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Abstract

Objectives: To develop and to propose a machine learning model for predicting
glaucoma and identifying its risk factors.

Method: Data analysis pipeline is designed for this study based on Cross-Industry
Standard Process for Data Mining (CRISP-DM) methodology. The main steps of the
pipeline include data sampling, preprocessing, classification and evaluation and
validation. Data sampling for providing the training dataset was performed with
balanced sampling based on over-sampling and under-sampling methods. Data
preprocessing steps were missing value imputation and normalization. For
classification step, several machine learning models were designed for predicting
glaucoma including Decision Trees (DTs), K-Nearest Neighbors (K-NN), Support Vector
Machines (SVM), Random Forests (RFs), Extra Trees (ETs) and Bagging Ensemble
methods. Moreover, in the classification step, a novel stacking ensemble model is
designed and proposed using the superior classifiers.

Results: The data were from Shahroud Eye Cohort Study including demographic
and ophthalmology data for 5190 participants aged 40-64 living in Shahroud,
northeast Iran. The main variables considered in this dataset were 67 demographics,
ophthalmologic, optometric, perimetry, and biometry features for 4561 people,
including 4474 non-glaucoma participants and 87 glaucoma patients. Experimental
results show that DTs and RFs trained based on under-sampling of the training
dataset have superior performance for predicting glaucoma than the compared
single classifiers and bagging ensemble methods with the average accuracy of 87.61
and 88.87, the sensitivity of 73.80 and 72.35, specificity of 87.88 and 89.10 and area
under the curve (AUC) of 91.04 and 94.53, respectively. The proposed stacking
ensemble has an average accuracy of 83.56, a sensitivity of 82.21, a specificity of
81.32, and an AUC of 88.54.
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Conclusions: In this study, a machine learning model is proposed and developed to
predict glaucoma disease among persons aged 40-64. Top predictors in this study
considered features for discriminating and predicting non-glaucoma persons from
glaucoma patients include the number of the visual field detect on perimetry, vertical
cup to disk ratio, white to white diameter, systolic blood pressure, pupil barycenter
on Y coordinate, age, and axial length.

Keywords: Ophthalmology, Data Mining, Imbalanced Learning, Feature selection,
Ensemble classification

Introduction
Glaucoma is the second cause of irreversible blindness and the fourth cause of Moder-

ate and Severe Vision Impairment (MSVI) in the world.[1] Glaucoma prevalence rises

with age increasing, and it is one of the main risk factors for blindness and MSVI in

people older than 50.[1].

The average number of persons who go blind from glaucoma has been increased

from 2.5 million persons in 1990 to 3 million persons in 2015. Moreover, the average

number of persons and the average number of persons who suffer from MSVI due to

glaucoma has been raised from 3 million persons to 4 million persons from 1990 till

2015.[2].

It has been predicted that the number of persons suffering from glaucoma aged be-

tween 40 and 80 years old would be increased from 64.3 million persons in 2013 to 76

million persons in 2020 and 111.8 million persons in 2040.[3].

Previous studies have identified different risk factors such as age, gender, race, Intero-

cular Pressure (IOP), diabetes, and family history for glaucoma.[4–7].

Among different studies performed in the population older than 40, the glaucoma

prevalence has been reported from 1.44 to 4 %. In contrast, more than 50 % of patients

suffering from glaucoma have been unaware of their illness.[5, 8, 9] The identified risk

factors for glaucoma in Iran are age, IOP, diabetes, axial length, and gender.[5].

Glaucoma is usually an asymptomatic disorder. If a severe visual impairment is not

detected, the patient will not be aware of their disease. Therefore, some physicians have

called glaucoma the silent thief of sight.[10].

The blindness occurring due to glaucoma is irreversible, but some early treatment

such as reducing IOP and some surgical interventions can cease blindness due to glau-

coma. However, some early treatment activities such as reducing IOP and some surgi-

cal operations can help control the disease progression. Early detection and diagnosis

of glaucoma and identifying high-risk groups can reduce the irrecoverable adverse ef-

fects of glaucoma.

Artificial intelligence and machine learning methods have various applications in

solving medical and healthcare problems[11–13], such as in ophthalmology[14]. Devel-

oping automatic methods for ophthalmological diseases[15], ophthalmologic image

analysis[16], network analysis for gene expression data for eye diseases[17], predicting

the progressions of ophthalmologic diseases[18], and evaluating eye diseases’ progres-

sion[19–21] are some of these applications.

The automatic methods for predicting and diagnosing glaucoma can be used as the

computer-assisted diagnosis (CAD) method and decision support system (DSS) to
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improve glaucoma diagnosis and management accuracy. In this study, the main aim is

to design and develop machine learning models for glaucoma prediction. For this pur-

pose, demographic characteristics, optometry, biometry, perimetry features, and oph-

thalmologic examination results are used as the input variables.

The main novelty of this study lies in several folds, including:

� Proposing and designing a two-step classification task: The first step includes train-

ing the base and single classifiers on the training dataset and evaluating their per-

formance based on a subset of the training dataset named as validation dataset,

finding the superior classifiers. The second step is designing a novel stacked ensem-

ble classifiers based on the superior classifiers.

� Using comprehensive ophthalmology features like perimetry and biometry to

develop the glaucoma prediction model without any fundus features. Features of

this study come from non-interventional ophthalmologic examinations.

� To address a highly imbalanced dataset with 87 instances in the glaucoma class

(1.9 % of all instances) without generating artificial instances.

� Analysing a cohort dataset.

Literature review

Different methods based on artificial intelligence and machine learning have been used

in various applications for glaucoma management in recent years. [22] For instance,

building glaucoma interaction networks [17], assessing the optic disk [23, 24], and de-

tecting visual field progression[19–21], diagnosis, and screening.[10, 11, 25–33].

To propose and develop models to screen and diagnose diseases using structured

datasets and complex data such as medical images and gene expression data can assist

the physicians in early managing and diagnosing glaucoma. [10, 11, 31, 32]

Table 1 summarizes the related works considering model development for screening

and/or diagnosis of glaucoma.

As listed in Table 1, several previous studies have proposed models for diagnosing

and screening glaucoma using different features and datasets. The mentioned models

can be used to assist physicians in early diagnosis and decision-making. Fundus images

in most previous studies were used as the vital input data for developing glaucoma

diagnosing and screening models. In a few previous studies, genome data were used to

improve glaucoma diagnosing and screening models because genetic and race are two

common risk factors for glaucoma identified in previous researches. Although fundus

images and genome data have an excellent performance in diagnosing glaucoma, these

data types increase the costs and complexity of models. These two data types with

some structured data from other ophthalmologic examinations and clinical data can

improve the performance of models.

This study used different features, including demographic characteristics, optometry, bi-

ometry, perimetry, and ophthalmologic examination results, to help glaucoma prediction.

Materials and methods
In this study, the ‘Shahroud eye cohort study’ dataset [34] is analyzed for predicting

glaucoma based on Cross-Industry Standard Process for Data Mining (CRISP-DM) [35]
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methodology. Figure 1 shows the main steps of this study and the proposed method to

predict glaucoma.

All preprocessing, modeling, and evaluation were done in Python language, and

visualization was done in Python and Microsoft Excel in this study.

The steps as shown in Fig. 1 are described with more details in the following

subsections:

Data description

Shahroud eye cohort study was started in 2009 to diagnose and detect visual impair-

ments and eye diseases in Shahroud city, Northeast Iran.[34].

In the first phase of the Shahroud eye cohort study, 6311 people aged 40-64 years

were selected by random cluster sampling. Among them, 5190 individuals, including

Table 1 Summary of the previous studies considering glaucoma prediction, screening and/or
diagnosis

Authors Target Type of
Dataset

Dataset Classifier

Diagnosis Do
Screening
or Not

(Li et al.,
2019)[31]

Yes Yes Structured SAP Data LDA, SVM, NB,
ANN

(Liu et al.,
2013)[10]

Yes Yes Structured,
Images and
Genes

Personal Data, Fundus Images,
Genome Data

SVM MKL

(Li et al.,
2018)[11]

Yes Yes Structured Visual Field Repots SVM, RF, K-NN,
CNN

(Noronha
et al.,
2019)[25]

Yes No Images Fundus Image SVM, NB

(Yo and
Hong,
2015)[28]

Yes No Structured Clinical Variables MLR, ANN

(Li et al.,
2020)[29]

Yes Yes Structured
and Images

Fundus Image, Medical History Data RNN(ResNet101)

(Acharya
et al.,
2017)[26]

Yes No Images Fundus Images DT, QDA, LDA,
SVM, KNN, PNN

(Mookiah
et al.,
2012)[27]

Yes Yes Images Fundus Images SVM

(Chai et al.,
2018)[32]

Yes No Structured
and Images

Fundus Images, Clinical Data Multi-Branch
Neural Network

(Pathan
et al.,
2021)[33]

Yes Yes Images Fundus Images ANN, SVM,
AdaBoost

(Kim et al.,
2017)[30]

Yes No Structured RNFL Thickness, Visual Field test
Parameter, General Ophthalmic
Examination

RF, DT, SVM,
KNN

SAP: Standard Automated Perimetry, LDA: Linear Discriminant Analysis, SVM: Support Vector Machine, NB: Naïve Bayes,
ANN: Artificial Neural Networks, MKL: Multi Kernel Learning, RF: Random Forest, K-NN: K-Nearest Neighbor, CNN:
Convolutional Neural Networks, MLR: Multi Logistic Regression, RNN: Residual Neural Network, QDA: Quadratic Linear
Regression, PNN: Probabilistic Neural Networks, Reg: Regression, RNFL: Retinal Nerve Fiber Layer, IOP:
Intraocular Pressure.
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2990 females, have been participated in the study. Fundus imaging and perimetry

examination have been performed for 4694 participants. Assessing fundus and perim-

etry images by the ophthalmologists for glaucoma detection was performed. According

to this study, the prevalence rate of glaucoma was estimated at 1.92 % of the popula-

tion[5] among the considered persons, eighty-nine participants diagnosed as glaucoma

patients.

Table 2 lists the demographic characteristics, optometry, ophthalmology, biometry,

and perimetry examinations for the contributors in the first phase of the Shahroud eye

cohort study.

However, some participants who have more than 30 % missing values have been elim-

inated from this study. Therefore, 67 variables describing 4474 non-glaucoma persons

and 87 glaucoma persons are considered in this study.

Data preprocessing

The dataset should be partitioned into two non-overlapping datasets, including training and

test datasets. For this purpose, K-fold Cross-Validation (C.V.) was used once with K=5 and

K=10. The main steps of data preprocessing and preparation performed in this study were

divided into two main categories: data cleaning and balanced sampling. Data cleaning steps

are outlier detection and removal, missing value handling, data normalization, and one-hot

encoding. Three different scenarios were evaluated and compared for data balancing or not.

The first scenario was imbalanced data. The second and third scenarios used over-sampling

and under-sampling strategies for balancing the training dataset.

For outlier detection, numerical variables are analyzed using the interquartile range

(IQR) as a commonly used outlier detection method[36]. According to this method, no

outlier is detected in numerical variables.

Categorical nominal variables were converted to dummy binary variables. Missing

value imputation was performed for variables having a missing value rate lower than

Fig. 1 The main steps of this study proposed method for glaucoma prediction from Shahroud eye cohort
study dataset
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30 %, and other variables were excluded from the study. Missing values were replaced

with mean and mode for numerical variables and binary variables, respectively.

Features in our analysed dataset have different units or come from different examina-

tions, and features have different value range. Some learning algorithms, similar

distance-based methods like K-Nearest Neighbors (K-NN) or kernel machines like

Support-Vector Machines (SVM), are sensitive to features ranges. This sensitivity can

cause models bias to features with higher variations. Data normalization was applied to

the Min-Max normalization method to avoid dominating variables with a low, extensive

range of variations and improve evaluation metrics.

Since our analyzed dataset’s glaucoma prevalence rate was about 1.9 %, the class dis-

tribution was significantly imbalanced. On the other hand, more than 92 % of the con-

sidered persons belong to the non-glaucoma group (majority class), and only 1.9 % of

the persons are assigned to the glaucoma class (minor class). The previous studies have

shown that the classifiers trained on imbalanced datasets can have higher accuracy for

Table 2 List of the considered variables in this study

Feature Name Values Feature Name Values

Sex Female/
Male

Age (in Years) Number

Body Mass Index (in kg/m2) Number Occupation Status Nominal (including six
categories)

Socioeconomic Status Number Marital Status Nominal (including four
categories)

Smoking Yes/No Diabetes Yes/No

Diabetes Drug Yes/No Iris Color* Nominal (including five
categories)

Systolic Blood Pressure (in
mm/Hg)

Number Diastolic Blood Pressure (in mm/Hg) Number

Hyper Tension Drug Yes/No Intraocular Pressure* (in mm/Hg) Number

Visual Accuity* (in logMAR) Number Myopia* Yes/No

Hyperopia Yes/No Nuclear Cataract* Nominal (including five
categories)

Glaucoma Drug* Yes/No Cortical Cataract* Nominal (including five
categories)

Glaucoma* Yes/No Posterior Subcapsular Cataract* Nominal (including five
categories)

Astigmatism* (in Diopter) Number Spherical Equivalent*(in Diopter) Number

Angle Closure* Yes/No Number of Visual Detect* Number

Vertical Cup to Disk Ratio* Number Axial length* (in mm) Number

Anterior Chamber Depth*
(mm)

Number Corneal Thickness *(in mm) Number

Lens Thickness* (in mm) Number Corneal White to White Diameter*
(in mm)

Number

Corneal Radius, Flat* (in mm) Number Corneal Radius, Steep* (in mm) Number

Keratometry* (K1) Number Keratometry* (K2) Number

Iris Barycentric-X-Coordinate* Number Iris Barycentric-Y-Coordinate* Number

Pupil Barycentric-X-
Coordinate*

Number Pupil Barycentric-Y-Coordinate* Number

Pupil Distance*(in mm) Number
*Stars show that the feature has been measured in both eyes.
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classifying the major class. However, the minor class cannot be trained with high accur-

acy [37].

To overcome the imbalance distribution in this study, dataset between the classes,

three different strategies applied were under-sampling, over-sampling, and combining

over-sampling and under-sampling strategy used in the previous studies [37].

In this study, three different scenarios were designed and compared to address the

imbalance dataset’s challenges. The first was sampling from data without balancing the

class distribution (Scenario 0). The second was uses over-sampling from the minor

class (Scenario1). The last was the balanced bagging ensemble method, which has been

proposed to overcome the imbalance dataset challenges in a previous study (Scenario

2) [38]. The bagging ensemble using a high number of estimators can guarantee that

the major class observations contribute to training one of the estimators.

Modeling

Classifiers considered in this study include well-known classifier Decision Trees (DT)

[39], Support Vector Machines, and ensemble classifiers having DT as their base classi-

fiers, such as Extra Tree (ET) [40] and Random Forests (RF) [41]. These classifiers have

different advantages and were used as a base classifier in three scenarios. For tuning

the hyperparameters of the classifiers and choosing the resampling ratio, the Grid

search method was used in this study. For DT and the ensemble based on DT like RF

and ET, the splitting criterion was the ‘Information Gain,’ and the number of trees was

200. The kernel function of SVMs was ‘Radial Basis Function (RBF)’ in Scenario1 and

Scenario2, and Polynomial’ in Senario3. The number of neighbours in the K-NN was

seven, and the distance metric was ‘Euclidean.‘ In Scenario2, the oversampling ratio

was different for each classifier and was determined by the Grid search. In Scenario3,

the number of estimators of the balanced bagging ensemble method was 300. This

number of the base estimator guarantee that every sample in the training set contrib-

utes at least to train one of the estimators and avoid overfitting.

Evaluation

As illustrated in Fig. 1, evaluation tasks include the K-fold C.V. strategy for sampling

from data, choosing the best scenario for handling imbalanced data, choosing the best

classifiers, identifying the important features, building the proposed stacking ensemble

model, and error analysis.

As mentioned in the preprocessing subsection, data was partitioned into training

and test datasets based on the K-fold C.V. strategy for K=5 and K=10. The best

scenario for handling imbalanced data and classifiers was chosen by comparing dif-

ferent combinations of the scenarios and classifiers based on their performance on

the validation dataset. Then, important features ranked with the best classifiers

were identified. Afterward, the proposed two-layered stacking ensemble classifier

was built in which the first layer included different classifiers and the second layer

used a logistic regression model.

For error analysis, evaluating and comparing the classifiers and different scenarios

used for balanced sampling, various standard performance measures which were
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calculated and reported were accuracy sensitivity, specificity, F1-Score, and area under

receiver operating characteristics (ROC) curve (AUC) as Eqs. (1)-(4).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð1Þ

Sensitivity ¼ TP
TP þ FN

ð2Þ

Specificity ¼ TN
FP þ TN

ð3Þ

F1� score ¼ TP

TP þ ðFPþFNÞ
2

ð4Þ

Experimental results

For evaluating the proposed scenarios, every classifier in each scenario was executed 30

times, and the performance measures, including accuracy, sensitivity, specificity, and

F1-Score, are reported in Table 3.

As illustrated by Table 3, the last scenario’s classifiers had better performance for

predicting the non-glaucoma class and glaucoma class. Decision trees and random for-

ests which outperform the other classifiers were contributed to the balanced bagging

ensemble as its base classifiers.

The ROC curves are illustrated in Fig. 2 to compare different scenarios and

classifiers.

According to DT and RF’s reasonable accuracy in the last scenario, top-ranked fea-

tures were selected based on the feature importance scores assigned to the variables

with DT and RF. 10-top ranked variables in the first quartile for glaucoma prediction

from the Shahroud eye cohort dataset based on their average score on 300 executions

of the classifiers are listed in Table 4.

As illustrated by Table 4, eight variables among 10-top ranked features identified by

DT and RF are common, and they include NVD, VCDR, WTW, Systolic BP, PCY,

AST, Age, and AL, which come from the different examination sources.

Finally, a novel two-layered stacking ensemble classifier is proposed in which the first

layer combines two superior classifiers of the last scenario and the second layer uses lo-

gistic regression. Table 5 shows the performance measures of the proposed stacking en-

semble classifier for Glaucoma prediction.

Discussion
For assessing the performance of the proposed stacking ensemble classifier in this

study, 30 executions of 10-fold C.V. are analyzed. According to the experimental re-

sults, 3200 persons belonging to the non-glaucoma class (71.5 %) and 59 glaucoma per-

sons (67.8 %) are correctly predicted in all executions. On the other hand, 368 persons

of non-glaucoma class (8.2 %) and glaucoma class (8 %) are misclassified in all execu-

tions. Figure 3 indicates how many times of the executions each instance is predicted

correctly.

According to Fig. 3, a novel confusion matrix (NCM) is proposed based on the

thresholds for at least 0 %, 30 %, 60 %, 90 %, and 100 % instances that could be
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predicted correctly, as shown in Table 6. For example, if the threshold is 60 %, TP and

TN show that the instances are correctly classified into positive (Glaucoma) and nega-

tive (non-glaucoma) at least 18 times of 30 executions, respectively.

The results shown in Table 5 are similar to the results corresponding to the threshold of

60 % in Table 6. According to the experimental results described in this section, data in-

stances that no classifier can correctly predict negatively impact the classifier performance.

Table 3 Comparing the performance of the classifiers in each scenario

Model %Acc
(Mean ± std)

%Spe
(Mean ± std)

%Sen
(Mean ± std)

%Sen
(CI 95 %)

%F_score
(Mean ± std)

Scenario0_5fold

DT 96.89 ± 0.45 98.35 ± 0.45 21.84 ± 9.32 (20.33, 23.35) 20.87 ± 8.20

SVM 98.08 ± 0.07 99.99 ± 0.04 00 ± 00 (00, 00) 00 ± 00

KNN 97.07 ± 0.34 98.91 ± 0.35 2.30 ± 3.46 (1.74, 2.86) 2.80 ± 4.23

RF 98.09 ± 0.05 100 ± 00 0.04 ± 0.48 (00, 0.12) 0.07 ± 0.90

ET 98.08 ± 0.07 99.99 ± 0.04 0.19 ± 1.04 (00, 00) 0.36 ± 1.95

Scenario0_10fold

DT 96.90 ± 00.71 98.31 ± 00.68 24.86 ± 13.89 (23.28, 26.44) 23.24 ± 12.41

SVM 98.06 ± 00.00 99.98 ± 00.06 00 ± 00 (00, 00) 00 ± 00

KNN 97.04 ± 00.53 98.82 ± 0.53 02.25 ± 04.83 (1.70, 2.80) 2.66 ± 5.76

RF 98.09 ± 0.10 100 ± 00 0.04 ± 0.64 (0.00, 0.11) 0.07 ± 1.15

ET 98.08 ± 0.13 99.98 ± 0.06 0.27 ± 1.74 (0.07, 0.47) 0.48 ± 3.12

Scenario1_5fold

DT 96.89 ± 0.48 98.35 ± 00 21.57 ± 9.53 (20.02, 23.11) 20.74 ± 8.28

SVM 97.61 ± 0.31 99.16 ± 0.33 17.94 ± 8.33 (16.59, 19.29) 21.75 ± 8.72

KNN 94.60 ± 0.61 96.23 ± 0.61 10.97 ± 7.23 (9.80, 12.14) 7.15 ± 4.72

RF 98.08 ± 0.06 99.99 ± 0.04 00 ± 00 (00, 00) 00 ± 00

ET 98.09 ± 0.06 100 ± 0.00 00 ± 00 (00, 00) 00 ± 00

Scenario1_10fold

DT 96.81 ± 0.67 98.27 ± 0.64 21.82 ± 13.3 (20.31, 23.33) 20.39 ± 11.99

SVM 97.65 ± 0.47 99.21 ± 0.43 17.61 ± 12.1 (16.23, 18.99) 21.48 ± 13.61

KNN 94.60 ± 0.90 96.23 ± 0.91 10.99 ± 10.07 (9.84, 12.14) 7.13 ± 6.48

RF 98.08 ± 0.12 99.99 ± 0.05 0.08 ± 0.96 (0.00, 0.19) 0.14 ± 1.72

ET 98.09 ± 0.10 100 ± 00 00 ± 00 (00, 00) 00 ± 00

Scenari2_5fold

DT 87.40 ± 1.49 87.65 ± 1.58 74.41 ± 9.25 (72.91, 75.91) 18.47 ± 2.27

SVM 83.52 ± 1.75 83.38 ± 1.79 65.35 ± 9.86 (63.75, 66.94) 13.22 ± 2.16

KNN 80.94 ± 1.59 81.80 ± 1.63 36.26 ± 10.05 (34.64, 37.89) 6.77 ± 1.81

RF 88.90 ± 1.08 89.24 ± 1.13 71.39 ± 8.96 (69.93, 72.84) 19.75 ± 2.42

ET 92.75 ± 0.91 93.49 ± 0.91 54.66 ± 10.67 (52.94, 56.39) 22.43 ± 4.41

Scenario2_10fold

DT 87.61 ± 1.67 87.88 ± 1.72 73.80 ± 14.38 (72.16, 75.44) 18.61 ± 3.70

SVM 83.69 ± 1.80 84.02 ± 1.83 66.71 ± 15.36 (64.96, 68.46) 13.55 ± 3.16

KNN 81.00 ± 1.87 81.84 ± 1.91 37.69 ± 15.55 (35.90, 39.44) 7.02 ± 2.88

RF 88.87 ±1.48 89.10 ± 1.51 72.35 ± 13.67 (70.80, 73.91) 19.87 ± 4.00

ET 92.68 ± 1.16 93.40 ± 1.15 55.55 ± 16.60 (53.66, 57.44) 22.54 ± 6.68

Acc: Accuracy; Spe: Specificity; Sen: Sensitivity; CI: Confidence Interval

Sharifi et al. BioData Mining           (2021) 14:48 Page 9 of 15



FP instances are the data instances with glaucoma, but the classifier has misclassified

them as the non-glaucoma class label.

The average of top-ranked features for non-glaucoma and glaucoma classes is com-

pared using the t-student test shown in Table 7 to investigate the significant difference

between the non-glaucoma and glaucoma classes per each top-ranked feature.

As listed in Table 7, the average of LT, Spherical Equivalent, AST, Systolic BP, AL,

Age, VCD, and NVD are significantly different for glaucoma and non-glaucoma groups.

It indicates that the mentioned variables can distinguish well two classes in our study.

However, the average of WTW, PCY, BMI, and Diastolic BP is not significantly differ-

ent for the glaucoma and non-glaucoma groups.

Conclusions
Early identification of the persons with a high risk of glaucoma can help early beginning

the necessary treatment and monitoring disease and prevent converting disease to the

acute form. In this study, a novel stacking ensemble classifier composed of several ma-

chine learning classifiers is proposed, designed, and used for glaucoma prediction con-

sidering the Shahroud eye cohort dataset. This study’s input variables and predictors

for glaucoma prediction are demographic characteristics, ophthalmology features,

Fig. 2 ROC curve for models in each scenario

Table 4 Feature importance in the best models

Rank Decision Tree Random Forest

1 NVD NVD

2 VCDR VCDR

3 Age AL

4 AL Systolic BP

5 WTW Age

6 Systolic BP AST

7 PCY BMI

8 Spherical Equivalent Diastolic BP

9 LT PCY

10 AST WTW

NVD: Number of Visual Detect; VCDR: Vertical Cup to Disk Ratio; AL: Axial Length; WTW: Corneal Whit to White Diameter;
PCY: Posterior Capsule; LT: Lens Thickness; AST: Astigmatism, BMI: Body Mass Index; BP: Blood Pressure
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biometry, and perimetry descriptors for persons aged between 40 and 64 years old in

Shahroud. Three scenarios are compared for handling an imbalanced dataset. The ex-

perimental results show that balanced bagging based on random forests and decision

trees can improve the sensitivity and performance of glaucoma prediction with the

average accuracy of 87.61 and 88.87, the sensitivity of 73.80 and 72.35, specificity of

87.88 and 89.10, and AUC of 91.04 and 94.53, respectively. On the other hand, the pro-

posed stacking ensemble classifier achieves an average accuracy of 83.56, a sensitivity of

82.21, a specificity of 81.32, and an AUC of 88.54.

The previous studies used three different data types: fundus images, genome data,

and structured data to develop a glaucoma prediction and diagnosis model. These stud-

ies achieved high-performance measures on fundus images or the combination of dif-

ferent data types, as shown in Table 8. This study used extensive ophthalmologic

examinations like biometry, perimetry, and some clinical data to develop the predictive

glaucoma model without fundus images or genome data. The developed model in this

study has lower performance measures against other studies. Still, it has less complexity

and cost and can use as the base of a decision support system in clinics to diagnose

and screen glaucoma.

Top-ranked features for predicting glaucoma identified using DT and RF are listed in

Table 4. These top features come from different eye examinations like perimetry and

biometry or demographic features that can measure in every clinic. As discussed in the

introduction, some of these top features are the main risk factors of glaucoma diseases

like age, BMI, blood pressure, and axial length, identified in many studies. On the other

hand, some of these features like NVD and VCDR are used to identify glaucoma by

physicians instantly. As mentioned in a previous study[5], top-ranked features for glau-

coma prediction determined using simple and multivariate logistic regression have been

Table 5 Performance of stacking models

%Acc
(Mean ± std)

%Spe
(Mean ± std)

%Sen
(Mean ± std)

%Sen
(CI 95%)

%F_score
(Mean ± std)

Stacking Ensemble trained with all
features

83.56 ± 1.35 82.21 ± 1.75 81.32 ± 10.39 (80.07,
83.26)

80.98 ± 6.65

Stacking ensemble trained with
top-ranked features

83.01± 1.98 83.00± 2.10 83.17± 12.03 (81.80,84.54) 82.58 ± 6.34

Fig. 3 Number of true predictions for the data instances in 30 executions of 10-fold C.V. for the proposed
stacking ensemble
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age, IOP, sex, diabetes, myopia, and axial length. The Van diagram in Fig. 4 shows the

top predictors of glaucoma.

This study aims to discriminate between glaucoma patients and non-glaucoma per-

sons. The proposed and designed models in this study are disable to diagnose glaucoma

type. Different types of glaucoma can be discriminated against, predicted, and diag-

nosed using machine learning models as a future research direction. Top-ranked fea-

tures and risk factors for each type of glaucoma can be identified.

The first phase of the Shahroud Eye Cohort Study was used to predict glaucoma with

extensive ophthalmologic examinations and demographic data without any fundus im-

ages and achieve an average accuracy of 83.56. The Shahroud Eye Cohort Study was

conducted in two more phases with an interval of five years. For future work, the glau-

coma condition of participating in the second phase can be use as the label for the first

Table 6 The novel proposed confusion matrix (NCM) for our proposed stacking ensemble method
in this study

Threshold TP TN FN FP %Acc %Sen %Spe

0 80 4106 7 368 91.78 91.95 91.77

30 74 3784 13 690 84.59 85.06 84.58

60 70 3614 17 860 80.77 80.46 80.78

90 64 3409 23 1065 76.15 73.56 76.20

100 59 3200 28 1274 71.45 67.82 71.52

Table 7 Comparing the average of top-ranked features for Non-glaucoma and Glaucoma classes
using t-student test

Feature Glaucoma Non-glaucoma P-value

NUMBEROFVISUALDEFECTOS 17.06 3.34 < 0.001

NUMBEROFVISUALDEFECTOD 18.75 2.48 < 0.001

Vertical CD Ratio Right 0.28 0.17 < 0.001

Vertical CD Ratio Left 0.28 0.17 < 0.001

Age 53.33 50.08 < 0.001

AL Left 23.51 23.04 < 0.001

AL Right 23.56 23.06 < 0.001

Systolic BP 130.77 128.02 < 0.001

Diastolic BP 79.79 79.44 0.403

AST Left 0.95 0.82 < 0.001

AST Right 0.98 0.82 < 0.001

BMI 28.3 28.45 0.415

PCY Left -0.04 -0.02 0.007

PCY Right -0.01 0.01 0.002

WTW Right 11.8 11.78 0.258

WTW Left 11.79 11.8 0.502

Spherical Equivalent -0.69 0.1 < 0.001

LT Left 4.29 4.24 < 0.001

LT Right 4.31 4.26 < 0.001

AL: Axial Length, BP: BP: Blood Pressure, AST: Astigmatism, BMI: Body Mass Index, WTW: White to White distance, LT:
Lenz Thickness
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Table 8 Comparing the performance of the proposed method in this study with the previous
studies

Authors Dataset Classifier Best Performance
Measures (%)

(Li et al.,
2019)[31]

SAP Data LDA, SVM, NB, ANN AUC = 91.2

(Liu et al.,
2013)[10]

Personal Data, Fundus Images, Genome
Data

SVM MKL AUC = 86.6

(Li et al.,
2018)[11]

Visual Field Repots SVM, RF, K-NN, CNN Acc = 87.6, Sen = 93.2,
Spe = 82.6

(Noronha et al.,
2019)[25]

Fundus Image SVM, NB Acc = 92.65, Sen =
100, Spe = 92.0

(Yo and Hong,
2015)[28]

Clinical Variables MLR, ANN Acc = 84.0, Sen = 78.3,
Spe = 85.9

(Li et al.,
2020)[29]

Fundus Image, Medical History Data RNN(ResNet101) Acc = 96.5, Sen = 99.8,
Spe = 99.9

(Kim et al.,
2017)[30]

RNFL Thickness, VF test Parameter,
General Ophthalmic Examination

RF, DT, SVM, KNN Acc = 98, Sen =98.3,
Spe = 97.5

(Acharya et al.,
2017)[26]

Fundus Images DT, QDA, LDA, SVM,
KNN, PNN

Acc = 95.8

(Mookiah et al.,
2012)[27]

Fundus Images SVM Acc = 95.0, Sen =93.33,
Spe = 96.67

(Chai et al.,
2018)[32]

Fundus Images, Clinical Data Multi Branch Neural
Network

Acc = 99.24, Sen =
97.91, Spe = 93.59

(Pathan et al.,
2021)[33]

Fundus Images ANN, SVM, AdaBoost Acc = 98.0, Sen = 100,
Spe = 97.0

This study Extensive ophthalmologic examination
and clinical data

DT, RF, ET, KNN, SVM,
Stacking Ensemble

Acc = 83.56, Sen =
82.21, Spe = 81.32

SAP: Standard Automated Perimetry, LDA: Linear Discriminant Analysis, SVM: Support Vector Machine, NB: Naïve Bayes,
ANN: Artificial Neural Networks, MKL: Multi Kernel Learning, RF: Random Forest, K-NN: K-Nearest Neighbor, CNN:
Convolutional Neural Networks, MLR: Multi Logistic Regression, RNN: Residual Neural Network, QDA: Quadratic Linear
Regression, PNN: Probabilistic Neural Networks, Reg: Regression, RNFL: Retinal Nerve Fiber Layer, IOP:
Intraocular Pressure.

Fig. 4 The Van diagram indicating our top-ranked features identified using DT and RF and top-ranked
features identified in a previous study
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phase to develop a prognosis model which can identify people with glaucoma five years

earlier and evaluate the model on the third phase.

This study has some main differences compared to the previous related works. In this

study, different ophthalmological features are used as the input variables of our models,

such as optometric examination results, biometric and perimetric features, ophthalmologic

examinations. Moreover, top-ranked features include the variables describing ophthalmo-

logic examination results. Using longitudinal data collected for 5-years provide us to assess

the future trends and changes for glaucoma in people contributing to the cohort study.
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