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Abstract

Symptom-based machine learning models for disease detection are a way to reduce

Computer Science, Faculty of the workload of doctors when they have too many patients. Currently, there are
Science, Chiang Mai University, many research studies on machine learning or deep learning for disease detection or
Chiang Mai 50200, Thailand linical d t ts c| ificati . text of patient’ t d vital si |
FUll list of author information is clinical departments classification, using text of patient's symptoms and vital signs. In
available at the end of the article this study, we used the Long Short-term Memory (LSTM) with a fully connected

neural network model for classification, where the LSTM model was used to receive
the patient’s symptoms text as input data. The fully connected neural network was
used to receive other input data from the patients, including body temperature, age,
gender, and the month the patients received care in. In this research, a data
preprocessing algorithm was improved by using keyword selection to reduce the
complexity of input data for overfitting problem prevention. The results showed that
the LSTM with fully connected neural network model performed better than the
LSTM model. The keyword selection method also increases model performance.
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Introduction
Symptom-based machine learning models help patients self-detect diseases via elec-
tronic devices such as smart phones or robots in hospitals with automated question
and answer systems [7]. Recently, several studies improved the text classification model
for clinical department classification [27] and disease detection [12]. These studies
used text from symptoms and other features of patients for disease detection [17].

Dengue fever (a mosquito-borne viral disease) [18] and influenza are dangerous in-
fectious diseases that many people contract. Dengue and influenza have symptoms like
the common cold, but they can be fatal. It is estimated that 3 to 5 million people each
year become seriously ill due to influenza [21].

The research about machine learning or deep learning for dengue and influenza is
divided into two parts, improvement prediction models for forecasting the number of
patients [25] or forecasting an outbreak [8] in some areas or countries such as China
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[26], India [16], and Thailand [22]. Another type of research is focused on improving
machine learning or deep learning models for detection of dengue fever and influenza
from vital signs [6] and symptoms [1] of patients.

The Long Short-term Memory (LSTM) model is a recurrent neural network model.
It is commonly used in text classification [13], time series classification [11], and time
series forecasting [25].

In this research, we will use the LSTM model to classify the symptoms of patients as
text. The LSTM model was concatenated with a fully connected neural network to use
patient vital signs and other features as input data, including gender, body temperature,
and age of patients to increase the performance of the classification model. Moreover,
we improve our method for data preprocessing by removing words that are not import-
ant to classification, this simplifies the input data.

Theorical foundations

In this section, we describe all of the methods we used for modeling in this research.

Mutual information metric

Mutual information metric (MI) is a value used to show the ability to classify each key-
word. We use MI to measure the correlation between each keyword and each class.
Mutual information metric is denoted by MI(w, ¢), where w is a word and c is a class. It
is calculated by Eq. (1).

_ SaN
= log (fatfo)fatSp)

When f, is the number of documents in class ¢ that contain word w, fz is the number

MI(w, c) (1)

of the documents not in class ¢ that contain word w, fc is the number of the documents
not in class ¢ that do not contain word w. and N is the number of all documents. The
MI(w, ¢) has a value in range [ - log(N), log(N)] this is shown in (2) and (3).

= faN < N <
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The MI of each word can be measured by finding the MI between the word and the
class with the highest MI value. It is shown in Eq. (4) where d is the number of classes.

MI(w) = max MI(w, ¢;) (4)

The MI is the largest in the case of f4 =1, fz=0, and fc =0 .The words that have a
frequency of 1 are important for classification.

Word embedding
Word embedding is the method for representing each word with a vector of a real
number. Word2vec [15] is a method of word embedding, where neighbors’ vectors of
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each word represents words with similar meaning. We can set the dimension of the
vectors for each word when we train the word2vec model. If we use a pre-train word2-
vec model, we can use the principal component analysis (PCA) to reduce the dimen-
sion of the vector of words to the dimension that we want.

Interpolation

Interpolation is a method for estimating the missing data using polynomial or other
functions [2], to obtain some points of data. An example for calculating the missing
point of equation y = sin (x) is shown in Fig. 1.

LSTM

Long Short-term memory Neural Network (LSTM) [9] is a model architecture for re-
current neural network (RNN). The input data for each record of LSTM model is a se-
quence of vectors. A structure of LSTM is shown in Fig. 2 where X; is a vector of input
data with time stamp ¢.

The LSTM model is used for classification or prediction of sequential input data. In
the present, the LSTM has had several improvements and has been used in several
ways for time series prediction and text classification, such as LSTM fully convolutional
networks for time series classification [11], bidirectional LSTM for sentiment analysis
[13] and medical text classification [7].

Imbalanced data problem
The imbalanced data problem is a problem of data classification, when the number of
records in each class is vastly different [19]. In the case of binary class classification, we
call the class with more records than the other class the majority class and call the
other class the minority class.

There are two popular methods for solving the imbalanced data problem:

1) Using under sampling or oversampling for sampling training data in each class to
have the same number of records.

2) Using some loss functions for machine learning or deep learning model to increase
the weight of the minority class.
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Fig. 1 Data interpolation with linear and cubic functions
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Fig. 2 LSTM model structure

In this research we use the cost-entropy loss function [24] in Eq. (6) for the loss func-
tion of LSTM model for solving the imbalanced data problem. It has been improved
upon from the cost-entropy loss in Eq. (5) where t; = [£x(1), £x(2), ..., ti(d) ] is the vector
of target output of k" record of dataset, (i) €{0,1} for i=1, 2, ..., d, and i = (1),
Yi(2), ..., yi(d) ] is the vector of output of model for k" record of dataset, and (@) € (0,
1) for i=1, 2, ..., d. Moreover, we set n; to be the number of records of training data in
the class of k" record and set a constant value y<l0,1].

tk logyk (5)

n d
1 k=1

itk ) logy, (i (1 )y (6)

Nk

Material and methods
Data description
The data used in this research is from medical records from Saraphi Hospital, Chiang
Mai Province, Thailand Between 2015 and 2020 [3-5]. We use only records of patients
diagnosed with three diseases. This includes the common cold, flu, and dengue. We
listed all the attributes we used in this research in Table 1.

The distribution (average and standard deviation) of some features and the number
of records for each class are shown in Table 2.

From the statistical hypothesis test (t-test), it was found that:

1) Average of age: It was found that the mean of age of common cold patients was
greater

Table 1 The attributes are used in this research

Attribute Description

CHIEFCOMP Text of symptoms of each patient

GENDER Gender of each patient (0=male, 1 =female)

MONTH_SERV The month, that each patient comes to the hospital in each time.
BTEMP Body temperature of each patient

AGE Age of each patient (year of service minus by year of birth)
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Table 2 The average, standard deviation, and number of patients for some features

Attributes\Classes cold Dengue flu all
AGE (years) mean 36.188 27.269 326 36.002
std 26933 15.643 20813 26.714
BTEMP (Q mean 36.793 37.248 37.784 36.824
std 0.827 1.191 1.148 0.858
GENDER (records) male 2188 25 64 2277
female 2802 27 76 2905
number of records (records) 4990 52 140 5182
Length of sentence (words) mean 7.930 5.096 5771 7.843
std 6.208 2320 5.164 6.171
Number of words (words) 1279 102 158 1306
Word frequency (records) mean 29.18 257 486 2936
std 159.19 332 1058 161.66

than the mean of age of dengue and flu patients (p-value < 0.05), but the mean of age

of dengue and flu patients was no different. (p-value > 0.05).

2) Average body temperature: It was found that the mean body temperature of

common cold

patients were less than the mean of body temperature of dengue patients (p-value <

0.01), and the mean of body temperature of dengue patients was less than the mean of

body temperature of flu patients (p-value < 0.01).

Data preprocessing

In this research, the features used for classification include CHIEFCOMP, GEN-
DER, MONTH_SERV, BTEMP, and AGE. For numerical features (BTEMP and
AGE), we use min-max normalization to adjust the values in range [0,1]. Examples
of data are shown in Table 3. For MONTH_SERV, we use one hot encoder to
convert each value to a vector of integers. For the CHIEFCOMP column, the data

in this column is a sentence in the Thai language. We use a python library

“pythainlp” [20] for word tokenization. Here is an example of word tokenization,

«

from the sentence

Table 3 Examples of data in our dataset

" (English: “Having a cold with a runny nose

Attribute  1st patient 2nd patient

CHIEFCOMP 6
(English: having a cold with a runny nose (English: 6-day fever, weak-
and cough) ness, cough, and sore throat)

GENDER 1 0

MONTH_ 08 (August) 03 (March)

SERV

BTEMP 36.5 38

AGE 50 23

DISEASE cold

dengue

Page 5 of 14



Nadda et al. BioData Mining (2022) 15:5

\

LI

Fig. 3 Vectors of words in a sentence after the removal of 2 stop words

word2vec of normal word

stop word

and cough) to a list of words |

I/ \ T/ A\

I

I

" ™ "]. Then the python

Page 6 of 14

library “Gensini [14] is used to create a word2vec model that converts the text of
each record into a matrix of a real number.

Keywords selection

In the process of text preprocessing for LSTM training. We removed words that were

not important for classification to simplify the incoming data including:

1. Low MI: words with low mutual information metric (bottoms 5%).
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2. Low frequency: words with low frequency (frequency < 2) because it had high ML
That is, it has a high ability for classification. However, it may be a typographical

error.

These words are defined as stop words, and all stop words are removed from the
data. Next, we set the positions of the removed words to missing values. It is shown in
Fig. 3.

We use three methods to solve the missing values problem:

1. Cut the stop words: cut the vectors of all stop words in the sentence.
2. Fill with mean: fill the vectors of the missing values by the mean of word2vec of all

words in the sentence with the corresponding position.
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