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Abstract

Background: Missing data is a common issue in different fields, such as electronics,
image processing, medical records and genomics. They can limit or even bias the
posterior analysis. The data collection process can lead to different distribution,
frequency, and structure of missing data points. They can be classified into four
categories: Structurally Missing Data (SMD), Missing Completely At Random (MCAR),
Missing At Random (MAR) and Missing Not At Random (MNAR). For the three later,
and in the context of genomic data (especially non-coding data), we will discuss six
imputation approaches using 31,245 variants collected from ClinVar and annotated
with 13 genome-wide features.

Results: Random Forest and kNN algorithms showed the best performance in the
evaluated dataset. Additionally, some features show robust imputation regardless of
the algorithm (e.g. conservation scores phyloP7 and phyloP20), while other features
show poor imputation across algorithms (e.g. PhasCons). We also developed an R
package that helps to test which imputation method is the best for a particular data
set.

Conclusions: We found that Random Forest and kNN are the best imputation
method for genomics data, including non-coding variants. Since Random Forest is
computationally more challenging, kNN remains a more realistic approach. Future
work on variant prioritization thru genomic screening tests could largely profit from
this methodology.

Keywords: Machine learning, imputation, missing data, genomics, pathogenic
variants

Introduction
Missing data can limit and potentially bias posterior analyses in electronics, image pro-

cessing, medical records and genomics [1, 2].

Three approaches can be taken to address missing data. The complete-case analysis

includes exclusively individuals with no missing data, which can lead to biased results.

The single imputation approach imputes missing values by a unique number such as
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the mean based on observed data. Even though this second approach allows to retain

incomplete cases, it is highly inaccurate and requires posterior analysis of the filled-in

data. The third approach is to infer missing data using statistical modelling [3].

Bias may arise depending on the reasons why missing data exists in the first place.

Data collection can lead to different distribution, frequency, and structure of missing

data points. Consequently, one can identify four mechanisms of missing data: Structur-

ally Missing (SMD), Missing Completely At Random (MCAR), Missing At Random

(MAR) and Missing Not At Random (MNAR) [4].

In SMD the entry is not supposed to have a value in that field (e.g. age of first child if

you don’t have children). This kind of missing data is, generally addressed by excluding

entries with SMDs from any posterior analysis of those variables [5].

Data MCAR is found when missing values are independent from observed and unob-

served entries [6]. This kind of missingness may affect the statistical power of down-

stream analysis, but does not introduce bias in the sample [7].

Data MAR depends on observed and unobserved values, meaning that there is a

structure behind missing entries. Given that it depends on other variables in the matrix,

statistical models are likely to outperform single imputation approaches in this kind of

missing data [5].

If there is uncertainty regarding the type of missing data in a sample, either MCAR

or MAR, the latter is a safer assumption, since any post-processing of the data valid for

MAR is applicable to MCAR.

Finally, data MNAR is related to factors which are not measured by the researcher

[7]. There are systematic differences between the observed and unobserved values, even

after taking observed entries into account [8]. This kind of missing values derives from

the collection process. SMD can be considered as a MNAR category, with the differ-

ence that SMD is easy to detect and to analyze. Table 1 summarizes missing data sce-

narios, their characteristics and possible actions.

The advent of next generation sequencing (NGS) technologies has yielded huge

amounts of data, placing genomics as the lead consumer of computer resources world-

wide [9]. The sequencing of a single whole human genome might result in a 300Gb file

and uncovering its mutations (e.g. variant calling) might be reflected in a ~ 4 million

rows (mutations) and dozens of columns (features) matrix. Most downstream analyses

in genomics derive from this matrix.

Table 1 Summary of missing data categories

Explainable logic (vs.
random)

Identifiable
pattern

Affects statistical
inference

Action

Structurally Missing Data
(SMD)

X Exclude
entry

Missing Completely At
Random (MCAR)

X Impute

Missing At Random (MAR) X X Impute

Missing Not At Random
(MNAR)

X X Impute

Rows correspond to different missing data scenarios; columns correspond to relevant characteristics. First column stands
for the origin of the missing data (randomly generated or not). Second column states if a pattern of missing data can be
recognized in the data set. Third column shows the impact on statistical inferences. The last column shows the action
that needs to be taken to address the missing data problem
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A well-known research area aims to determine causative mutations in individuals

with rare undiagnosed diseases. This involves finding causative (pathogenic) variants

among many millions of potential candidates, which has proven to be a daunting task

[10]. Several features describing each mutation such as population frequency, in-silico

prediction scores and meta information are available to facilitate the classification

process. Nevertheless, there is no straightforward and standardized methodology for

doing so [11]. Additionally, not all mutations can be classified the same way. Because

of its biological nature, coding variants have more features making them easier to clas-

sify, while non-coding variants have less features and more missing values, making

them harder to interpret. This biases posterior analyses towards coding variants in a

field where non-coding variants are being increasingly relevant. As more disease-

causing non-coding mutations are discovered and further characterized it will become

increasingly important to impute missing annotations accurately.

Here we will review five statistical methodologies to impute missing values on

MCAR, MAR and MNAR scenarios with particular focus on MNAR, a frequent issue

in genomics. All methods are implemented for R-statistical software analyses.

These frameworks include a Random Forest based classification method (missForest)

[12], a Nearest Neighbors imputer (DMwR) [13] and the following non-ML based algo-

rithms, a Multivariate Imputation by Chained Equation (MICE) [14], a Multivariate

Normal Distribution using EMB (Amelia) [15] and a Bayesian based approximation

(mi) [16]. Each method and each scenario is evaluated using different quality measure-

ments: MAE, RMSE and bootstrap (see Methods 2.3).

An R package (NAsImpute) is avai lable on github (https ://gi thub.com/

OmegaPetrazzini/NAsImpute) to test all these methods on the users own data set and

help decide which imputation method better suits their needs.

Methods
Data set and rationale

We used a curated set of 30,045 coding and 1,200 non-coding variants downloaded

from ClinVar [17] and annotated with 15 features using ANNOVAR [18], these are

CADD, DANN, fathmm.mkl, fitCons, MutationTester, GERP, phyloP, phastCons,

SiPhy, GWAVA and Kaviar [19–29]. Additionally, two dummy variables were created

(see methods 2.4). Also, for each variant a ClinVar pathogenicity label is available

(pathogenic, likely pathogenic, uncertain significance, likely benign, benign).

The dataset had no missing values, the missingness structure was created according to

the three above-mentioned missing data scenarios and imputed values were generated

using the five above-mentioned methods. To assess the performance of algorithm-based

imputations methods we compare their performance to a basic single imputation ap-

proach such as the mean based on observed data. The deviation between predicted and

actual value was then determined using Root Mean Squared Error (RMSE) [30], Mean

Absolute Error (MAE) [31] and a bootstrap approach, following previous studies [32].

Simulation missing data scenarios

First, we simulated data Missing Completely At Random (MCAR) by masking (set to

NA) values in single-column imputation (i) and a more realistic scenario imputing
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missing values in multiple features (ii). For the former (i) we randomly generated 1,000

missing values in the columns, then imputed using each method and a mean value im-

putation approach. This was repeated 100 times for each column. In each iteration, the

same 1,000 values were masked for the different columns, so that all methods are eval-

uated over the same data points. For the latter (ii) we randomly selected 1,000 variants

and five columns, then masked missing values. All five columns were imputed 100

times with each method over the same set of variants.

Second, we simulated data Missing At Random (MAR) by masking values as de-

scribed above (signle-column and 5-column). MAR scenarios assume missing values on

features dependent from other features seen in the data set. To simulate this, we used

dependent features such as CADD, DANN, dummy_rf and dummy_svm (see Methods

2.4). On the one hand, pathogenicity classifiers, CADD and DANN are based, on con-

servation scores phyloP20, phyloP7, phastCons20, phastCons7 and GERP. Those fea-

tures are seen in the data set. Therefore, masking dependent features (CADD and

DANN) and leaving independent features in the dataset would simulate a MAR sce-

nario. Additionally, we created two dummy features, dummy_rf and dummy_svm,

based on other pathogenicity predictors available in the data set: fathmm, fitCons and

GWAVA, which are based on multiple biological features (Methods 2.4).

To evaluate each algorithm on both approaches (conservation scores or dummy

pathogenicity predictors), 1,000 variants in one of the four above-mentioned dependent

features were masked. Each column was then imputed with all six methods. This

process was repeated 100 times for each dependent feature. Again, the methods were

all tested on the same data points in each iteration.

To evaluate how each method deals with realistic MAR scenarios the 5-column im-

putation approach was undertaken by masking 1,000 values in all four dependent

features.

Finally, we simulated data Missing Not At Random (MNAR) by masking dependent

features (e.g. CADD) and removing the underlying independent features (e.g. phyloP20)

from the data set. We randomly masked 1,000 values in one of the four dependent fea-

tures. Finally, missing values were imputed using all methods and the process was re-

peated 100 times for each column. To simulate a realistic multicolumn scenario we

randomly masked 1,000 values in either CADD and DANN or dummy_rf and dummy_

svm. Their respective dependent features were then removed and missing values were

then imputed. This process was repeated 100 times.

Different strategies for the evaluation of each method

In each missing data scenario, we calculated both error metrics for each method

in single-column and multicolumn imputation. In the latter, the mean value of

MAE and RMSE over all imputed columns was considered. Additionally, we ob-

tained the distribution of RMSE and MAE for the 100 iterations, as explained in

Methods 2.2.

In case of multicolumn imputation, we simulated a null-hypothesis by filling missing

data with randomly sampled values from the remaining observed entries. The differ-

ence in mean RMSE across 100 iterations between each algorithm and a random im-

putation is reported for each scenario.
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Creation of dummy columns

Features dummy_rf and dummy_svm were created using a pathogenicity predicting model

trained on features fathmm_mkl, integrated_fitCons and GWAVA. We selected 41,959

variants with complete annotation for these three resources and not matching our 31,245

variants dataset. To prevent biases, 1,200 variants from each of the following 7 classes (Be-

nign, Likely benign, Uncertain significance & Benign, Uncertain significance, Uncertain

significance & Pathogenic, Likely pathogenic and Pathogenic) were considered. This re-

sulted in a dataset with 8,400, which was used to train both, a Random Forest algorithm

(randomForest function from the randomForest v.4.6–14 package [33] for R, ntree = 100

and mtry = 2) and a Radial Basis Kernel Support Vector Machine algorithm (svmRadial

function from the kernlab v.0.9–29 package [34] for R). Parameter tunning was performed

thru internal 10-fold cross validation on the training set. The resulting models were then

used to predict the pathogenic outcome of all 31,245 variants in our dataset and therefore

generating two new variables called dummy_rf and dummy_svm.

Results
Single-column imputation

Table 2 shows for each feature the results of both error types for the six imputation

methods. Figure 1 A shows the mean RMSE for all features in each scenario. In all

cases, RF and kNN based algorithms show the best performances, with the first one be-

ing slightly more accurate but also more time-consuming (36 h for RF vs. 10 h for

kNN in a 32 CPUs and 256 Gb RAM computer, see supplementary table S1). The

remaining three algorithm-based approaches (Amelia, mice and MI) show a decrease in

performance compared to RF and kNN, but similar performance between them. The

baseline mean imputation is predictably the worst approach.

Excluding the mean, RMSE values for all imputation methods are smaller in the

MAR scenario.

Figure 1 B shows MCAR RMSE values for each feature and each imputation algo-

rithm. As mentioned before, here algorithm-based approaches can also be divided into

two groups according to their performance, high-performing (RF and kNN) and low-

performing (Amelia, mice and MI).

Regarding the features, conservation scores PHASCONS7 and PHASCONS20 show

the worst RMSE value for all imputation algorithms, still maintaining kNN and RF as

best algorithms. Imputation in FATHMM is extremely bad when using the mean. The

lowest set of RMSE values are found in two other conservation scores, PHYLOP7 and

PHYLOP20. Moreover, Kaviar, fitCons and GWAVA show surprisingly good perfor-

mances with its mean-value imputation. These are likely to depend on each feature’s

particular distribution. Well-imputed features such as GERP and phyloP20 tend to have

a one-sided distribution (Fig. 2 A), whereas poorly-imputed features tend to have a U-

like shape distribution (Fig. 2 B). Finally, features in which the mean-value imputation

performs well tend to have either a normal or low variance distribution (Fig. 2 C).

Multiple-column imputation

Algorithms performance in a more realistic scenario (Fig. 3), show consistent results

with previous single-column simulations (Fig. 1 A). Overall, RF and kNN-based
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algorithms outperform the rest in a multiple-column imputation scenario across all

missing data types.

Figure 3 A shows RF and kNN to be further away from a random imputation and

outperforms largely a mean-based imputation in MCAR data scenario. This is not the

case for Amelia, mice and MI, which overlap with the mean-based approach in most of

its distribution. The median value (dotted lines) shows a wider gap between RF/kNN

and mean-based approach (0.09 and 0.08 respectively) compared to Amelia/mice/MI

and the mean-based approach (0.02, 0.03 and 0.03 respectively).

Similarly, Fig. 3B shows better performance from RF and kNN algorithms in a MAR

situation. The difference in median values between each method and the mean-based

approach shows similar results. This is, RF and kNN outperform largely the baseline

approach (0.18 and 0.16 respectively), while Amelia (0.05), mice (0.06) and MI (0.05)

show significantly lower performance.

Table 2 Per-column error metrics for each algorithm in each missing data scenario

MCAR

KNN RF Amelia Mice MI Mean

Feature MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CADD 0.11 0.14 0.10 0.12 0.15 0.19 0.15 0.19 0.16 0.20 0.21 0.25

DANN 0.06 0.12 0.06 0.11 0.13 0.17 0.08 0.17 0.14 0.19 0.12 0.18

FATH 0.06 0.11 0.05 0.08 0.13 0.16 0.07 0.13 0.13 0.17 0.32 0.37

fitCons 0.08 0.11 0.06 0.09 0.13 0.16 0.11 0.16 0.13 0.17 0.11 0.15

MuT 0.11 0.18 0.11 0.17 0.19 0.25 0.13 0.25 0.20 0.26 0.26 0.28

GERP 0.06 0.09 0.06 0.09 0.11 0.14 0.09 0.14 0.11 0.14 0.13 0.18

PP7 0.04 0.07 0.04 0.07 0.07 0.09 0.06 0.10 0.07 0.10 0.09 0.11

PP20 0.04 0.06 0.03 0.05 0.06 0.08 0.05 0.08 0.06 0.08 0.07 0.09

PC7 0.16 0.24 0.15 0.23 0.25 0.32 0.19 0.33 0.26 0.33 0.32 0.37

PC20 0.17 0.25 0.17 0.24 0.26 0.34 0.21 0.35 0.28 0.35 0.35 0.40

SiPhy 0.08 0.11 0.07 0.10 0.13 0.17 0.13 0.17 0.14 0.17 0.15 0.18

GWAVA 0.10 0.12 0.08 0.11 0.14 0.17 0.14 0.18 0.15 0.19 0.11 0.13

Kaviar 0.02 0.08 0.02 0.07 0.08 0.12 0.03 0.11 0.09 0.12 0.03 0.10

d_rf 0.09 0.12 0.08 0.10 0.12 0.16 0.13 0.16 0.13 0.16 0.17 0.20

d_svm 0.05 0.06 0.03 0.04 0.08 0.10 0.06 0.09 0.08 0.11 0.21 0.23

MNAR

KNN RF Amelia Mice MI Mean

CADD 0.11 0.14 0.10 0.12 0.16 0.20 0.15 0.20 0.16 0.21 0.21 0.25

DANN 0.06 0.12 0.06 0.12 0.14 0.18 0.08 0.17 0.15 0.19 0.12 0.18

d_rf 0.09 0.12 0.09 0.12 0.13 0.16 0.13 0.16 0.13 0.16 0.17 0.20

d_svm 0.08 0.11 0.08 0.11 0.12 0.16 0.11 0.15 0.12 0.16 0.21 0.23

MAR

KNN RF Amelia Mice MI Mean

CADD 0.11 0.14 0.09 0.12 0.15 0.19 0.16 0.20 0.16 0.20 0.21 0.25

DANN 0.06 0.12 0.06 0.11 0.13 0.17 0.08 0.17 0.14 0.19 0.12 0.18

d_rf 0.09 0.12 0.08 0.10 0.12 0.16 0.13 0.16 0.13 0.16 0.17 0.20

d_svm 0.05 0.06 0.03 0.04 0.08 0.10 0.06 0.09 0.08 0.10 0.21 0.23

FATH corresponds to FATHMM, MuT to MutationTaster, PP7 to phyloP7, PP20 to phyloP20, PC7 to phastCons7, PC20 to
phastCons20, d_rf to dummy_rf and d_svm to dummy_svm. Underlined is the best performing method for each feature
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Fig. 1 Averaged RMSE in different scenarios. A. Mean RMSE value of all features for all methods and all
scenarios. B. RMSE values for each feature in MCAR scenario. RMSE corresponds to root mean squared error,
MCAR corresponds to missing completely at random, MNAR corresponds to missing not at random and
MAR corresponds to missing at random

Fig. 2 Histograms showing real-score distribution in features. A. Distribution of correctly imputed features
(phyloP7 and phyloP20 have similar distribution).B. Distribution of poorly imputed features (phastCons7 and
phastCons20 have similar distribution). C. Distribution of correctly imputed features by its mean-value

Petrazzini et al. BioData Mining           (2021) 14:44 Page 7 of 13



Figure 3 C shows consistent results with the previous two cases when imputing

MNAR data. As before, RF and kNN algorithms have the best median performance

compared to the mean (both 0.10). Amelia, mice and MI have all differences of 0.05.

All six methods show a bimodal distribution of mean RMSE which derives from the ex-

traction of different independent features to simulate a MNAR situation. One distribu-

tion is generated when we extract phyloP20, phyloP7, phastCons20, phastCons7 and

GERP to impute CADD/DANN and the other one is generated when we extract

FATHMM, fitCons and GWAVA to impute dummy_rf/dummy_svm.

Interestingly, Fig. 3 shows an increased gap between non-algorithmic and algorithmic

approaches when imputing MAR data. RF algorithm showed a median performance

0.09 points higher than the mean in a MCAR situation, 0.10 in a MNAR and 0.18 in a

MAR situation. Similarly, kNN showed a difference of 0.08 in a MCAR situation, 0.10

in a MNAR situation and 0.16 in a MAR situation. Values for Amelia are 0.02, 0.05 and

0.05, for mice 0.03, 0.05 and 0.06 and for MI 0.03, 0.05 and 0.05 respectively. This in-

crease in performance is more notorious for high-performance algorithms such as RF

and kNN.

Extreme missing data cases in real data

We analyzed the missing data structure of a real data example on 437,185 ClinVar

SNPs (65 % coding, 35 % non-coding), with lots of missing data (more than 50 % of the

variants have 10 out of 12 missing features). Supplementary Table S2 shows the co-

occurence of missing data of pairs of features. A missing data co-occurrence block can

be seen for features CADD, DANN, FATHMM, fitCons, phyloP7, phyloP20,

Fig. 3 Distribution of mean RMSE for each method across missing data scenarios. A. Distribution of the
mean RMSE in a 5-column MCAR imputation. B. Distribution of the mean RMSE in a 2-column MAR
imputation. C. Distribution of the mean RMSE in a 2-column MNAR imputation. Distribution of mean RMSE
when using a mean-based approach is shown in gray for comparison. RMSE corresponds to root mean
squared error, MCAR corresponds to missing completely at random, MNAR corresponds to missing not at
random and MAR corresponds to missing at random and Am corresponds to Amelia. Vertical dotted lines
represent the median value of the distribution
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phastCons20, phastCons7, SiPhy, GERP and MutationTaster. This means that for ~

54 % of the variants, only two features have information (GWAVA and Kaviar). For this

reason, we performed an imputation round for a similar missing data scenario. Ten out

of 12 columns were masked for 50 % of the variants. Then, we performed imputation

of each feature using kNN, RF and the mean. Supplementary figure S3 shows the distri-

bution of difference in mean RMSE between RF/kNN/mean and a random imputation

after the iteration of different sets of 50 % of the variants (in green kNN, in orange RF

and in gray the mean). kNN outperforms the RF with a right-shifted distribution indi-

cating greater differences compared to the random. RF RMSE distribution is more

spread and shifted to the left indicating smaller differences with random. Median differ-

ence compared to the mean imputation is 0.007 for KNN and − 0.02 for RF.

R package

NAsImpute is a S3 package built to test each algorithms’ performance on different

datasets. Integrated functions allow the user to simulate MCAR and MAR case scenar-

ios in multiple and single column imputations. Furthermore, functions are available for

the user to identify the best performing “k” and number of trees (“ntree”) in kNN and

RF algorithms, respectively.

Inputs are tidy data-frames, algorithm’s specific parameters (ej. “k”, ”ntree”), feature-

wise proportion of observations in which imputation will be performed (e.g. represent-

ing the amount of missing data), features to be used for imputation, number of itera-

tions and boolean vector on whether to generate MAE or RMSE histograms. In case of

multiple column imputation the user can set the number of columns to be tested in

each iteration. In case of MAR imputation the user can set the dependent features to

be tested.

Functions output is a list containing averaged error metrics for each algorithm, a list

containing the comparison of each algorithm with a random imputation and a list con-

taining histograms as “ggplot” objects.

Package and vignette are ava i lab le under g i thub (ht tps : / /g i thub .com/

OmegaPetrazzini/NAsImpute).

Discussion
Here, we have reviewed five statistical methods available to impute missing data in gen-

omic studies. We used coding and non-coding variants extracted from ClinVar to artifi-

cially generate three missing data scenarios (MCAR, MAR and MNAR). After testing 6

different imputation methods, we found that kNN (and in most cases RF) better infer

missing values.

This is supported by the single- (Fig. 1) and multiple-column approach (Fig. 3). For

the former, algorithm-based approaches have both similar small RMSE values in all

missing data scenarios, and the rest (Amelia, mice and MI) showed poor performance.

The mean RMSE difference between these two groups is 0.06, 0.05 and 0.12 for MCAR,

MNAR and MAR respectively. The difference is particularly high in MAR, and even

the difference between the best performant RF and kNN is the highest (0.02). MAR

missing data scenarios are the most complex ones and its missingness is dependent on
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other variables in the matrix, hence it is expected that predictive algorithms perform

better at imputation (e.g. kNN and RF).

When imputing multiple columns at once (Fig. 3), RF and kNN algorithms gen-

erate imputations remarkably better than Amelia, mice and MI in all three case

scenarios. When looking at RMSE distributions, the latter three partially overlap

with an imputation-by-the-mean approach, while RF and kNN are clearly non-

overlapping. This is a more realistic situation in which data structure could really

impact the performance of an algorithm. Figure 3 shows how algorithm-based

methods increase their performance when compared to a non-algorithmic approach

as complexity in missing data structure increases. These results imply that an

algorithm-based approach is preferred compared to a mean-value imputation, espe-

cially with complex missing data scenarios. As mentioned earlier, data MNAR is an

increasing issue in genomics, particularly when working with non-coding variants’

annotation. These results indicate that algorithmic approaches should be preferred

to impute missing data in the context of genomic annotation. Furthermore, high-

performing algorithms such as RF or kNN likely benefit from underlying data

structures inherent to MNAR and MAR scenarios. To be noted, RF loses inference

power when simulating an extreme structured missing data scenario (see Sec. 3.3),

while kNN still shows good performance (supplementary figure S3). When looking

at columns independently we notice a block of co-ocurring missing values for 54 %

of the variants in the following features: CADD, DANN, FATHMM, fitCons, phy-

loP7, phyloP20, phastCons20, phastCons7, SiPhy, GERP and MutationTaster, limit-

ing observed values to GWAVA and Kaviar. A principal component analysis shows

41.7 % of the variance is explained by the first component and 9.0 % by the second.

Features correlated with this first component are CADD, DANN, FATHMM, phy-

loP7, phyloP20, phastCons20, phastCons7, GERP and SiPhy (Supplementary figure

S5). Most features of the missing data block, except for fitCons and MutationTa-

ster. Features correlated with the second component are fitCons, MutationTaster,

GWAVA and Kaviar. Having one data point in the first group and one in the sec-

ond could provide information for a proper imputation using kNN. Often the only

observed features in a variant are GWAVA and Kaviar, both correlated with the

second component. These two show some correlation with the first eigenvector

(-0.25 and 0.24 respectively), meaning that some information is also added to the

group correlated with the first component. Having one data point in the first

group and one in the second seems to provide enough information for a proper

imputation in both algorithmic approaches. When this is not the case RF fails to

capture information from the first principal component, while kNN seems to do so

by better estimate the neighbors in a 12-dimensional space.

Considering the features, some of them performed intrinsically worse than others,

e.g. phastCons scores are poorly imputed by all five algorithms, even though phast-

Cons20 is used for phastCons7 imputation. Both features not only co-occur in the same

missing data block in a real example (supplementary table S2) but also are correlated in

the variants that do have values, 0.41. Supplementary table S4 shows the correlations

between all features. Bad performance seems to be driven by a U-like distribution in

which most values are found at both extremes of the score (see phastCons20 and

phastCons7, Fig. 2).
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In contrast, when looking at features with a more robust imputation (GERP, phy-

loP20 and phyloP7) they show values towards the higher end of the distribution (Fig. 2).

In these cases, both algorithmic and non-algorithmic approaches tend to perform well

(Fig. 1). Again, phyloP20 and phyloP7 are highly correlated (supplementary table S2

and S4), with a value of 0.7.

Moreover, FATHMM also shows a U-like distribution with extremes values and big-

ger tails. In this case, the mean would perform even worse than with other U-like dis-

tributions. The mean value of true FATHMM is 0.67 and a variance of 0.13 (three

times higher than other features, see below).

The mean-value approach decently fits for imputations in fitCons, GWAVA and

Kaviar. The latter is a frequency column, which is biased towards the lower values in

this particular data set, since most of the variants uploaded to ClinVar are of clinical

relevance, hence low in frequency. The mean of the Kaviar frequency is 0.018 and vari-

ance 0.009. A good performance when imputing with the mean is therefore expected in

this type of feature. This might not hold for more heterogeneous data sets with higher

frequency variants. Similarly, GWAVA has a relatively normal distribution (Fig. 2 C),

with a mean of 0.39 and standard deviation of 0.11. In this case the mean value will ap-

proximate the vast majority of true values found at the center of the distribution.

fitCons is a fitness score that estimates the probability that a point mutation at each

position in a genome will influence fitness. The distribution of the probability values

are in this case centered around 0.62 with a small variance of 0.016, which makes the

mean a decent estimator.

Even though RF slightly outperforms kNN at multiple-column and single-column im-

putations, the running time and complexity of that algorithm are to be considered.

Running time for one RF iteration (with parameters ntree = 13, mtry = 2 and parallelize

= “forests”) took approximately 10 h, while the same iteration for kNN (with k = 23)

took approximately 8 h. Therefore, accounting for data size, computing power and time

restraints, each user will have to pick its most suitable algorithm accordingly.

It is worth mentioning that the random approach was made only with a 1,000 itera-

tions, which might not be sufficiently representative of the whole sampling space.

Moreover, we have worked with around 30,000 variants and 12 features. Current gen-

omic data sets might be orders of magnitude higher [9]. For these scenarios, one can

use interesting alternatives based on Spark (SparkR, Spark ML) to scale out and im-

prove R performance [31]. Additionally, RF performs very poorly in extreme missing

data structures which are frequent in genomic contexts.

Altogether we have reviewed several imputations methods and have proposed a

couple of suitable algorithms to impute genomic annotation. Additionally, we have de-

veloped an R package to test the users own data.

Conclusion
We found that kNN and RF are the best imputation methods for genomics annotations,

particularly in non-coding variants. Since Random Forest is computationally more chal-

lenging and has issues with more complex missing data structures, kNN remains a

more suitable approach. The results obtained here and the R package that was made

available can help improve missing data imputation and therefore strengthen posterior

analyses of genomic variants in the context of rare diseases.
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