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Abstract

Objectives: Ascertain and compare the performances of Automated Machine
Learning (AutoML) tools on large, highly imbalanced healthcare datasets.

Materials and Methods: We generated a large dataset using historical de-identified
administrative claims including demographic information and flags for disease codes in
four different time windows prior to 2019. We then trained three AutoML tools on this
dataset to predict six different disease outcomes in 2019 and evaluated model
performances on several metrics.

Results: The AutoML tools showed improvement from the baseline random forest
model but did not differ significantly from each other. All models recorded low area
under the precision-recall curve and failed to predict true positives while keeping the
true negative rate high. Model performance was not directly related to prevalence. We
provide a specific use-case to illustrate how to select a threshold that gives the best
balance between true and false positive rates, as this is an important consideration in
medical applications.

Discussion: Healthcare datasets present several challenges for AutoML tools,
including large sample size, high imbalance, and limitations in the available features.
Improvements in scalability, combinations of imbalance-learning resampling and
ensemble approaches, and curated feature selection are possible next steps to achieve
better performance.

Conclusion: Among the three explored, no AutoML tool consistently outperforms the
rest in terms of predictive performance. The performances of the models in this study
suggest that there may be room for improvement in handling medical claims data.
Finally, selection of the optimal prediction threshold should be guided by the specific
practical application.
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Background and significance
Leveraging big data growth in biomedicine and healthcare, machine learning (ML) has
helped improve health outcomes, cut healthcare costs, and advance clinical research [1–
4]. Studies applyingML to healthcare data range frommodels for disease prediction or for
improving quality of care, to applications such as detection of claim fraud [2, 5–8]. Clinical
big data used in various studies range from electronic health records, medical records,
and claims data. Many studies are limited to a single healthcare or hospital system [9–12].
Despite the demonstrated benefits of machine learning, different models need to be

trained in the context of the problem to achieve good performance [13]. For each model,
domain experts such as clinicians need to collaborate with data scientists to design ML
pipelines [14]. Automated machine learning (AutoML) is an emerging field [15] that aims
to simplify this labor-intensive process [16] which can accelerate the integration of ML
in healthcare scenarios [1]. State-of-the-art AutoML platforms allow domain experts to
design decently performing ML pipelines without deep knowledge of ML or statistics
while at the same time easing the burden of tedious manual tasks such as model selection
and hyperparameter optimization for data scientists [14].
With ML being adopted across industries, standardized benchmarks and datasets

are needed to compare competing systems [17]. These benchmark suites need to have
datasets that highlight strengths and weaknesses of establishedMLmethods [18]. Despite
the emergence of numerous AutoML tools, there is still a need for standardized bench-
marks in the field. Multiple studies to benchmark various AutoML tools[14, 19–21] have
been done. Notably, Gijsbers et al. [22] presented an open-source AutoML benchmark
framework to provide objective feedback on the performance of different AutoML tools.
Gijsbers et al. compared four AutoML tools across 39 public data sets, twenty-two of
which are binary classifications, with a mixture of balanced and imbalanced data. Of
these, only two have very low prevalence for one class, at around 1.8% each. Most of these
studies on benchmarks tested public datasets that have sample sizes in the order 103 and
feature sizes between 10-100. In contrast, our study uses a population of over 12 million
and over 3,500 features.
Although different AutoML tools will perform differently depending on the problem,

there is a need to have benchmarks on datasets that have similar characteristics to health-
care data. Highly imbalanced and large datasets are common in healthcare and thus, these
benchmarks will prove useful for accelerating the model-building process by identifying
a good baseline model.
A review of published papers for AutoML showed that despite the potential applications

and demonstrated need [23], little work has been done in applying AutoML to the field of
healthcare [7]. Waring et al. determined the primary reasons for the lack of AutoML solu-
tions for healthcare to be: (1) the lack of high-quality, representative, and diverse datasets,
and (2) the inefficiency of current AutoML approaches for large datasets common in the
biomedical environment. In particular, disease prediction problems often involve highly
imbalanced datasets [24] which do not lend themselves well to predictive modelling. Dis-
ease prevalences are much lower than those of the public datasets used by Gjisbers et.
al; the datasets we consider in this paper have positive prevalence ranging from 0.053% -
0.63%. The extremely low prevalence does not give the models enough samples from one
class to train on.
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Objectives
To advance the use of AutoML tools in healthcare, there is a need to first assess their
performance in representative datasets. Doing so brings to light the challenges and
limitations of using these tools on healthcare data and serves as the basis for future
improvements to better address problems in healthcare. In this study, we generated a
dataset using claims data with 12.4M rows and 3.5k features. Using this, we compared the
performance of different AutoML tools for predicting outcomes for different diseases of
interest on datasets with high class imbalance.

Materials andmethods
Population

The population used in this analysis consisted of 12,425,832 people who were continu-
ously enrolled in Medicare or Commercial plans from January 1, 2018 to December 31,
2019. Continuous enrollment in this period was required since the identification of the
disease cohorts and the creation of features are heavily reliant on historic claims data.
While it would have been ideal to ensure the completeness of each person’s claims history,
imposing a longer continuous enrollment criterion would have made fewer people eligi-
ble. Although features were created based on claims data from 2016 to 2018, completeness
can only be guaranteed for data in 2018.
We aimed to predict if a person will have the first occurrence of a specific disease at any

point from January 1, 2019 to December 31, 2019. Patients who had prior diagnoses of
the target disease before the prediction time were excluded. For example, those that had
a diabetes diagnosis prior to 2019 would be excluded from the cohort for which we are
predicting diabetes.

Target diseases

We aimed to predict the occurrence of six diseases – lung cancer, prostate cancer,
rheumatoid arthritis (RA), type 2 diabetes (T2D), inflammatory bowel disease (IBD), and
chronic kidney disease (CKD) – in the prediction year. Claims-based definitions were
created for each target disease. Table 1 gives definitions for each disease, along with the

Table 1 Definitions for flagging disease outcomes and the respective prevalences in the final cohort
table. Abbreviations used: Chronic Kidney Disease (CKD), Type 2 Diabetes (T2D), Inflammatory Bowel
Disease (IBD), RheumatoidArthritis (RA), International ClassificationofDiseases, Tenth Revision (ICD-10)

Disease ICD-10 Code Definition Prevalence Number of
cases

Lung Cancer C34 Two lung cancer claims at
least 30 days apart, no
history of any cancer

0.053% 6,539

Rheumatoid
Arthritis (RA)

M05, M06
(Except M064)

At least one RA claim* 0.10% 12,174

Prostate Cancer C61 Two prostate cancer
claims at least 30 days
apart, no history of any
cancer

0.12% 14,925

Type 2 Diabetes
(T2D)

E11 Two T2D claims at least 30
days apart

0.59% 73,540

Inflammatory
Bowel Disease (IBD)

K51, K52 Two IBD claims at least
one day apart

0.32% 39, 502

Chronic Kidney
Disease (CKD)

N18 Two CKD claims at least 30
days apart

0.63% 78,786
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corresponding prevalence and cohort size, presented in order of increasing prevalence.
Disease flags are based on the International Classification of Diseases, Tenth Revision
(ICD-10). Since the presence of a given ICD-10 code in a claim may simply be due to an
event such as a screening test being ordered rather than truly indicative of a diagnosis,
we required the presence of that disease code in at least two claims within a specified
time period for most of the diseases under consideration. The second occurrence of the
ICD-10 code is considered the confirmatory diagnosis for most diseases.

Data creation

Features were derived from the administrative claims history of members from 2016 to
2018. Each claim corresponds to a patient visit and contains information that describes
the healthcare services rendered such as diagnosis codes, procedure codes, medical sup-
plies and equipment, and costs incurred. In this study, only the diagnosis codes were used
as features. One claim can be associated with up to 12 diagnoses which corresponds to
12 unique ICD-10 codes, sequenced based on the severity of the illness. Only the first
three diagnoses in each claim were considered to ensure that only the most clinically rel-
evant diagnoses to the health service being availed were used. Other ICD-10 codes are
coded primarily for billing purposes, and typically have very little to no relevance to the
procedure or service.
Each diagnosis corresponds to an ICD-10 code, which can be up to 7 digits long. For

each of the first three diagnoses, only the first three characters of the ICD-10 codes were
used. The first three characters correspond to a broader classification of the diagnosis. For
example, E10.2 corresponds to Type 1 Diabetes with kidney complications while E10.65 is
for Type 1 diabetes with hyperglycemia. Taking only the first three characters, these two
ICD-10 codes would fall under “Type 1 Diabetes”. Using only the first three characters of
the ICD-10 codes allows us to create adequately sized groups of patients that have the
same disease.
For each claim in the patient’s entire history from 2016 to 2018, the first three characters

of the first three ICD-10 codes were taken. From these first three characters, indicator
flags were created based on the presence or absence of these codes in four time periods of
varying lengths. Thus, each code corresponds to four flags in our data set. Table 2 shows
the time windows considered.
Binning diagnoses flags in different time windows was done to introduce a temporal

component to the predictors. Older diagnoses were generally less relevant to the predic-
tion of a disease. The presence of a particular diagnosis code in an earlier window does
not guarantee that it will be present in the succeeding periods. Disease flags are only
determined by the presence of a patient’s claims with the relevant ICD codes related to a
condition within time window, independently.

Table 2 Time periods for creating feature flags

Time window Start date End date

1 Oct 1 2018 Dec 31 2018

2 July 1 2018 Sep 30 2018

3 Jan 1 2018 Jun 30 2018

4 Jan 1 2016 Dec 31 2017
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Demographic information such as gender, state-level socioeconomic index, and age in
2018 were also used as features in the analysis. In total, 3,511 features were created.

Benchmark framework

The flowchart in Fig. 1 shows the framework used to benchmark the different AutoML
systems adapted from [22] and modified to include a bootstrapping procedure to obtain
95% confidence intervals for each of the metrics considered. The features used for each
model depended on the target outcome; flags corresponding to the ICD-10 code of the
disease being predicted were excluded. For example, for lung cancer, all four features
across different windows for the ICD code C34 were dropped. For each target disease, we
generated a training set of 300,000 samples taken from the population of 12million, main-
taining the disease prevalence. The three AutoML tools (AutoSklearn [25], H2O [26] and
TPOT [27]) and a random forest model were trained on the same training set for each
disease. Random forests were used as a baseline in this study primarily because it was also
used as the baseline model in the framework of Gijsbers et al. [22]. In addition, random
forests are good baseline models because they generate reasonable predictions without
much parameter tuning, and can handle large numbers of inputs and features. Another
difference between our framework and the reference framework is that for each AutoML
model, we optimized for different metrics – average precision (area under precision-recall
curve (AUCPR) approximation), balanced accuracy, and area under the receiver operat-
ing characteristic curve (ROCAUC). H2Owas optimized for AUCPR and AUC, the latter
corresponding to ROC AUC. We did not optimize H2O for balanced accuracy because
this metric was not included in its base built-in scorers. This resulted in multiple models
per target disease per tool instead of having a single model optimized for ROC AUC. The
random forest model was considered the baseline for comparison. The default settings
were used for each tool, except for the maximum run-time which we set at 48 hours for
each model. All models were trained on identical 16-CPU 8-core Intel Xeon (2.3 GHz)
machines with 256GB RAM. The trained models were then used to predict outcomes for
the remaining holdout dataset consisting of 11.7 million samples. For each model and tar-
get disease, bootstrapping was performed on the predictions to obtain 95% confidence
intervals for eachmodelmetric. Samples were takenwith replacement (both stratified and
not stratified) from the holdout validation set to obtain 500 sets of 150,000 observations

Fig. 1 Flowchart of framework for benchmarking AutoML tools adapted from Gjisbers et al.
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Fig. 2 ROC AUC performance of different AutoML models trained for various disease outcomes from stratified
bootstrap samples. Median values are indicated by diamond markers and 95% CIs are indicated by lines

each. Metrics were then computed for the predictions of each model on each resampled
dataset, yielding 500 values per metric per model which were used to derive the 95% con-
fidence intervals. We note that, due to the large dataset size and consequent time and
resource requirements, we ran each AutoML tool once for each choice of optimization
metric, so these are confidence intervals for the performance on the holdout data for each
of these specific AutoML runs.

Results
The bootstrapped metrics for the performance of the different models on the holdout
set are shown in Figs. 2 and 3 for ROC AUC and AUCPR (the latter as approximated

Fig. 3 AUCPR performance of different AutoML models trained for various disease outcomes from stratified
bootstrap samples. Median values are indicated by diamond markers and 95% CIs are indicated by lines
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by the average precision), respectively. The same results can be seen in tabular form in
Supplementary Tables 1 and 2, Additional File 1.
In both figures, diamond markers indicate the median metric scores for each model,

while circle markers denote the lower and upper limits of the 95% confidence intervals
calculated through bootstrapping. These figures show metrics computed using stratified
bootstrap samples. There is minimal difference between the results of getting the metrics
from either stratified or non-stratified bootstrap samples. The results for non-stratified
samples can be seen in Figs. 1 and 2 in Supplementary File 1. For ROC AUC, we observe
varying performances across different diseases. In general, no single AutoML frame-
work outperforms the rest consistently and with a wide margin. Also, we observe that
disease prevalence is not directly correlated to model performance; models with high-
est ROC AUC scores were those for prostate cancer which is the second least prevalent
disease (0.12% prevalence). We also observe narrow confidence intervals for the models
trained for predicting CKD, which has the highest prevalence. Wider confidence inter-
vals correspond to lower disease prevalence, with the widest intervals observed for lung
cancer (0.053% prevalence). Note that this is not always the case; for prostate cancer, all
AutoSklearn and H2O models, and the TPOT model optimized for ROC AUC trained
have relatively narrow confidence intervals.
Since model scores and performance varied across diseases, we normalize the median

ROCAUC scores based on themedian random forestmodel performance as done byGjis-
bers et al. The results are shown in Table 3. The best performing models across diseases
are either H2O models or the AutoSklearn model optimized for ROC AUC. However, for
each disease the difference between the best model and the other models are small. In
terms of ROCAUC improvements relative to the random forest models, greater improve-
ments are observed for the less prevalent diseases. The median improvements for all
AutoMLmodels per disease are 1.136, 1.100, 1.083, 1.041, 1.078, and 1.036 for lung cancer,
prostate cancer, rheumatoid arthritis, IBD, Type 2 Diabetes, and CKD, respectively.

Table 3Median performance ROC AUC scores for different AutoML models scaled according to
median random forest performance. Models with the best performance for each disease are
indicated in bold

Metric: ROC AUC Lung
Cancer

Prostate
Cancer

Rheumatoid
Arthritis

Type 2
Diabetes

IBD CKD

Model

AutoSklearn
(Average Precision)

1.107 1.091 1.072 1.081 1.022 1.039

AutoSklearn
(Balanced Accuracy)

1.124 1.097 1.082 1.069 1.042 1.034

AutoSklearn (ROC
AUC)

1.152 1.109 1.110 1.091 1.048 1.041

H2O (AUC) 1.159 1.107 1.107 1.098 1.042 1.042

H2O (AUCPR) 1.159 1.104 1.106 1.098 1.042 1.043

Random Forest 1.000 1.000 1.000 1.000 1.000 1.000

TPOT (Average
Precision)

1.144 1.053 1.055 1.056 1.037 1.012

TPOT (Balanced
Accuracy)

1.071 1.013 1.058 1.003 1.032 1.002

TPOT (ROC AUC) 1.128 1.103 1.084 1.075 1.040 1.013

Random Forest 1.000 1.000 1.000 1.000 1.000 1.000
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Due to the imbalance of the datasets, we also measure model performance on AUCPR.
Low AUCPR scores are observed for all models as seen in Fig. 3. The models for prostate
cancer which had narrow confidence intervals in terms of their ROC AUC scores have
wider confidence intervals for their bootstrapped AUCPR scores. Generally, H2O mod-
els had the highest median AUCPR scores. Taking note of the range of AUCPR values,
however, there is no single model that outperforms the rest significantly across different
diseases.
Table 4 shows the performance increases of the models relative to the median baseline

scores of the random forest model. Despite the low AUCPR scores, we generally observe
improvements in AUCPR compared to the baselinemodels except for TPOTmodels opti-
mized for balanced accuracy, especially those trained for predicting prostate and lung
cancer. The median AUCPR improvements for all AutoML models per disease are 2.000,
1.567, 1.515, 1.224, 1.650, and 1.319 for lung cancer, prostate cancer, rheumatoid arthritis,
IBD, Type 2 Diabetes, and CKD, respectively.
Beyond ROC AUC values, selecting the thresholds for each model is an essential step

in evaluating a model for practical purposes. This is especially true when working with
imbalanced data [28]. Despite the AutoML output models being ready to generate hard
predictions, in practice, one must still consider the threshold that will give the best bal-
ance between true positive rate and false positive rate depending on the problem being
solved. The actual ROC curves generated using the full validation set are shown in Fig. 4.
To illustrate, consider the case of predicting lung cancer, which has the lowest preva-

lence among the six diseases explored in this study. Lung cancer is often detected at the
advanced stage when prognosis is poor and survival rates are low, thus making it one of
the leading causes of cancer-related deaths in the United States. Several strategies that
aim to detect the disease at an early stage where intervention is most effective are in
place, chief of which are the rule-based screening guidelines provided by the National
Comprehensive Cancer Network (NCCN) and the United States Preventive Services Task
Force (USPSTF). However, even with these methods in place, only about 2% of annual

Table 4Median AUCPR scores for different AutoML models scaled according to median random
forest performance. Models with the best performance for each disease are indicated in bold

Metric: Average
Precision

Lung
Cancer

Prostate
Cancer

Rheumatoid
Arthritis

Type 2
Diabetes

IBD CKD

Model

AutoSklearn
(Average Precision)

1.957 1.787 1.471 1.675 1.212 1.395

AutoSklearn
(Balanced Accuracy)

2.043 1.260 1.647 1.608 1.259 1.300

AutoSklearn (ROC
AUC)

1.870 2.102 1.353 1.592 1.235 1.337

H2O (AUC) 3.217 2.213 1.706 1.750 1.259 1.428

H2O (AUCPR) 3.261 1.961 1.706 1.767 1.259 1.420

TPOT (Average
Precision)

2.565 1.346 1.147 1.650 1.200 1.160

TPOT (Balanced
Accuracy)

0.696 0.457 1.324 1.033 0.976 0.984

TPOT (ROC AUC) 1.522 1.087 1.559 1.650 1.129 1.074

Random Forest 1.000 1.000 1.000 1.000 1.000 1.000
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Fig. 4 Receiver operating characteristic (ROC) curves of models trained for predicting different diseases. ROC
curves are generated using prediction scores on full validation set (N = 12,125,832)

lung cancer incidences are detected through screening. Patients who are considered eli-
gible for screening based on the NCCN and USPSTF guidelines undergo a low-dose
computed tomography (LDCT) annually. Though LDCT can detect lung cancer at a treat-
able stage, it also poses several health risks especially to those who are otherwise clear
of the disease. These include unnecessary treatment, complications and a theoretical
risk of developing cancer from exposure to low-dose radiation. Thus, in building a pre-
dictive model for lung cancer, these associated costs must be considered together with
the objective of identifying as many positive cases as possible. In other words, for this
kind of problem, there is a need to minimize the number of false positives while try-
ing to achieve a high true positive rate (TPR). After training an AutoML model using
any tool, caution should be exercised when still deploying the models. Models typically
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provide predictive probabilities and selecting the correct threshold for the application
is necessary. Identifying the correct thresholds depending on the trade-offs between
TPR and FPR can be done by looking at the respective ROC AUC curves as seen
in Fig. 4
We show different confusionmatrices for the best performingmodel for predicting lung

cancer in terms of ROC AUC in Supplementary Table 3, Additional File 1. Thresholds
are chosen based on deciles of actual predicted probability values for the full validation
dataset. Identifying the optimal threshold will depend on the costs of true positives, false
positives and false negatives. We consider hypothetical dollar costs for the same model
noting that costs in terms of medical risks and quality of life are not included. We assume
the per person cost of getting the disease is $300,000 annually if not detected early (equiv-
alent to the cost of a false negative), while if detected early, the cost will be $84,000
annually (equivalent to the cost of a true positive). For this situation, we also consider two
hypothetical tests, one priced at $100 per test and LDCT which costs about $500 on aver-
age. We compute savings based on the baseline situation where no tests are administered
(each person with lung cancer is associated with the cost of a false negative). Figure 5
plots the savings for each hypothetical test cost per person for different decile probabil-
ity thresholds. The optimal thresholds for the model depend on the situation where the
model will be used. For the $100 test, we see the optimal cut-off is at the 70th percentile
while for the $500 test, it is at the 90th percentile. For the $500 test, this cut-off is the only
one that leads to positive savings. These cut-offs correspond to a FPR = 0.3, TPR = 0.9,
and FPR = 0.1 and TPR = 0.52, respectively.

Discussion
Since AutoML software packages are attractive out-of-the-box tools to build predictive
models in the context of healthcare data, we examined and compared the performance

Fig. 5 Average savings per person for different cut-off thresholds for the H2O (AUROC) model for different test
costs. True positive costs are set at $84,000, while false negative costs are set at $300,000. False positive costs are
only from the test costs
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of three of these tools (AutoSklearn, H2O, and TPOT) on a large medical claims dataset
for six different disease outcomes. However, these datasets present several challenges.
First, the sample size (∼ 12.5M) is much larger than the typical size of datasets ana-
lyzed with AutoML. In this work we used a stratified sample of 300k for training,
which is still quite large for AutoML given that these approaches are computation-
ally intensive because they are iterating over many different algorithms. For example,
the number of generations completed by TPOT within the 48-hour time limit var-
ied greatly for each target disease and scoring metric. The number of generations
completed ranged from 7 to 38, with an average of 18.88 across 18 models. Running
time for the different AutoML models varied depending on the initial conditions and
target conditions. However, for most methods, the running time hit 48 hours. Improve-
ments in terms of scalability of these AutoML methods are certainly desirable in the
context of medical claims data. Once training several AutoML models each on a dif-
ferent and relatively large subsample of the dataset becomes computationally feasible,
combining the resulting models into an ensemble may provide further performance
improvements.
A second challenge is the extremely low case prevalence characteristic of healthcare

data; in our examples, this varied from 0.053% to 0.63%. This may be the main culprit
for the low AUCPR scores we observed across the methods and diseases. Improvements
in terms of handling highly imbalanced datasets are crucial for healthcare applications.
One direction for future work is to explore combinations of over- and under-sampling
techniques with ensemble approaches in the spirit of [28].
Another challenge which may partly account for the poor performances observed

among the models stems from the limitations inherent to the features available in health-
care databases. Since claims are coded for billing purposes, some healthcare services are
tied to a certain ICD-10 code which may not necessarily be indicative of the presence
of a certain disease. For example, individuals who are eligible for cancer screening will
have the screening procedure billed under a cancer ICD-10 code regardless of the result.
Hence, individuals who do not have cancer will still have cancer codes in their claims
history. This means that simply flagging the presence of these ICD-10 codes is not an
accurate representation of the person’s medical history. Using fewer selected features may
help improve model performance. For example, retaining only features corresponding
to ICD-10 codes clinically related to the disease being predicted can reduce the size of
the feature set and allow the models to more easily establish relationships between the
features and the target.

Conclusion
AutoML tools generally fast track the ML pipeline and the models they generate can
serve as starting points for building predictors. However, the performance of these tools
on the medical claims datasets used in this study suggest that there may be room for
improvement in how AutoML tools handle data of this scale and with such high imbal-
ance. To address the limitations of the data, further feature selection, resampling and
imbalance-learning ensembles are possible next steps.
Despite the advantages of using AutoML tools for model selection and optimization,

care must still be taken in identifying the optimal output thresholds depending on the
research question.
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Abbreviations
AutoML Automated machine learning
ML Machine learning
CKD Chronic kidney disease
T2D Type 2 diabetes
IBD Inflammatory bowel disease
RA Rheumatoid arthritis
ICD-10 International classification of diseases, tenth revision
ROC AUC Area under the receiver operating characteristic curve
AUCPR Area under the precision-recall curve
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