Parkinson’s disease dataset the classification accuracy and variance are enhanced
to become 95.000% and 0.00062, respectively using RF classifier. The features were
reduced to 113.85 features which well enough for classification step with 1.134s as a
computational time. From BreastEw dataset the best computational time was after
applying LR and SVM in contrast with the other optimizer. The RF gave the best vari-
ance and accuracy to become 0.000302 and 98%, respectively. The features and time
were reduced to become 0.070 and 0.070s, respectively.

The IFBS-RFS-RFE not achieves the best results in all datasets. The SVM classifier
achieved the best classification accuracy and variance results from the RNA gene data-
set with 99.988% and 0.0000002, respectively. The features and time were minimized to
125.25 features and 0.153s, respectively. For other datasets it did not give good results.

The O/IFBS-RFS-RFE achieved the best results for dermatology erythemato-squa-
mous diseases dataset. RF and Bagg classifiers gave the best results with 10 features.
The classification accuracy, variance and time were improved to become 100%, 0.0 and
0.500, respectively. In addition, The O/IFBS-RFS-RFE achieved the best results in high
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Table 25 The selected features after intersection [38-58]

(2022) 15:24

Datasets

RNA gene

DNA
CNV

Parkinson's
disease

BreastEW

Datasets

No.
Intersection
Features

1
12

No.
Intersection
Features

Feature indices
or feature names

G110

PPP1R8

SCARNA1

RPA2

SMPDL3B

XKR8

PHACTR4

RCC1

SNHG3

SNORD99

SNORAT6A

RABA42

TFA12

IMF_SNR_TKEO
IMF_NSR_TKEO
mean_MFCC_1st_coef
mean_4th_delta_delta
mean_5th_delta_delta
mean_6th_delta_delta
mean_7th_delta_delta
Radius

Feature indices
or feature names

Feature or gene Description

Through alternative splicing, three
this gene encodes

different isoforms [38].

Small Cajal body-specific RNA 1
[38].

Protein A (RPA) complex is
encoded by this gene [38].
Sphingomyelin phosphodiester-
ase acid like 3B [38].

Promotes phosphatidylserine
exposure apoptotic cell surface,
possibly by mediating phospho-
lipid scrambling [43].

A member of the phosphatase
and actin regulator (PHACTR)
family are encoded by this gene
[38].

Regulator of chromosome con-
densation 1 [38].

Small nucleolar RNA host gene
3[32].

Small nucleolar RNA, C/D box 99
[38].

Small nucleolar RNA, H/ACA

box 16A [38].

Member RAS oncogene family
[38].

This gene Control of transcription
by RNA polymerase Il

[38].

Can be defined as the mean of
distances from center to points
on the perimeter [51].

Feature or gene Description

Reference
in cancer

(51]

Reference
in derma-
tology

Page 44 of 54
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Table 25 (continued)

Dermatology 5 Borders The border of the lesion which [53]
erythemato-squa- important for diagnosing and for
mous diseases other features [52, 53].

Parakeratosis Nucleated keratinocytes are [54]

existed in the stratum corneum
due to accelerated keratinocytic
turnover [54].

Spongiosis Intraepidermal eosinophils is [55, 56]
existed in spongiotic zones [55].

Itching [tching is a bad feeling that causes  [56]
itching continuously, which
affects the human psyche [57].

Age The age at disease onset [58]. [58]

dimension datasets using RNA gene. The LR classifier increased the accuracy and vari-
ance results to 99.994% and 0.0000004, respectively. From DNA CNV dataset, the Bagg
classifier gave the best accuracy and variance results to become 92.834% and 0.00027,
respectively. At the same time, the outer/inner position did not provide good results for
other datasets.

For future work, our proposed method will apply the incremental feature selection
(IFS) for different datasets using PFBS. The IFS will select the most relevant subset fea-
tures to minimize the time when using all features and overcome the feature selection
drawback.

Conclusions

In our study, new hybrid methods are proposed to enhance cancers classification per-
formance using different size of datasets. The PFBS using EDF equation is enhanced the
RFS and RFE performance. Many bootstrap positions are applied to improve the prob-
lem of over-fitting and to fix the feature selection problems. Furthermore, our proposed
methods achieved high results using different size of datasets. It is compared with previ-
ous work and it gave high results.

Method

Dataset description

We used five healthcare datasets in the experiments. The DNA CNV dataset is used in
[7, 8, 12] and downloaded from the cBioPortal for Cancer Genomics [59-61] to classify
different types of human cancers. The other four datasets are downloaded from the UCI
machine learning repository [62] and used in [9, 23]. A brief description of each adopted
dataset is presented in Table 26.

The proposed hybrid feature selection methods

The main motivation of the proposed methods is to select the most important and rel-
evant features from all original features. This step is considered vital and plays a signifi-
cant role in obtaining good classification results. Non- influencing features waste time
and lead to many complex problems included in poor classification accuracy, over-fitting,



Abdelwahed et al. BioData Mining

(2022) 15:24

Table 26 Datasets Description
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Category Type DS No. Datasets #Features #Samples #Class
Small <100 D1 BreastEW 30 569 2

D2 Dermatology erythemato- 34 366 6

squamous diseases

Medium D3 Parkinson'’s disease 753 756 2
100< D2 < 1000
Large D4 DNA CNV 16,381 2916 6
1000<D<21,000 D5 RNA gene 20,531 801 5

and feature size. The wrapper method for feature selection selects the features based on

machine learning to find optimal features, but it takes more time to obtain these features

and has chances of over-fitting problems. On the other hand, the advantage of embed-

ded methods for feature selection is that the selected features are embedded in machine

learning or during the model building process. It is applied to reduce the over-fitting

NRUNS=20
Different
dataset
RNA DNA Parkin- Breast-
Gene CNV son's EW
| PFBS |
e |1 { !
— [ ores | [ omes | [ s |
Improve the A ‘ Y
performance | RFS | | RFS | I RFS I ........................
Random method while creating Bootstrap method while creating  Bootstrap method while creating
training samples training samples training samples
Impo!ance Impoia nce Hybrid of the wrapper
features features features and embedded
methods
>I RFE - LR (as an estimator) } ~~~~~~~
20
subsets
| o I Best features | | Best features | Best features |
intersection
Classifiers

Most effective
features

+

Gene and features associated
with cancer

\Z/

Fig. 4 Hybrid proposed methods for feature selection

T

N

5 e



Page 47 of 54

(2022) 15:24

Abdelwahed et al. BioData Mining

'S0IN)B9yY
juepodwir 3s9q 9y} se YIoM Iy} 0} SUIPIOJOB SAINJEIJ Ay} JO J[ey Y} 109[9S— AdAY 6
‘yIrom
110y} 0) SUIPIOOOE SAINE) PaIos pue S Yl PIm sionisse[d (Y Y1) wreil— 9.09 '8
(u “dass J03RWINS?) Y — SA L
1Y SuIsn uonoI[Is AINIBd J#
S9INJBJ 19SqNS 359q Y} WINY — SAY 9
"ONJeA SIY} IOPUN SAINJBIJ O} QAOWIAI PUL ON[RA P[OYSAIY) O} SUIULINNO( @
'soInjedy Jo doueroduwir oY) 110G e
*J Ul 21Me9J 1s9q oy uo Jdg e
* ] JO 19sqNS JSI[[BWS ) SB J OYBIA @
:9pou yoes 1y °¢
'sown g ‘¢ dojs pue ¢ dogs yeadoy ¢
"S99I} JA| 9Y} WOIJ 931} UOISIOAP € BN '€
‘TN 9ZIS Y3Im Jaselep Jo djoym Sursn sojdwes Sururen ojear) ‘g

Sy SuIsn uoI3o9[as MBI J#

densiooq 101no 10y 103094 d[dwes densjooq uuimar /Oy ExCy‘ly = x — S0 1
suonsod dens100q 3s11J JUSIIYIP SUISh UONJOI[OS AINIBI,I#
‘ool F1Y-SAY-SHAO Joye suwnjod saInjesj Jo Joquinu oy st 404 g
pue smou so[duwes Jo roqunu oy s1 § 219ym ‘Hy ays SuiA[dde 1oe 4814, X § 9ZIS JO 103024 :IndynQ
*(JN) 1S9I0J WOPULI UT $99T) JO IOQUINU ‘SUTUN[0D ‘SOINJed] [e

Jo Joquunu oy S1 1% pue smol sojdures Jo Joquunu Y ST § 2I9yM ‘UIE X § 9ZIS JO J0309A 2Injedy Induy

HAd-SA¥-Sg40 Suisn poypowt pasodoid pLqAy isiyy Ay, ] WyILOS[Y

3449-544-5940 Buisn poyisw pasodoid pLgAY Is1y 9U1 JO | WYIIoD|Y LT 3|qeL



Page 48 of 54

(2022) 15:24

Abdelwahed et al. BioData Mining

"$21njed) Jueprodwr 1soq Ay} Sk JYS1oM J1dY) 01 FUIPIOIIL SAINBIJ A} JO JTeY Y} 199[9S— A4 '8
‘JYS1oM I107]) 0} SUIPIOIOR SAINJBJ PALIOS Pue S Yl s SIdISse[do (T W) uelil— Jd 'L
(u ‘dos “x01RUINS?) ALY — SA 9

A4 SuIsn UOII09[AS 9INIBI J#

SOINJBIJ 13sqNS 359q Ay WY — SAY 'S
"ON[BA SIY} JOPUN SOINJBIJ Y} SAOWIL PUEB dNJBA P[OYSAIY) O} SUIULIAIO(] e
'saInyed) Jo doueprodwir oy} 110G e
‘J Ul 2In3e9J 3599 Y} uo JdS e
"] JO 19sqns Jsa[[ewWS Y} Sk J NRIA @

:29pou OB 1Y §

'sown g ‘¢ dois pue g dojs jeaday ‘¢

"S901) Al O} WOIJ 901} UOISIOAP € BN T

‘TN 9z1s Y Surduesar densjooq Sursn sojdwes Sururen) 91ea1) “|

SAY SuIsn UONOJ[IS AINJBI J#

poyow FIY-SAY-SH AT 193Je SUWN[0d SINJEIJ JO JdqUUNU ) ST ¥y

pue smo1 sojdwes Jo Joquunu oy} SI § IYM ‘A 9yp Surk[dde 105 4848, X § 9ZIS JO 103094 :IndinQ
"(JA) 15210J WOPURI UI $33J) JO JOQUINU ‘SUWN[0D ‘SAINILIJ [[B

Jo 1oquinu dy st 1] pue smol sojdues Jo oquunu ) SI § 219yMm ‘%] X § 9ZIS JO 103094 o1njed) :ynduy

AAY-Sd-Sd 1 Suisn poyjowr pasodord prIgAY puodag oy, :g WYIIOF|Y

344-S44-5941 Buisn poyisw pasodoid pLgAy puodss ay3 Jo 7 wyiobly 8z sjqeL



Page 49 of 54

(2022) 15:24

Abdelwahed et al. BioData Mining

'SaInyea)
jueprodwir 31s9q oY) se YSPM I19Y) 0) JUIpIOddL SaIMBIY Y} JO J[eY Y} 199[9S— A4 ‘6
‘ySrom
119y} 01 SUIPIOddE SAINJEBY) PINOS PuB SAY oY Yum sIoIsse[d (1 YT) Well— g4 '8
(u ‘doys “1072WMS?) FIY — S L
A4 SuIsn U003 INJLD J#
S9INJB9J 19SqNS 1599 oY) WY — SAY 9
*oNJeA SIY) JOPUN SOINJLdJ J} SAOWAI PUB dN[BA P[OYSIIY} Y} QUL T
"saInjedy Jo douepoduwir oy) 10§ [ |
‘J ur a1myeay 3s9q a3 uo Npdg o[
' JO 1osqQns 1SA[[BWIS oY) SB J BN 6
19pou YoBd 1y °¢
‘'sown g ‘¢ das pue g dojs jeadoy §
"$921) [N 9} WIOJJ 931) UOISIOAP B AYRIN "€
‘N 9z1s yim Surjdwresar densjooq Sursn sojdwes Jururer) ayear) g

ST Sursn uo1309[es oINIed J#

densjooq 191n0 10J 103004 ordwres densjooq uingar ;- Oy ExCxy‘ly = ¥ —SgJ0 I
suonisod densjooq 1s11j 19)no 3uIsn UOIII[IS dINJBI J#
‘poyiowt FIY-SAY-SHAL/O 19)e SUWN[0d SOINJEsJ JO JOqUINU oY) ST &ad
pue smou sajdures Jo roqunu oy} s1 § a1oym ‘g oy Suk[dde 1oye dIN ] x S 9ZIS JO 103094 :3ndinQ
“(JAD) 15910] WOPUELI UL $391) JO JOqUINU ‘SULIN[OD ‘SAINJLd] [[e

Jo Joquinu oy ST I%,] pue smol sojdures Jo Ioquinu dy} SI § 219y ‘] X § 9ZIS JO 10309A d1njed) :ynduy

HAY-SAY-S4d1/0 Suisn poypow pasodoid pLqy puy oy, :¢ WpLOI[y

344-S44-5941/0 Buisn poyrsw pssodoid pugAy paiyl sy Jo € Wbl 6z d1qeL



Abdelwahed et al. BioData Mining (2022) 15:24 Page 50 of 54

problem, reducing the variance between features. Based on the advantages of the two
previous methods, we proposed hybrid methods for feature selection to obtain the most
relevant subset feature. The proposed methods are shown in Fig. 4. Resampling method
with different positions is applied to minimize the over-fitting problem and maximize
the classification accuracy. After the resampling step, the most important features are
selected using RES algorithm. The hybrid between resampling and RF algorithms are
applied to solve many problems such as (1) time consuming when using RFE algorithm,
(2) over-fitting problem, (3) the most relevant features, and (4) classification accuracy.
The wrapper method is applied to select the most important features, therefore; reduce
the datasets dimensional and maximizing the classification accuracy. The RFE using
LR classification as an estimator is integrated with the previous features to achieve the
desired goals.

First bootstrap step as a resampling method

A lot of high-dimensional datasets suffer from over-fitting problems and low classifica-
tion accuracy. We apply the FBS step as a resampling method to avoid these problems.
The bootstrap samples are drawn with replacement as the same size of the original data.
Given the original datasets X=X, X,, X3, ccccou. , Xo With O observations with a distri-
bution function called empirical distribution function (EDF). The bootstrap sample is
denoted as X =X}, X*Z, X#3, ....... , X*O. The (EDF) is denoted as follows [63]: -

O
Fo(t)y =) 1(X; <t)/0O (5)

I=1

Where I(-) denotes the indicator function, the bootstrap resampling method is applied
in many positions to achieve the desired task. The first position of bootstrap is before
selecting the essential features called OFBS, but we need to apply different positions
to obtain the best results. In this position the EDF is applied as a resampling method
before selecting features. The IFBS is applied during selecting the feature selection. On
the other hand, the O/IFBS is applied before and during selecting features. All bootstrap
positions are applied to overcome the over-fitting and classification accuracy. After these
positions, the classification accuracy and over-fitting problems are improved. Therefore,
the proposed positions selected the most relevant features.

Feature selection using random Forest (RFS)

A random forest algorithm is applied for feature selection to improve the performance
of the classifiers, reduce the over-fitting problem and time consuming due to the disad-
vantage of RFE algorithm. It is considered the embedded feature selection that interacts
directly with classifiers and reduces the time complexity found in the wrapper method.
The RES algorithm can identify the importance of the feature. The training samples are
created using bootstrap when applying IFBS method but using all datasets to create
samples when applying OFBS to improve the over-fitting and classification accuracy. The
trees are constructed with a specific size. Select M trees from the dataset to build the
decision trees. Decision trees are constructed from the M trees and they are repeated
B times. Construct the smallest subset of features F at each node and separate the best
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features for F by Gini importance scores. It is sorted the features according to their
scores from smallest to largest. The features below the threshold will be eliminated.

Recursive feature elimination (RFE)

Selecting the most significant features is the main goal in the classification step. In this
direction, we applied RFE algorithm to select the most important features therefore;
reach to the chromosome which considered the most developing human cancers. RFE
is an instance of backward feature elimination. The classifier estimator is trained on the
initial set of features and these features are sorted according to their weights. The fea-
tures with the smallest weights are removed because these features are not important
during the classification process. The previous steps are repeated until the most relevant
features are reached. RFE is applied with LR as an estimator. The classification accuracy
is improved after applying the proposed method. The step size is proposed in the RFE
method called recursive feature elimination with cross-validation (RFECV) to achieve
the best results. The features are sorted according to their importance at each step, and
the smallest ranked feature is deleted. The proposed methods are presented in Tables 27,
28 and 29 as follows:

Abbreviations

RFE Recursive feature elimination

RFS Random forest for selection

PFBS Positions first bootstrap step

PFBS-RFS-RFE Positions first bootstrap step random forest selection recursive feature elimination
OFBS Outer first bootstrap step

IFBS Inner first bootstrap step

O/IFBS Outer/Inner first bootstrap step

MIFS Mutual information based feature

IGF Information gain based feature selection
CNV Copy Number Variation

LR Logistic regression

SVM Support vector machine

PCA Principal component analysis

CBF Correlation based feature

FCBF Fast correlation based feature selection
KNN K-nearest neighbors

SSA Salp swarm algorithm

CSSA Constant salp swarm algorithm

PSO Particle swarm optimization

GA Genetic algorithm

LLSVM Linear support vector machine

GBM-RFE  Gradient boosting machines RFE

BPSO Binary particle swarm optimization

mRMR Minimum redundancy maximum relevance
IFS Incremental feature selection

SFLA Shuffled frog leaping algorithm

EDF Distribution function called empirical distribution function
RFECV Recursive feature elimination with cross-validation
ROC Receiver operating characteristic

PPV Positive predictive value

TP True positive

™ True negative

FN False-negative

FP False-positive
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