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Abstract 

Background:  Nowadays, patients with chronic diseases such as diabetes and hyper‑
tension have reached alarming numbers worldwide. These diseases increase the risk 
of developing acute complications and involve a substantial economic burden and 
demand for health resources. The widespread adoption of Electronic Health Records 
(EHRs) is opening great opportunities for supporting decision-making. Nevertheless, 
data extracted from EHRs are complex (heterogeneous, high-dimensional and usually 
noisy), hampering the knowledge extraction with conventional approaches.

Methods:  We propose the use of the Denoising Autoencoder (DAE), a Machine Learn‑
ing (ML) technique allowing to transform high-dimensional data into latent representa‑
tions (LRs), thus addressing the main challenges with clinical data. We explore in this 
work how the combination of LRs with a visualization method can be used to map the 
patient data in a two-dimensional space, gaining knowledge about the distribution 
of patients with different chronic conditions. Furthermore, this representation can be 
also used to characterize the patient’s health status evolution, which is of paramount 
importance in the clinical setting.

Results:  To obtain clinical LRs, we considered real-world data extracted from EHRs 
linked to the University Hospital of Fuenlabrada in Spain. Experimental results showed 
the great potential of DAEs to identify patients with clinical patterns linked to hyper‑
tension, diabetes and multimorbidity. The procedure allowed us to find patients with 
the same main chronic disease but different clinical characteristics. Thus, we identi‑
fied two kinds of diabetic patients with differences in their drug therapy (insulin and 
non-insulin dependant), and also a group of women affected by hypertension and 
gestational diabetes. We also present a proof of concept for mapping the health status 
evolution of synthetic patients when considering the most significant diagnoses and 
drugs associated with chronic patients.

Conclusion:  Our results highlighted the value of ML techniques to extract clinical 
knowledge, supporting the identification of patients with certain chronic conditions. 
Furthermore, the patient’s health status progression on the two-dimensional space 
might be used as a tool for clinicians aiming to characterize health conditions and 
identify their more relevant clinical codes.

Keywords:  Denoising Autoencoder, Chronic diseases, Diabetes, Hypertension, 
Clustering, Patient representation, Synthetic patient, Health status trajectory
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Introduction
Nowadays, the global aging phenomenon has become an important health challenge. It 
is a common ground that elderly people are more likely to develop chronic diseases [1]. 
The increase in patients suffering from chronic diseases is one of the major challenges 
faced by National Health Systems, especially in low-income and middle-income coun-
tries [2]. Current societies are characterized by following unhealthy habits. Overweight, 
obesity, and physical inactivity are main factors for developing chronic conditions. Dia-
betes and hypertension are relevant chronic conditions that augment the risk of com-
plications, becoming major risk factors for developing acute complications that lead to 
disability and mortality [3]. A high number of chronic patients suffer from multimor-
bidity, defined as the co-occurrence of (multiple)-chronic diseases [4]. Multimorbidity 
becomes progressively more common with age, and patients tend to have psychological 
distress, complex drug treatments, and longer hospital stays, impairing their quality of 
life [5, 6]. The World Health Organization has emphasized the importance of organizing 
healthcare delivery systems to improve health outcomes and has stressed the importance 
of building integrated healthcare systems that can address chronic disease management. 
Over the last years, key policy makers and health stakeholders have looked for strategies 
aiming to efficiently allocate health resources for the care of chronic patients. Among 
them, early identification could support the implementation of appropriate treatment 
and better care management.

With the widespread adoption of Electronic Health Records (EHRs), large volumes 
of data in a variety of formats and sources have been collected [7]. The use of EHRs is 
bringing great opportunities for clinical research, fostering the development of data-
driven approaches, especially those based on Machine Learning (ML) techniques. ML 
is a branch of Artificial Intelligence seeking to provide knowledge from experience 
(data) [8]. EHRs, in conjunction with ML, have been successfully used in different clini-
cal areas [9–11], shifting from expert-driven approaches to data-driven models. Within 
ML, unsupervised learning methods aim to reveal underlying patterns from data and 
group similar samples. In the clinical setting, these methods can be used to identify and 
group patients with similar health statuses, specially groups associated with chronic 
conditions.

Despite the benefits of applying ML in the clinical setting, data extracted from EHRs 
are heterogeneous and characterized by a high number of features. Also, the limited 
number of observations in the clinical real-world scenario is a challenge when dealing 
with high-dimensional data, what is referred to as the curse of dimensionality problem 
[12]. This hampers data visualization, knowledge discovery and the effective application 
of traditional ML approaches in healthcare [13, 14]. To tackle this issue, different lin-
ear and non-linear methods transforming the original high-dimensional data into low 
dimensional representations have been proposed [15, 16]. Among these models, the 
Autoencoder (AE) [17] seeks to address the high-dimensionality issue by building lower-
dimensional representations, named latent representations (LRs). The LRs capture rel-
evant relationships from data and support the application of subsequent ML tasks such 
as data visualization and clustering.

In recent years, several regularization strategies (imposing some restrictions on the 
AE) have been proposed for increasing the robustness and generalization of the LRs 
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built with AE-based models. This has yielded new types of AEs [18–22]. Among them, 
the DAE [18] is a regularized AE that seeks to build more robust LRs with the inclu-
sion of noise through a stochastic corruption process applied at the network input. The 
implicit regularization process performed by DAEs when corrupting input data with 
noise allows it the capability to provide robust representations [19]. In the clinical set-
ting, several studies have successfully applied AE-based models in different applications 
[23–30]. For instance, in [25], patient representations were built from raw EHRs through 
a three-layer stacked AE for disease risk prediction using random forests as classifiers. 
Towards that end, EHR-based data of approximately 700,000 patients diagnosed with 
schizophrenia, diabetes, and different types of cancer were used. Stacked DAEs were 
used for identifying patterns of physiology in clinical time series [23]. In [24], a stacked 
AE was used to model longitudinal sequences of serum uric acid measurements to dis-
tinguish between the uric-acid signatures of gout and acute leukemia. A stacked DAE 
with sparsity constraint was used for classifying ECG signals in [27]. A combination 
of Stacked AEs and Convolutional Neural Networks was applied to classify EEG sig-
nals in [26]. In [31], a novel AE named long short-term memory convolutional autoen-
coder LSTMCAE was proposed to learn feature representations from sensor signals for 
improving health condition monitoring. The authors in [28] used single-layer DAE for 
encoding patient records composed of synthetic clinical descriptors and applied t-SNE 
for phenotype stratification.

The contribution of this paper is twofold. First, we analyze the potential of using the 
DAEs for building LRs to characterize chronic patients using binary data associated 
with diagnoses and drug codes. These LRs serve as a base for finding groups of patients 
with similar clinical conditions, while visualizing high-dimensional data into a lower-
dimensional space, thus supporting the clinical interpretation. Second, we present a 
proof-of-concept to determine the relevant codes for a clinical condition and to visu-
ally characterize the health status evolution of synthetic patients on the low-dimensional 
space. In this work, we used data of healthy and chronic patients (including hyperten-
sive, diabetics, and multimorbidity patients) corresponding to real-world EHRs of the 
University Hospital of Fuenlabrada (UHF) of Madrid, Spain.

The remainder of this paper is organized as follows: Data description and the preproc-
essing stage are detailed in the next section. Then, we describe the theoretical funda-
mentals of DAEs as well as the clustering methods used. Next, we present the results of 
this work, showing the clinical characterization of the groups of patients found. Also, a 
proof-of-concept aiming to visually characterize the health status progression of chronic 
patients is presented. Finally, the discussion and conclusions are provided in the last part 
of the manuscript.

Materials and methods
Data description and preprocessing

In this subsection, we describe the dataset used in this study as well as the pre-process-
ing carried out. We considered clinical data of healthy and chronic patients assigned 
to the UHF. The UHF is a public hospital providing medical service to six health cent-
ers and encompasses about 225,000 inhabitants. Patient data included demographics 
(age and sex), diagnoses from primary and specialized care and pharmaceutical drug 
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dispensation. The diagnoses were coded according to the International Classification 
of Diseases-Ninth Revision-Clinical Modification (ICD9-CM) [32], while pharmaceu-
tical drug codes followed the Anatomical Therapeutic Chemical (ATC) Classification 
System [33].

The ICD9-CM and ATC codes have been extensively used in a variety of studies at 
the international level [34, 35]. Both kinds of codes are hierarchically structured and 
composed of a different number of alphanumeric characters (ANCs). The ICD9-CM 
codes have from three to five ANCs with a decimal point between the third and fourth 
character. Regarding the ATC codes, they are identified by seven ANCs, structured in 
five levels: (1) anatomical (first element), (2) therapeutic (second and third element), (3) 
pharmacological (fourth element), (4) chemical (fifth element), and (5) chemical sub-
stance (sixth and seventh element). Following a similar approach to [36], we reduced the 
detail of the aforementioned codes by discarding the ANC after the decimal point for 
ICD9-CM and discarding the fifth level for ATC codes. Every patient is represented by 
one vector composed of 2,263 clinical features (1,517 ICD9-CM codes, and 746 ATC 
codes) that take into account only the presence/absence of codes for one year. In our 
case, we identify the presence/absence of a specific diagnosis or drug code by binary 
values ‘1’ and ‘0’, respectively. The features linked to diagnoses take the value ‘1’ when the 
patient has been diagnosed with a specific disease/pathology, and ‘0’ otherwise. Regard-
ing drugs, features coded as ‘1’ indicate that the particular drug has been dispensed to 
the patients (one or more times during a year), otherwise the feature is coded by ‘0’. The 
clinical codes were used for training the DAEs, while the demographics age and sex were 
just used for characterizing the clusters found.

Nowadays, with the increasing prevalence of chronic diseases, many countries have 
carried out a variety of strategies aiming to efficiently allocate health resources. Among 
these approaches, the system named Clinical Risk Groups (CRGs) [37] is a solution 
clinically validated and mainly focused on the identification of chronic patients [38–41]. 
CRGs are a population classification system that assigns each individual to only one of a 
set of pre-established groups (more than 1,0000) by taking into account the demographic 
and clinical features. Each group is described by a five-digit number. The first digit refers 
to the core health status group, the next three digits identify the base CRG representing 
a specific condition, and the last digit denotes the severity-of-illness level. In order to 
have a reasonable number of patients per group and following the same approach that 
in previous works [36, 42], we discarded the fifth digit (severity level) and considered the 
collection of patients provided by the base CRG. Then, we used CRGs (version 1.8) to 
identify healthy and chronic patients belonging to the UHF. In particular, we work with 
the next CRGs: CRG-1000 (encompassing 46,835 healthy patients), CRG-5192 (12,447 
hypertensive patients), CRG-5424 (2,166 diabetic patients), and CRG-6144 (composed 
of 3,179 patients suffering from multimorbidity, co-occurring diabetes and hyperten-
sion). Since the number of patients associated with each CRG is highly imbalanced and 
ML algorithms are affected by the class imbalance learning problem, we followed a ran-
dom under-sampling strategy as in [36]. Thus, the number of patients considered per 
CRG is limited by the size of CRG-5424 (2,166 patients).

To provide a visual representation of the code distribution per health status associ-
ated with the CRGs, we use the profile [36]. The profile is a bar graph where the x-axis 
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shows the clinical codes (ICD9-CM or ATC codes) and the y-axis presents the corre-
sponding presence rate (ranging between [0,1]). The profiles associated with the CRGs 
considered in this work are shown in Fig. 1. With n patients, the corresponding profile is 
built from the concatenation of 2,263 elements (codes of diagnoses and drugs). For the 
d-th element in the profile (e.g., assume it is associated with the hypertension diagnosis), 
its value is computed as the proportion of n patients presenting the particular diagnosis 
code of hypertension (ICD9-CM ‘401’). Thus, profiles with elements close to 1 indicate 
that almost all patients have the same clinical code (either diagnosis or drug). Thus, the 

Fig. 1  Profiles associated with the CRGs when considering the dataset provided by the UHF. Diagnosis (left 
panels) and drug profiles (right panels) associated with (a-b) CRG-1000; (c-d) CRG-5192; (e-f) CRG-5424; (g-h) 
CRG-6144
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profile provides an overall vision of the most representative diagnoses and drugs linked 
to one group of patients. Note that the five codes with the highest presence rate values 
were pointed out in Fig. 1. Taking as an example the diagnosis profile of CRG-5424 (see 
Fig. 1 (e)), the code with the highest presence rate is ICD9-CM ‘250’ (Diabetes Melli-
tus) with a value over 0.8, indicating that about 80% of patients belonging to this CRG 
present this code in the EHR. The drug profile of CRG-5424 (see Fig. 1 (f )) showed that 
the most dispensed drugs correspond to ATC ‘A10BA’ (biguanides) and ‘C10AA’ (HMG 
CoA reductase inhibitors). The first drug is frequently used in the treatment of diabetes, 
whereas the second one is utilized for reducing cholesterol levels.

Methods

In this subsection, we describe the AE-based models and clustering methods used in this 
paper.

Learning clinical latent representations based on autoencoders

Let X = {x(i)}ni=1
 be a dataset consisting of n samples, with the i-th sample (patient in 

this paper) represented by a vector of D features, x(i) = x
(i)
1
, . . . , x

(i)
D ∈ R

D . We use AEs 

to transform x into a LR named h = [h1, . . . , hd] ∈ R
d , composed of d latent dimen-

sions. Note that the dimension of x is higher than that of h, fulfilling D>d. Next, we 
introduce the fundamentals of the AE-based models, as well as those of the clustering 
methods used in this work.

An AE is a fully connected artificial neural network performing an encoding-decoding 
process through non-linear transformations [17]. The simplest AE consists of three lay-
ers (input, hidden and output layer) composing the encoder and decoder (see schematic 
in Fig. 2 (a)). The output of the encoder provides a lower-dimensional representation by 

Fig. 2  Schematic representation of the proposed workflow. (a) Representation of n patient vectors with their 
corresponding clinical features (diagnosis and drug codes, with binary values); (b) DAE architecture, and (c) 
clustering on the LRs and subsequent visualization through two-dimensional projections, both of the clusters 
and of the patient progression
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transforming an input vector x into a dimensionality-reduced representation h guided 
by the mapping:

 where W ∈ R
d×D is a weight matrix and b ∈ R

d is a bias vector associated with the 
encoder. Since the number of neurons of the hidden layer is lower than the number of 
neurons of the input layer, the network is forced to learn a compressed representation 
of the input. Thus, the encoding process reduces high-dimensional data to low-dimen-
sional data (compressed representation named LR), creating a new feature space called 
latent space. Next, the decoder seeks to reconstruct x by transforming h to the vector 
x̂ ∈ R

D guided by:

 where W′ ∈ R
D×d is a weight matrix and b′ ∈ R

D a bias vector associated with the 
decoder. The functions f(·) and g(·) are non-linear functions (commonly a sigmoid or 
hyperbolic function) parameterized by θ = {W,b} and θ′ = {W′,b′}. The AE is trained by 
adjusting the parameters θ,θ′ to minimize the difference between x and x̂ through a cost 
function. In this work, the binary cross-entropy function has been considered due to the 
binary nature of the features in x.

In order to build more robust LRs, different regularization techniques can be applied. 
Specifically, we construct an AE with a three-layer neural network with stochastic noise 
at the network input [18]. Thus, we work with a noisy version of the inputs by corrupting 
the input samples in a controlled manner (see schematic in panel (b) of Fig. 2). The pur-
pose of using DAE is twofold: (i) to learn more robust latent representations; and (ii) to 
reduce the risk of overfitting, that can be problematic with regular AE. Previous works 
have used different corruption strategies, such as Zero Masking Noise (ZMN) and Salt-
and-Pepper Noise (SPN) [18, 19]. Both strategies corrupt a fraction of the features (level 
of noise) of an input sample, forcing the value to the minimum in ZMN and setting the 
value to the minimum/maximum value (according to a fair coin flip) in SPN [18]. For 
binary features in x, i.e., xi∈{0,1}∀i=1,…,D, the maximum and minimum value corre-
sponds with binary values ‘1’ or ‘0’, respectively. As stated, we work with binary data, and 
both ZMN and SPN are considered and compared in this paper.

Clustering methods

Clustering aims to find partitions (best known as clusters) of a dataset such that each 
cluster is composed of similar samples according to a similarity measure [12], being 
the Euclidean distance the most common one [43]. Formally, given a dataset X  with n 
patients, a clustering method results into nk disjoint groups denoted by C = {Ci}

nk
i=1

 , 
where Ci denotes the i-th cluster containing ni patients. In this paper, the LRs are used 
for performing clustering methods. Clustering methods have many practical applica-
tions in different domains, including image processing and pattern recognition, among 
others [44]. When considering ML approaches in the clinical setting, each patient may 
be represented by a sample with different features, including demographics (age, sex) 
and clinical codes (diagnosis codes, drug codes), among others. The patients with the 
same health condition present common clinical characteristics and patterns, and their 

h(x) = f (Wx + b)

x̂ = g(W′h + b′)
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early identification could support the implementation of appropriate treatment and bet-
ter care management.

In the literature, a plethora of clustering methods has been proposed [44], being the 
partitioning and hierarchical approaches the most popular ones [45]. Partitioning meth-
ods are frequently selected due to ease of implementation and lower computational cost 
[45]. However, these methods are highly sensitive to outliers, cannot find non-convex 
clusters, and are highly dependent on the initial conditions [45]. Hierarchical cluster-
ing methods overcome these difficulties at the expense of higher computational costs. 
Both clustering approaches have been applied in a wide range of fields including health-
care, data mining, and natural language processing, among others [45]. The most used 
partitioning method is k-means [46], where each cluster is represented by a centroid or 
representative vector. In the k-means algorithm, the number of k clusters is established 
a priori, and the centroid’s location is found by minimizing a cost function that takes 
into account the average intra-cluster distance between samples and associated cen-
troids [45]. By contrast, algorithms used in hierarchical clustering approaches seek to 
build a hierarchy of clusters according to both agglomerative and divisive strategies. The 
Agglomerative Hierarchical Clustering (AHC), with the commonly used Ward linkage, 
has been considered in this study. It starts by considering each sample as a single cluster. 
At each iteration of the algorithm, the two clusters with the lowest Ward linkage are 
merged into a new cluster [47]. Several studies have used the AHC [48, 49] and k-means 
[50, 51] in clinical applications, providing good clustering outcomes. We evaluate and 
compare the clustering results of both k-means and the AHC method in this paper.

It is broadly known that the major challenge in clustering is the choice of an appro-
priate number of clusters. Many methods have been proposed for addressing this issue, 
being the cluster validity indices (CVIs) the most extended measures [52]. The CVIs aim 
to measure how closely are the samples in the cluster (compactness) and how separated 
a cluster is from other clusters (separability or inter-variance) [52]. Among the CVIs pro-
posed in the literature [52–54], in this study, we considered the silhouette coefficient, the 
Davies-Bouldin index and the Bayesian inference criterion (BIC) to select the number of 
clusters because they quantify the intra-cluster (compactness) and inter-cluster (separa-
bility) distances. This means that these indices estimate how compact are samples within 
their corresponding clusters, and how separated are the clusters between them. Regard-
ing the silhouette coefficient, their values range between [−1,1], with 1 indicating the 
best clustering performance, values close to 0 denote overlapping clusters, and -1 means 
the worst clustering performance. For the Davies-Bouldin index, smaller values indicate 
a better clustering result. A small value of BIC mean more compact clusters, indicating 
better clustering. The optimal number of clusters is chosen as the value such that the 
BIC is minimized.

Results
Experimental setup

We considered two case studies. The first one takes into account healthy (CRG-1000) 
and chronic patients with just one major chronic condition: hypertension (CRG-5192) 
or diabetes (CRG-5424). The second case-study also includes multimorbid patients who 
suffer from hypertension and diabetes (CRG-6144). As previously stated, CRGs present 
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remarkable differences in the number of patients, emerging the class imbalance prob-
lem. To deal with this issue, several approaches have been presented in the literature 
[55]. For simplicity, an under-sampling approach was followed in this work, which ran-
domly selects a subset of patients in each CRG according to the minority class. In our 
case, the CRG-5424 corresponds to the minority class with 2,166 patients. This yields a 
total of 6,498 patients in the first case-study and 8,664 in the second one. These patients 
are characterized by binary features coding the presence or absence of diagnosis and 
drug codes which were used as input for DAEs. The resulting datasets were split into 
training and test subsets. For each case-study, we randomly consider 75% of patients for 
the training subset and the remaining for testing. Note that each patient is only consid-
ered in one subset (training or testing). The test subset was composed of 1,625 and 2,166 
patients for the first and second case study, respectively. The training subset was used to 
design the DAEs and select the number of clusters with the cluster validity indices, while 
the test subset was considered for the clinical characterization of the found clusters. As 
stated, each patient is represented by one vector composed of 2,263 clinical features 
(1,517 ICD9-CM codes, and 746 ATC codes) that take into account only the presence/
absence of codes for one year.

DAEs were trained with a mini-batch gradient descent with adaptive learning rate and 
early stopping [55]. Rectified linear activation functions were considered for all neurons 
except those in the output layer, where a sigmoid was used. Other activation functions 
such as RELU and ELU [56] also considered (but its use was empirically discarded). Fol-
lowing a similar approach to [18], we evaluated different types of noise (ZMN and SPN), 
several levels of noise {10,50,100}, a different number of neurons in the hidden layer 
{5,10,20,30} and the addition of a new hidden layer (between input and intermediate 
layer) with different numbers of neurons. Empirical results showed that SPN with d=20 
and a corruption level of 10, and just the use of one hidden layer provided an appropriate 
architecture to find groups of patients with similar characteristics, and also to visualize 
patterns associated with different chronic diseases. Additionally, a comparative analy-
sis between the DAE and linear dimensionality reduction methods (including principal 
component analysis and factor analysis) was conducted aiming to compare the perfor-
mance for reducing dimensionality and visualizing high-dimensional data. These results 
were included in the additional information file 1.

Estimation of the number of clusters

In this work, the LRs are proposed to discover clusters of patients with similar clinical 
characteristics by using both k-means and AHC with the Ward linkage. To estimate the 
number of clusters, the silhouette coefficient (see Fig. 3 (a-b)), the Davies-Bouldin index 
(see Fig. 3 (c-d)) and the BIC (see Fig. 3 (e-f )) were considered as CVIs. The CVIs for the 
first case-study with CRGs-1000-5192-5424 are shown in the lefts panels, whereas those 
for the second case-study considering CRGs-1000-5192-5424-6144 are depicted in the 
right panels.

According to Fig.  3, the AHC usually provided better performance than k-means, 
reaching the lowest values in the Davies-Bouldin index and the highest values in the 
silhouette coefficient and BIC values. Regarding the first case-study with CRGs-1000-
5192-5424, both the Davies-Bouldin and the silhouette coefficient indices (see Fig. 3 (a) 
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and (b), respectively) revealed that the most appropriate number of clusters was five. 
In the case of BIC, we considered the elbow point technique [57] that consists in plot-
ting a metric (in our case, BIC) depending on the number of clusters, and finding the 
inflection point down. For the first case study (see Fig. 3, left panels), the elbow point 
was identified in five clusters. The clinical complexity of the second case-study, including 
patients suffering from multimorbidity, also exhibits greater complexity to identify the 
most appropriate number of clusters when considering CVIs. Thus, though the mini-
mum value of the Davies-Bouldin index in Fig. 3 (d) indicated six as a suitable number 
of clusters, the silhouette coefficient in Fig. 3 (b) pointed out that two clusters should be 
the most appropriate. By considering the BIC (see Fig. 3 (f )), it was not straightforward 
to identify an elbow point since BIC values monotonically decreased with the number 
of clusters, becoming a smooth curve with no clear minimum. Taking into account that 
four CRGs are considered in the second case-study, the selection of two clusters may not 
be the best option to characterize the clinical conditions of these patients. By choosing 
the next highest value for the silhouette coefficient (which corresponds with six clusters) 
the number of clusters selected by CVIs is the same. Henceforth, we will consider the 

Fig. 3  Cluster validity indices when considering both case studies (left panels) CRGs-1000-5192-5424 and 
(right panels) CRGs-1000-5192-5424-6144. (a-b) The silhouette coefficients; (c-d) the Davies-Bouldin indices; 
and the (e-f) BIC values
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AHC method with five clusters for the first case-study, and with six clusters for the sec-
ond case-study.

Clinical characterization of clusters associated with healthy and chronic patients

The characterization of the clusters for the first case-study is provided in this subsection. 
Following a similar approach to [24, 28], we used the LRs as input to the t-Stochastic 
Neighbor Embedding (t-SNE) [58] method aiming to visualize clusters of patients in two 
dimensions. This projection is depicted in Fig.  4 (a). Five identifiers are considered to 
distinguish the clusters: C1 (blue), C2 (orange), C3 (green), C4 (red), C5 (purple). We 
show in Fig. 4 (b) the boxplots of the age variable (not considered for training DAEs) per 
cluster. The drug and diagnosis profiles are displayed in Fig. 4 (c) and (d). The descrip-
tion of the clinical codes with the highest presence rate values are presented in the bal-
loon plot of Fig. 5.

Regarding cluster C1, the diagnosis profile showed ICD9-CM codes ‘401’ and ICD9-
CM ‘272’ as the two most frequent ones. The first is the main code used for coding 
hypertension, and the second one is associated with lipid disorders. By analyzing the 
drug profile, patients of cluster C1 were characterized by the consumption of ATC 
‘C09AA’ (angiotensin-converting enzyme (ACE) inhibitors), ‘C10AA’ (HMG-CoA reduc-
tase inhibitors known as statins), ‘N02BE’, ‘M01AE’. Among them, ‘C09AA’ is the most 
frequent drug prescribed for hypertension, which aims to reduce both blood pressure 
and the risk of cardiovascular events (such as stroke, myocardial infarction, and heart 

Fig. 4  Analysis of clusters considering CRGs-1000-5192-5424 and the test subset. (a) Projection of patients 
by combining DAE, AHC, and t-SNE; (b) boxplot of the age for each cluster; profiles considering (c) diagnosis 
codes and (d) drug codes. Note that each color corresponding to a specific cluster
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failure) [59]. The ATC code ‘C10AA’ is a drug extensively used to prevent cardiovascu-
lar diseases by lowering serum cholesterol [60]. By analyzing the profiles in Fig. 4 (c-d), 
those associated with C1 are the most similar to the profiles of CRG-5192 (see Fig.  1 
(c-d)). Table 1 also showed that cluster C1 was mainly composed of patients assigned to 
CRG-5192.

For cluster C2, the exploration of its diagnosis profile (see Fig. 4 (c)) did not show great 
differences in diagnosis codes with CRG-1000 (see Fig. 1 (a)). For drugs (see the profile 
in Fig. 4 (d)), we observed that the most common ATC codes were ‘N02BE’ (Anilides) 
and ‘M01AE’ (Propionic acid derivatives), which are analgesics. The analysis of cluster 
C2 showed that the majority of their associated patients were healthy. As it is denoted in 

Fig. 5  Description of the most frequent clinical codes for clusters found when considering 
CRGs-1000-5192-5424 and using the test subset. Each code is represented by a dot whose area and color is 
proportional to the presence rate

Table 1  Cluster ID, number and percentage of patients associated with CRG-1000, CRG-5192 and 
CRG-5424 for each cluster when considering test subset

Cluster ID # patients CRG-1000 CRG-5192 CRG-5424

C1 430 2 94 4

C2 726 74 16 10

C3 310 0 1 99

C4 39 15 80 5

C5 120 0 0 100
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Table 1, 10% patients are associated with CRG-5424, 16% with CRG-5192, and 74% with 
CRG-1000. By analyzing patients in C2 categorized as diabetics and hypertensives, we 
observed that they only had assigned ICD9-CM ‘250’ and ‘401’, but the medication found 
in the corresponding drug profile were analgesics (‘N02BE’ and ‘M01AE’), with a lack 
of anti-hypertensive or antihyperglycemic drugs. Thus, cluster C2 is characterized by a 
healthy population.

The diagnosis profiles of both C3 and C5 showed the prevalence of ICD9-CM codes 
‘250’ (Diabetes Mellitus) (see Fig. 4 (c)). The drug profile of cluster C3 mainly showed 
the prevalence of ATC ‘A10BA’ (biguanides) and ATC ‘C10AA’. Biguanides are antihyper-
glycemic drugs used to improve glucose tolerance, being the most recommended treat-
ment for type-II diabetes [61]. By contrast, patients of C5 showed high consumption of 
different types of insulin: ‘A10AB’ (fast-acting), and ‘A10AE’ (long-acting). The visual 
analysis of Fig.  4 (a) is particularly relevant because the scatter plot corroborates that 
diabetics were split into two clusters: C3 (green points) and C5 (purple points). Note 
that the profiles of C3 are quite similar to those of CRG-5424 (see Fig. 1 (e-f )). By analyz-
ing Table 1 in detail, note that 99% patients of cluster C3 and 100% of cluster C5 come 
from CRG-5424. With this information, we can characterize C3 as diabetics who take 
mainly biguanides and cluster C5 as diabetics insulin-dependant.

A small group of patients identifying cluster C4 (red points) is depicted in the scat-
ter plot of Fig. 4 (a). Concerning the diagnosis profile for cluster C4, the codes with the 
highest values were linked to pregnancy (ICD9-CM ‘648’, ‘650’, ‘664’, ‘V27’) and hyper-
tension (ICD9-CM ‘401’). The drug profile of C4 showed the consumption of drugs 
linked to pregnancy ‘B03AA’ (Iron bivalent), ‘H03CA’ (Iodine therapy), and analgesics 
(‘N02BB’ and ‘N02BE’). Unlike the drug profile associated with the hypertensive popula-
tion (see profile in Fig. 1 (d)), ATC ‘C09AA’ did not appear as a frequent drug. This might 
be motivated because certain types of anti-hypertensive drugs are not recommended in 
pregnancy. For instance, ACE inhibitors and angiotensin receptor blockers (ARBs) are 
contraindicated since adverse fetal effects have been reported [62]. Table 1 showed that 
C4 was composed of 15% of CRG-1000, 5% of CRG-5424, and 80% individuals belong- 
ing to CRG-5192. Note that the presence of hypertensive patients is notable in this 
cluster. Though healthy and diabetic patients in C4 have the ICD9-CM codes ‘250’ and 
‘648’ (Abnormal glucose tolerance of mother complicating pregnancy childbirth or best 
known as Gestational Diabetes (GD)), no antihyperglycemic drugs were found. Hence, 
we can characterize patients of C4 as women suffering from complications (mainly 
hypertension and GD) during pregnancy, but without consumption of antihypertensive 
and antihyperglycemic drugs.

For complementing the cluster characterization, we also carried out a correlation anal-
ysis using the Pearson Correlation Coefficient (PCC). PCC is a numerical value with 0 
meaning no linear relationship and 1 indicating high correlation. Thus, we quantify the 
relationship between the diagnosis/drug profile of each cluster and the corresponding 
one for each CRG. The resulting PCC values are shown in Table 2. Cluster C1 presented 
a high relationship with CRG-5192 in terms of both diagnosis and drug profiles, show-
ing PCC values close to 1. Likewise, the profiles of cluster C2 and CRG-1000 presented 
a high correlation with PCC values > 0.9. The clusters C3 and C5 present a high cor-
relation with the diagnosis profile of CRG-5424 (PCC values > 0.9). However, the drug 
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profile of C5 showed a moderate relationship with the one associated with CRG-5424 
(PCC value ≈ 0.6). The reason is that the most common drugs in cluster C5 are insulins 
(see purple line in Fig. 4 (c) and last column in Fig. 5), which do not correspond with the 
highest values in the drug profile of CRG-5424 (see Fig. 1 (f )). Finally, the profiles of C4 
did not present a high correlation with any profile of CRGs (PCC < 0.55). As argued, C4 
was a cluster encompassing patients with clinical characteristics not exclusively assigned 
to a particular CRG.

Previous findings are corroborated by the age distribution of each cluster. Thus, Fig. 4 
(b) showed that clusters C2, C4, and C5 identified younger patients. By contrast, clus-
ters C1 and C3, with profiles more similar to CRG-5192 and CRG-5424, encompassed 
the older patients. Although the age variable was not used to get the LRs, note that the 
combination of clinical codes lead to identifying age patterns in the clusters. Another 
insight to remark is the notable difference in the age distribution associated with clusters 
of diabetics. Generally, type-I diabetes has been considered a disease affecting children 
and adolescents, whilst type-II diabetes is related to adults [63].

Clinical characterization of clusters associated with healthy, chronic and multimorbid 

patients

The characterization of the clusters for the second case-study (when considering CRGs-
1000-5192-5424-6144) is provided in this subsection. Figure 6 (a) shows the scatter plot 
of patients when combining DAE, AHC, and t-SNE, identifying clusters as C1 (blue), 
C2 (orange), C3 (green), C4 (red), C5 (purple), and C6 (brown). As in the previous case, 
we characterized the clusters based on the age distribution (see Fig. 6 (b)), showing that 
individuals belonging to clusters C1, C3, and C4 presented higher ages compared to 
those patients of other clusters. The associated profiles for each cluster considering diag-
nosis and drug codes are shown in Fig. 6 (c-d), respectively. The description of the clini-
cal codes with the highest presence rate is detailed in Fig. 7.

Considering cluster C1, the analysis of its diagnosis profile showed that the most prev-
alent diagnosis codes were ICD9-CM ‘401’ and ‘272’. The first one is linked to hyperten-
sion and the second one to lipid disorders. Concerning the drug profile, we observed 
that ATC codes with the highest rates were ‘C09AA’ (a drug for hypertension), ‘C10AA’ 
(a drug to prevent cardiovascular diseases), and ‘M01AE’ (analgesics). The antihyper-
tensive drug ’C09AA’ is one type of selective calcium channel blocker used for prevent-
ing the risks associated with blood pressure elevation [59]. Table  3 indicates that the 

Table 2  PCCs between the profiles of each cluster (from C1 to C5) and those associated with CRGs 
(second-fourth columns) considering the test subset. For each cell, the first and second value refer to 
the PCC for diagnosis and drug profiles, respectively

Cluster ID CRG-1000 CRG-5192 CRG-5424

C1 0.34; 0.59 0.98; 0.98 0.30; 0.61

C2 0.92; 0.97 0.58; 0.74 0.52; 0.54

C3 0.27; 0.39 0.31; 0.56 0.98; 0.94

C4 0.28; 0.40 0.55; 0.43 0.11; 0.25

C5 0.26; 0.28 0.13; 0.29 0.96; 0.62
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majority of patients in this cluster are associated with CRG-5192. The analysis of profiles 
showed that patients linked to other CRGs share the drug consumption patterns asso-
ciated with hypertensive patients (see Fig.  1 (d)). Thus, patients belonging to C1 were 
characterized as hypertensive.

By analyzing cluster C2, its diagnosis profile pointed out that no code had a prevalent 
high presence rate (see Fig.  6 (c)). Most of them presented values below 0.1, with the 
ICD9-CM codes ‘526’, ‘465’ and ‘780’ reaching the highest presence rate. Regarding the 
drug profile of cluster C2, most of the ATC codes were related to analgesics (‘M01AE’, 
‘N02BE’). Table 3 showed that 81% of patients of C2 belonged to the CRG-1000, while 
the rest were labeled as CRG-5192 and CRG-5424, with 15% and 4%, respectively. 
Although there were patients belonging to CRG-5192 and CRG-5424, the drug profile 
indicated that these patients were not taking drugs for treating hypertension or diabetes. 
Thus, we can characterize individuals of cluster C2 as healthy patients.

As in the previous case-study, here the diabetic population was also divided into two 
clusters, C3 (green points in Fig.  6 (a)) and C6 (brown points). Their diagnosis pro-
files showed ‘250’ as the most frequent ICD9-CM code. Main differences appeared in 
the drug profiles (see green and brown lines in Fig.  6 (d) and Fig.  7). Cluster C3 was 
characterized by the consumption of ATC ‘A10BA’ (biguanides) and ‘C10AA’ (statins). 
As stated, biguanides are key in the treatment of patients suffering from type-II diabe-
tes, while statins are used for lowering the cholesterol level. On the contrary, patients of 

Fig. 6  Analysis of clusters considering CRGs-1000-5192-5424-6144 and the test subset. (a) Projection of 
patients by combining DAE, AHC, and t-SNE; (b) boxplot of the age for each cluster; profiles considering (c) 
diagnosis codes (d) drug codes. Note that each color corresponding to a specific cluster
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cluster C6 mostly took two types of insulin with ATC codes ‘A10AB’ and ‘A10AE’. Fur-
thermore, in cluster C6 we identified a moderate presence rate of the ATC code ‘H04AA’, 
which is a glucose-lowering drug mainly indicated to treat severe hypoglycemia reac-
tions in diabetics treated with insulin [64, 65]. Evidence suggests that between 30-40% of 
patients with type-I diabetes suffer from one to three episodes of hypoglycemia (insulin 
excess) per year [66]. Table 3 showed that cluster C3 was mainly composed of patients 

Fig. 7  Description of the most frequent clinical codes for the clusters found when considering 
CRGs-1000-5192-5424-6144 and using the test subset. Each code is represented by a dot whose area and 
color are proportional to the presence rate

Table 3  Cluster ID, number and percentage of patients associated with CRG-1000, CRG-5192, CRG-
5424 and CRG-6144 for each cluster when considering the test subset

Cluster ID # patients CRG-1000 CRG-5192 CRG-5424 CRG-6144

C1 514 1 77 5 17

C2 678 81 15 4 0

C3 454 0 1 74 25

C4 376 0 7 10 83

C5 45 18 62 16 4

C6 99 0 0 100 0



Page 17 of 27Chushig‑Muzo et al. BioData Mining           (2022) 15:18 	

from CRG-5424 (74%) and the remaining patients were labeled as CRG-6144. Thus, we 
characterize patients of cluster C6 as diabetics mostly consuming insulin, whilst patients 
of C3 as diabetics consuming biguanides.

Cluster C4 included patients suffering from multimorbidity, with co-occurring diabe-
tes and hypertension (see profiles in Fig. 6 (c-d) and Fig. 7). The analysis of the diagnosis 
profile showed ICD9-CM ‘250’ (diabetes) and ‘401’ (essential hypertension) as the most 
frequent codes in this cluster, both with similar proportions. The evidence suggests that 
hypertension affects approximately 70% of patients with diabetes [67]. This co-existence 
of both chronic conditions substantially increases the risk of cerebrovascular and coro-
nary artery diseases [67]. The drug profile showed that the ATC codes with the highest 
values were ‘C10AA’, ‘C09AA’, ‘A10BA’, ‘B01AC’ and ‘A02BC’. As analyzed in the previous 
case-study, ‘C09AA’ and ‘A10BA’ are drugs used for treating hypertension and type-II 
diabetes, respectively. Note that the ATC code ‘B01AC’ (platelet aggregation inhibitors), 
frequently prescribed to people over 65 for preventing cardiovascular complications 
[68], was identified in this group with a prevalent presence rate. The co-occurring of sev-
eral chronic conditions lead to complex profiles, hampering the characterization of the 
patient’s health status. As presented in Table 3, the majority of patients of C4 were cat-
egorized as belonging to CRG-6144.

Patients assigned to cluster C5 had the following most frequent ICD9-CM codes: ‘V27’ 
(associated with pregnancy), ‘401’ (hypertension), and ‘648’ (linked to complications 
during pregnancy). Note that the ICD9-CM code ‘648’ includes diabetes mellitus, thy-
roid dysfunction and abnormal glucose tolerance complicating pregnancy. Regarding the 
drug profile of cluster C5, the main ATC codes were linked to pregnancy (‘B03AA’) and 
analgesics (‘N02BB’, ‘N02BE’). Table 3 showed that C5 encompassed patients from the 
CRG-5192 (62%), 16% of CRG-5424, 18% of CRG-1000 and 4% of CRG-6144. It is inter-
esting to remark that all patients in C5 assigned to CRG-5424 and CRG-6144 were diag-
nosed with the ICD9-CM codes ‘V27’ and ‘648’. According to the literature [69], between 
2-9% of pregnancies are complicated with gestational diabetes, and oral glucose-lower-
ing drugs are not recommended during pregnancy. This is also evidenced through the 
analysis of the drug profile of C5.

As in the first case-study, we conducted a correlation analysis between the profiles 
associated with clusters and CRGs. The resulting PCC values are presented in Table 4. It 
can be noted that profiles of cluster C1 and CRG-5192 resulted quite similar, with PCC 
values of 0.97. The profiles of cluster C2 were closely related to profiles of CRG-1000 
(PCC values ≥ 0.97). Cluster C4, which was mainly composed of patients with multi-
morbidity, presented the highest correlation with profiles of CRG-6144 (PCC value 
≥ 0.98). Cluster C5, which encompasses pregnant women, presented low PCC values 
with all profiles associated with CRGs. It seems reasonable, since pregnant women are 
neither patients with chronic conditions nor healthy patients in the sense that there is no 
prevalent clinical condition.

Regarding diagnosis profiles of clusters C3 and C6, they presented high correla-
tion with that of CRG-5424 (PCC values ≥ 0.94). On the contrary, the drug profile of 
C6 showed a moderate correlation with the one associated with CRG-5424 (PCC value 
of 0.55). Taking into account that all patients of C6 were assigned to CRG-5424 (see 
Table 3) and the PCC in the drug profile is moderate, it is reasonable to ascertain the 
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clinical evidence behind this fact. According to the literature there are two main types of 
diabetes, type-I and type-II. Broadly speaking, individuals with type-I may not produce 
insulin, whereas patients with type-II do not produce enough insulin or the produced 
insulin does not work properly. This particularity also explains differences in the drug 
treatments. Type-I is managed by taking insulin to control blood sugar, while biguanides 
are the first-line treatment for type-II. A deeper analysis of ICD9-CM codes showed that 
all patients of C6 were diagnosed with type-I diabetes. We must highlight that CRG-
5424 gathers individuals diagnosed with diabetes type-I and type-II. Therefore, in the 
drug profile associated with CRG-5424, the most frequent ATC codes are ‘A10BA’ 
(biguanides for treating diabetes type-II), ‘C10AA’ (drug for preventing cardiovascular 
diseases) and ‘A10AE’ (insulin for treating diabetes type-I). However, taking into account 
that the majority of diabetics in CRG-5424 are of type-II, the drug profile is more rep-
resentative of the drugs used for treating type-II. Since our approach was able to find 
patients of type-I (cluster C6) and type-II (cluster C3), the correlation analysis between 
the drug profile of each cluster and the corresponding one of CRG-5424 provided a high 
PCC value for cluster C3 while it was moderate for C6.

The clinical characterization showed that clusters C1, C3, and C4 gathered patients 
suffering from chronic conditions (hypertension, diabetes, and multimorbidity), whereas 
the rest of the clusters were composed of healthy patients (C2), pregnant women (C5), 
and insulin-dependent diabetics (C6). Age distribution patterns validated that chronic 
patients tend to be older people, showing a link between age and chronicity. Evidence 
also suggests that chronic diseases are more prevalent in older populations, which is in 
line with the presented results [5].

Synthetic patients for visual validation of chronic patterns

In this subsection, we describe a proof-of-concept with synthetic patients for the visual 
characterization of the patient’s health status through LRs. Toward that end, we com-
bine the LRs and t-SNE for projecting real-world patients onto two-dimensional space. 
Several methods have been used to model patients’ health status evolution in the litera-
ture through the use of longitudinal EHR-based data [70, 71]. We did not follow these 
approaches since multiple records of the same patient over time are not available in our 
dataset. We propose a first approximation of tracking patients’ health status based on the 
mapping of synthetic patients. To build the synthetic patients, we firstly identified the 

Table 4  PCCs between the profiles of each cluster (from C1 to C6) and those associated with CRGs 
(second-fourth columns) considering the test subset. For each cell, the first and second value refer to 
the PCC for diagnosis and drug profiles, respectively

Cluster ID CRG-1000 CRG-5192 CRG-5424 CRG-6144

C1 0.37; 0.62 0.97; 0.97 0.42; 0.69 0.80; 0.87

C2 0.98; 0.97 0.42; 0.72 0.35; 0.53 0.35; 0.49

C3 0.24; 0.39 0.32; 0.61 0.99; 0.96 0.88; 0.93

C4 0.23; 0.32 0.70; 0.75 0.82; 0.84 0.99; 0.98

C5 0.24; 0.45 0.49; 0.48 0.13; 0.28 0.30; 0.28

C6 0.27; 0.30 0.10; 0.19 0.94; 0.55 0.73; 0.24
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most representative clinical codes associated with each cluster. In our case, we selected 
the first five codes with the highest presence rate values for diagnosis and drug profiles 
(see Figs. 5 and 7 for the first and second case-study, respectively). We construct simple 
synthetic patients and complex synthetic patients for each cluster. The goal was twofold: 
(i) to check which ICD9-CM/ATC codes are associated with a specific clinical condition, 
and (ii) to map the health status trajectory of each patient on a two-dimensional plot. 
This allows us to provide the clinicians with a visual tool to identify health status evolu-
tion by incorporating clinical codes.

A simple synthetic patient ps ∈ R
D is represented as a vector of length D with zeros 

values, setting just ‘1’ in the element corresponding to a certain target code. This target 
code corresponds to one of the ICD9-CM/ATC codes with the highest average rate in 
the profile of each cluster. Thus, each simple synthetic patient ps is characterized by just 
one code. Taking as an example the drug profile of C3 when considering CRGs-1000-
5192-5424, the code with the highest presence rate is ATC ‘A10BA’. Hence, the first sim-
ple synthetic patient is defined by a vector p(1)s  with zero values and only one ‘1’ in the 
element linked to the ATC ‘A10BA’. The second simple patient p(2)s  has a value of ‘1’ in 
the element corresponding to the ATC code ‘C10AA’. The rest of the simple synthetic 
patients are built in the same way. We show the simple synthetic patients (identified by 
the ’x’ marker) associated with clusters {C1 and C3 } and {C4 and C5 } in the corre-
sponding rows of the left panels of Fig. 8. For simplicity, and to highlight new insights 
extracted from this study, synthetic patients linked to cluster C2 (who were character-
ized as healthy patients) were not shown. Since there are common simple synthetic 
patients between clusters, we just visualize one of them on the plots. For instance, since 
the ICD9-CM ‘272’ is one of the most frequent codes in the diagnosis profiles of clusters 
C1 and C3, this code is depicted once.

In order to perform a faithful picture of real-world chronic patients, a complex syn-
thetic patient pc ∈ R

D is progressively constructed. Towards that end, we sequentially 
take into consideration clinical codes ordered according to the highest presence rate in 
a particular cluster. Formally, our representation of the i-th complex synthetic patient 
is built by aggregating Ni vectors associated with different simple synthetic patients, 
i.e.,p(i)c =

∑Ni
j=1

p
(i,j)
s  , with Ni≥2. Note that Ni corresponds to the number of differ-

ent target codes selected, which increases during the procedure of creation of complex 
synthetic patients. As an illustrative example, we take the most frequent drug codes in 
cluster C3 (see Fig. 7). The first complex synthetic patient p(1)c  for cluster C3 when con-
sidering just drug codes is represented as a vector with all zero values excepting ‘1’ in 
the elements linked to ATC ‘A10BA’ and ‘C10AA’. The second complex synthetic patient 
p
(2)
c  for C3 is represented as a vector with all zero values excepting those in the elements 

linked to ATC ‘A10BA’, ‘C10AA’ and ‘M01AE’. Once the complex synthetic patients are 
constructed, they are displayed on the right panels of Fig. 8.

In Fig.  8 (a-d), we displayed the projection of synthetic patients associated with 
clusters C1 (blue) and C3 (green), characterized as hypertensives and diabetics, 
respectively. Note that synthetic patients associated with ICD9-CM codes are pro-
jected on Fig.  8 (a-b), and ATC codes in Fig.  8 (c-d). A visual inspection of Fig.  8 
(a) showed that simple synthetic patients corresponding with ICD9-CM ‘250’ and 
‘401’ were placed on the clusters of diabetics (green points) and hypertensives (blue 
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points), respectively, whereas the rest were located in the cluster of healthy patients 
(orange points). This pointed out the codes most related to diabetes and hypertension 
(ICD9-CM ‘250’, ‘401’) and those codes with limited importance (ICD9-CM ‘719’, ‘724’, 
‘790’) when they are considered individually for characterizing chronic populations. 
The analysis of complex patients showed how the aggregation of diagnosis codes pro-
vided a visual progression of the mapping associated with complex synthetic patients 
on the two-dimensional space, thus displaying a potential patient health status evolu-
tion. Specifically, in Fig.  8 (b), we showed the complex synthetic patients (depicted 
with a black arrow) for the diabetic and hypertensive clusters. The code ICD9-CM 
‘250’ set the starting point for the synthetic patient in the cluster of diabetics (C3). 
The aggregation of new diagnosis codes allows us to display a visual progression 

Fig. 8  Visualization of simple synthetic patients (left panels) and complex synthetic patients (right panels) 
when considering CRGs-1000-5192-5424 and: (a-b) diagnosis codes of C1 and C3; (c-d) drug codes of C1 and 
C3; (e-f) diagnosis codes of C4 and C5; (g-h) drug codes of C4 and C5. Each color corresponds to a specific 
cluster: C1 (blue), C2 (orange), C3 (green), C4 (red), C5 (purple)



Page 21 of 27Chushig‑Muzo et al. BioData Mining           (2022) 15:18 	

by approaching the complex synthetic patient to the cluster of hypertensives as Ni 
increases. The complex patients starting in the hypertensive cluster with the ICD9-
CM ‘401’ code showed a similar trend but approaching to the diabetic’s cluster.

Following a similar approach, we use synthetic patients associated with ATC codes 
in Fig. 8 (c-d). Note how the synthetic patients linked to ATC ‘A10BA’ were mapped 
on the region associated with diabetic patients (green points), while patients with 
ATC ‘C09AA’ were on the hypertensives region. Furthermore, it was notable that 
ATC ‘C10AA’ (see Fig. 8 (c)) was located at the upper part of the scatter plot, far from 
healthy patients and between diabetics and hypertensives. As shown in the profiles, 
‘C10AA’ is a frequent code in clusters that gather chronic patients and it is commonly 
recommended for preventing cardiovascular diseases [60]. The rest of the synthetic 
patients (with ATC codes ‘M01AE’, ‘N02BE’, ‘N05BA‘) were mapped on different 
regions in the cluster of healthy patients. Regarding the synthetic complex patients, 
two visual progressions associated with clusters C1 (hypertensives) and C3 (diabetics) 
were identified (see Fig. 8 (d)). The first route started in the position linked to ATC 
‘A10BA’ and moved to the upper part of the scatter plot when the second target code 
(‘C10AA’) was included (see the arrow pointing upwards). The mapping of the route 
of the second synthetic complex patient started in the position of ATC ‘C09AA’ and 
reached out to the blue points in upper positions with the aggregation of the target 
code ATC ‘C10AA’. It is important to remark that even with the addition of new target 
codes to the synthetic complex patient, the visual progression is almost unaltered. 
This supports the insight about the low relevance of the last four codes for character-
izing these chronic conditions.

By continuing the analysis, we depicted the synthetic patients associated with the 
diagnosis and drug codes for clusters C4 (red points) and C5 (purple points) in Fig. 8 
(e-f ) and (g-h). As stated, C4 was composed of women with complications during 
pregnancy (including hypertension and gestational diabetes) and C5 gathered diabet-
ics who mainly consumed insulin. In Fig. 8 (e), we observed that the simple synthetic 
patients linked to C4 are characterized by ICD9-CM codes ‘401’, ‘V27’, ‘650’, ‘664’ and 
‘648’. As expected, the mapping of the simple synthetic patient with the target code 
‘401’ was placed on the cluster of hypertensives (blue points), whereas the remaining 
codes linked to pregnancy were placed on the region linked to patients characterized 
as healthy. For cluster C5, the synthetic simple patient with the target code ‘250’ was 
projected on the cluster of diabetics, whereas the rest of the simple synthetic patients 
were also mapped in the cluster of healthy patients. In Fig.  8 (f ), we observed the 
visual progression of the complex synthetic patients linked to C4 and C5. The first 
one started in the position of ICD9-CM ‘V27’ (mapped within the healthy cluster), 
but with the inclusion of the second target code (ICD9-CM ‘401’), the complex syn-
thetic patient is mapped on the cluster of hypertensives. The aggregation of more tar-
get codes (‘650’, ‘664’, ‘648’) moved the synthetic patient mapping to an area close to 
cluster C4. Note that only using diagnosis codes, the complex synthetic patients were 
not located within C4. In the case of C5, we observed in Fig.  8 (f ) that all complex 
synthetic patients were mapped on the area associated with diabetics (green points).

A visual inspection of Fig.  8 (g) showed that simple synthetic patients linked to C4 
and C5 drug codes were mapped on the cluster of healthy patients (orange points). This 
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was interesting since there were drugs related to insulins (ATC ‘A10AB’, ‘A10AE’) which 
are directly linked to the diabetes type-I treatment. However, the analysis of complex 
synthetic patients associated with clusters C4 and C5 provides an interesting progres-
sion (see Fig. 8 (h)). The first complex synthetic patient was mapped on the position of 
the most frequent ATC target code in C4 (‘N02BB’) and moved to the position where 
the target code ‘N02BE’ was projected, within the area of healthy patients. But the 
effect of aggregating ‘H03CA’ and ‘B03AA’ (drugs used during pregnancy) was remark-
able, moving towards cluster C4 (red points). This highlighted the importance of cer-
tain drug codes in the characterization of cluster C4. The case of the complex synthetic 
patient linked to C5 showed that the aggregation of the ATC codes ‘A10AE’ and ‘A10AB’ 
produced a visual progression from the area linked to the healthy cluster to the one of 
the diabetic’s cluster. Remark that the aggregation of more drug target codes (‘H04AA’, 
‘M01AE’, ‘N02BE’) did not show great influence in the previous visual progressions.

Discussion
In this paper, we analyzed the potential of using DAEs aiming to create LRs for charac-
terizing chronic patients based on binary data associated with diagnosis and drug codes. 
Our goal is not only to reduce dimensionality but also to maintain meaningful patterns 
of data and obtain effective representations to be used in subsequent clinical tasks such 
as clustering and visualization.

In the first part of this work, the LRs were used to find clusters of patients with simi-
lar clinical characteristics, allowing us to distinguish patients linked to different health 
statuses. Towards that end, k-means and the AHC using Ward linkage were considered, 
with AHC presenting the best clustering performance according to the analysis of CVI. 
Next, we combined DAEs and t-SNE to show the potential of our approach to represent-
ing high-dimensional data into a two-dimensional space. Mapping on two dimensions 
resulted to be effective for displaying the health status of patients with chronic condi-
tions, as well as for visualizing the progression of their health status as new clinical codes 
are considered.

Two case studies were analyzed in this paper, the first one considered healthy, hyper-
tensive and diabetic patients (CRGs-1000-5192-5424) and the second one included mul-
timorbid patients (CRG-1000-5192-5424-6144). As previously stated, the inclusion of 
the CRG-6144 increased the clinical complexity of the second case-study compared to 
the first one. This has an impact on the clustering performance (obtaining lower CVI 
values in the second-case study) and on the visualization performed in the two-dimen-
sional space (more overlapping between clusters). Referring to the clinical findings, we 
highlight that our approach led to identify clusters of patients with particular clinical 
conditions which, according to the CRG, were part of a more general health status. In 
particular, we identify two new subgroups of interest: (i) a subgroup of diabetics char-
acterized by the consumption of insulin, directly linked to type-I diabetes (by remarking 
that none ICD9-CM code for this specific kind of diabetes was used during training); 
and (ii) a cluster of pregnant women who presented complications during pregnancy, 
including hypertension and gestational diabetes.

In the second part of this work, a proof-of-concept based on synthetic patients was 
proposed for visualizing patient’s health status progression. The construction of the 
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complex patients and its mapping on a two-dimensional space allowed us to create a 
first approximation of the real-world patient’s health status evolution. With the aggre-
gation of more clinical codes to the synthetic patients, we could observe the impact of 
certain codes to lead a clinical condition A to another B (drawing a route). This could 
improve the clinical decision-making process, allowing the prediction of a worsening in 
the health status according to the trend in the path mapped as new drugs and diagno-
ses are considered. Unsupervised methods as those considered in this study show great 
potential to discover individuals with a higher risk of developing diabetes or hyperten-
sion using clinical data. Data-driven methods shift towards personalized healthcare, 
allowing to reduce healthcare costs and through the identification of patients with high 
consumption of resources, such as those affected by chronic conditions. Also, the cur-
rent approach can be extrapolated to other scenarios (with other clinical conditions), 
becoming key to finding groups of patients with complex health conditions and studying 
the influence of different clinical characteristics in the patient’s health status evolution.

Finally, it is relevant to point out that we only used data collected during a natural year. 
Experiments using data associated with different years are out of the scope of the paper, 
and they have been considered as future work. With the availability of longitudinal data 
of several years, we could perform a deeper analysis of the health status progression aim-
ing to allow practitioners to visually examine the mapping of a real-world patient and 
statistically determine which is the most appropriate treatment for a disease. To high-
light that, in the current work, the considered CRGs were selected because they have 
assigned a representative number of patients for performing properly the ML training. 
In future work, with the clinical validation of data by experts and the Ethical Commit-
tee permission of the UHF, we could consider other CRGs that guarantee a representa-
tive number of patients. With the new advances in data synthetic generation in other 
domains, we could explore more sophisticated ML methods in conjunction with the 
proposed in the current work. We also plan to work with temporal data for several years, 
to tackle the progression of the health statuses. This would also allow us to identify time-
related disease associations after grouping similar trajectories and study the main events 
associated with the particular health status evolution of each patient.

Conclusions
This paper leveraged the potential of using DAEs to create the LRs associated with high-
dimensional patient data. On the one hand, experimental results showed that LRs are 
beneficial to obtain clusters of patients with similar clinical characteristics. On the other 
hand, the combination of DAEs with mapping methods proved to be an effective visual 
tool for characterizing chronic patients. In particular, the proof-of-concept based on 
synthetic patients provided a first approximation of the visualization of the health status 
progression using ICD9-CM and ATC codes.

Our approach allows practitioners to examine the two-dimensional space and 
the projection of their patients, aiming to identify disease patterns and monitor the 
patient’s health status evolution, even proposing early interventions for controlling 
the disease evolution. Hence, it is possible to determine the factors associated with 
the onset and progression of chronic conditions. It is important to remark that early 
interventions can help the physicians to give more specialized treatments, improve 
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the patient’s satisfaction and plan health resources, significantly reducing the eco-
nomic burden associated with chronic diseases. In conclusion, our approach could 
support the use of ML models by physicians in daily practice, bringing some light 
to the decision-making process and the extraction of clinical knowledge. This work 
opens up interesting lines of research since the addition of new data could lead to a 
better characterization of the dynamic course of the health status.
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