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Abstract

Background: Although many patients receive good prognoses with standard
therapy, 30–50% of diffuse large B-cell lymphoma (DLBCL) cases may relapse after
treatment. Statistical or computational intelligent models are powerful tools for
assessing prognoses; however, many cannot generate accurate risk (probability)
estimates. Thus, probability calibration-based versions of traditional machine learning
algorithms are developed in this paper to predict the risk of relapse in patients with
DLBCL.

Methods: Five machine learning algorithms were assessed, namely, naïve Bayes (NB),
logistic regression (LR), random forest (RF), support vector machine (SVM) and
feedforward neural network (FFNN), and three methods were used to develop
probability calibration-based versions of each of the above algorithms, namely, Platt
scaling (Platt), isotonic regression (IsoReg) and shape-restricted polynomial regression
(RPR). Performance comparisons were based on the average results of the stratified
hold-out test, which was repeated 500 times. We used the AUC to evaluate the
discrimination ability (i.e., classification ability) of the model and assessed the model
calibration (i.e., risk prediction accuracy) using the H-L goodness-of-fit test, ECE, MCE
and BS.

Results: Sex, stage, IPI, KPS, GCB, CD10 and rituximab were significant factors
predicting the 3-year recurrence rate of patients with DLBCL. For the 5 uncalibrated
algorithms, the LR (ECE = 8.517, MCE = 20.100, BS = 0.188) and FFNN (ECE = 8.238,
MCE = 20.150, BS = 0.184) models were well-calibrated. The errors of the initial risk
estimate of the NB (ECE = 15.711, MCE = 34.350, BS = 0.212), RF (ECE = 12.740, MCE =
27.200, BS = 0.201) and SVM (ECE = 9.872, MCE = 23.800, BS = 0.194) models were
large. With probability calibration, the biased NB, RF and SVM models were well-
corrected. The calibration errors of the LR and FFNN models were not further
improved regardless of the probability calibration method. Among the 3 calibration
methods, RPR achieved the best calibration for both the RF and SVM models. The
power of IsoReg was not obvious for the NB, RF or SVM models.
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Conclusions: Although these algorithms all have good classification ability, several
cannot generate accurate risk estimates. Probability calibration is an effective method
of improving the accuracy of these poorly calibrated algorithms. Our risk model of
DLBCL demonstrates good discrimination and calibration ability and has the potential
to help clinicians make optimal therapeutic decisions to achieve precision medicine.

Keywords: DLBCL, Risk prediction, Probability calibration, Discrimination and
calibration

Background
Diffuse large B-cell lymphoma (DLBCL) remains a clinical challenge due to its hetero-

geneous manifestations and prognosis [1, 2]. Although durable remission can be ob-

tained in more than 50% of cases, relapse still occurs in 30–50% of patients with

standard therapy, which dramatically reduces their survival rates [3, 4]. Autologous

hematopoietic stem cell transplantation (AHSCT), second-line therapy or clinical trials

are recommended for these patients with poor response [5, 6]. The accurate prediction

of the risk of recurrence in DLBCL patients is crucial to clinical decision-making, as it

is part of a growing trend toward precision medicine [7]. If patients with high risk of

recurrence can be identified as early as possible, their prognosis would be effectively

improved by taking appropriate measures e.g. AHSCT. Given that many cases may have

recurrences in 3 years, thus, a model that can predict the 3-year recurrence rate of

DLBCL patients is urgently required.

Statistical or computational models are powerful tools for assessing patient prog-

nosis by simultaneously considering a number of individual features, such as demo-

graphic characteristics, disease symptoms and laboratory results. Although many

studies have applied statistical models for clinical predictions, many have only fo-

cused on whether an event of interest will occur and ignored the estimate of abso-

lute risk of this event. In many scenarios, we need to recognize whether an event

will occur and obtain the membership probability, which is critical for further

decision-making. For example, rather than providing a vague prognosis of survival,

if we are able to predict that a patient’s 3-year survival rate with a given therapy is

50.1%, we may switch regimens early and choose a more effective regimen. Accur-

ate risk prediction is critical for achieving precision medicine, which can help clini-

cians make optimal therapeutic determinations. Given accurate information,

appropriate therapies may be initiated sooner, thereby preventing unnecessary ex-

posure to ineffective drugs and ultimately improving the clinical outcomes of per-

sonalized cases and extending their survival times [7–9].

Such a clinical prediction model should be characterized by correctly distinguish-

ing patients who will have an event from those who will not (i.e., discrimination)

and by accurately estimating the absolute risk of the event (i.e., calibration) [10].

Discrimination and calibration are both necessary components of the accuracy for

a risk prediction model. However, in practice, a model with good classification

ability may not necessarily generate precise probability estimates, such as random

forest and support vector machine models. Fortunately, these biased algorithms can

be corrected by probability calibration methods. Probability calibration attempts to

find a mapping function that transforms the initial risk estimates into more
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accurate posterior probabilities. With probability calibration, it is possible to accur-

ately estimate the risk of recurrence of DLBCL patients even for a poor-calibrated

algorithm.

Many approaches have been proposed for the probability calibration problem.

Among them, Platt scaling (Platt) is a popular parametric method, which is origin-

ally proposed for SVM models [11]. Platt transforms the initial prediction into ac-

curate posterior probability by using a sigmoid function. This method performs

well when the distribution of the original probabilities is sigmoid-shaped. IsoReg

(isotonic regression), the monotone extension of HistBin (histogram binning), is a

popular nonparametric method [12, 13]. Since the only restriction is that the cali-

bration function is isotonic (i.e., nondecreasing), IsoReg have the ability to calibrate

any classifiers. Subsequently, Jiang [14] proposed SmoIsoReg (smooth isotonic re-

gression), which is a continuousness extension of the IsoReg. SmoIsoReg first trains

an IsoReg model and selects a set of representative points based on the piecewise

constant solution generated by IsoReg. Then, the calibration function is estimated

by applying PCHIP [15] interpolation algorithm to fit these points. In addition,

state-of-the-art approaches such as BBQ (Bayesian binning in quantiles), GUESS

and RPR (shape-restricted polynomial regression) have also been proposed to cali-

brate predictive models. BBQ [16, 17] integrates multiple HistBin models of differ-

ent bins to generate calibrated probabilities. GUESS [18] first fits the distribution

of the original scores of different classes, and then uses Bayes’ theorem to compute

the probability (i.e., calibrated probability) that a certain score belongs to the inter-

ested class. RPR [19] uses a polynomial function as the calibration function and

can theoretically calibrate the initial predictions of any distribution as the polyno-

mial degree increases. In this article, the popular parametric method Platt, the

popular nonparametric method IsoReg, and the flexible RPR were used to calibrate

the risk prediction model for accurately predicting the 3-year recurrence rate of

DLBCL patients.

Overall, we will use 5 traditional machine learning algorithms to predict the 3-year

recurrence rate of patients with DLBCL: naïve Bayes (NB), logistic regression (LR), ran-

dom forest (RF), support vector machine (SVM) and feed-forward neural network

(FFNN) models. Previous studies showed that all of these algorithms have good classifi-

cation ability; however, to our knowledge, they are rarely used for risk estimation. Thus,

we will explore their calibration performance using our real-world data. Moreover,

three methods (i.e., Platt, IsoReg and RPR) will be applied to develop probability

calibration-based versions of each of the above algorithms. We will use the Hosmer-

Lemeshow (H-L) goodness-of-fit test, expected calibration error (ECE), maximum cali-

bration error (MCE) and Brier score (BS) to comprehensively assess the accuracy of the

risk prediction. We will also explore the performance of all models on different prob-

abilistic intervals.

This research has three objectives. First, unlike other studies that only fo-

cused on the prediction of categories, we aim to generate accurate probability

estimates. Second, instead of using traditional methods, we will develop prob-

ability calibration-based machine learning algorithms for risk prediction. Third,

both discrimination and calibration will be considered in the performance

measure.
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Methods
Study populations and predictors

The dataset used in this study was provided by Shanxi Cancer Hospital, China. A total

of 510 patients diagnosed with DLBCL between 2011 and 2017 were included in the

model construction. There were 181 cases, which had experienced relapse within 3

years. We collected 15 features of each patient from their electronic medical records.

Table 1 shows the names and groupings of each feature.

We employed a LR model and RF algorithm to analyze these variables. The LR model

can detect possible causal relationships between variables and identify important vari-

ables related to the outcome [20]. Table 2 shows the selected variables of the LR model

when the threshold is 0.1. Sex, stage, IPI, KPS, GCB, CD10 and rituximab were signifi-

cant factors for recurrence in DLBCL patients within 3 years. Except for stage-II, the P

values of other variables were all less than 0.05.

The RF algorithm can perform feature selection by analyzing the importance of vari-

ables [20, 21]. In this research, mean decrease of accuracy and mean decrease of Gini

index were selected to measure the importance of variables. The former calculates the

average reduction in prediction accuracy of the model in the Out of Bag (OOB) sam-

ples after a certain variable is removed. The larger the mean decrease of accuracy, the

more important the variable is to the model. The Gini index, which reflects the likeli-

hood that two samples taken at random from a data set will have different labels, is

used to measure the impurity of this data. The mean decrease of Gini index calculates

the average reduction of the node impurity in all decision trees after a certain variable

Table 1 Features and groupings of 510 patients with DLBCL

Features Instances (N)

Age ≤ 60 (288), > 60 (222)

Sex Male (262), Female (248)

Stage I (50), II (179), III (87), IV (194)

IPI Low (255), Low-intermediate (102),
High-intermediate (101), High (52)

KPS ≥ 80 (419), < 80 (91)

WBC Low (100), Normal (377), High (33)

LDH Normal (389), High (121)

β2-MG Normal (373), High (137)

ESR Normal (321), High (189)

GCB Yes (302), No (208)

CD10 Negative (339), Positive (171)

Bcl-6 Negative (87), Positive (423)

MUM-1 Negative (276), Positive (234)

Ki-67 < 50 (53), 50 ~ 80 (165), > 80 (292)

Rituximab Not use (290), Use (220)

Relapse No (329), Yes (181)

IPI international prognostic index, KPS Karnofsky performance status, WBC white blood cell, LDH lactate dehydrogenase,
β2-MG β2- microglobulin, ESR erythrocyte sedimentation rate, GCB germinal center B-cell-like lymphoma; CD10, Bcl-6,
MUM-1 and Ki-67 are immunohistochemical indicators; The figures in brackets represent the number of patients of
this group
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is used as the partition attribute. The larger the value, the more important the variable

is to the model.

Figure 1 shows the ranking of variable importance. To compare with the result of the

LR model, we only focused on the top 7 variables of the ranking. The union of the two

rankings contained 10 variables, including 7 variables selected by the LR model, as well

as WBC, Ki-67 and β2-MG. Regardless of which importance measure was used, IPI and

stage were ranked in the top 2, and both rankings contained WBC and KPS.

Based on the results of these two methods, we first used the variables (sex, stage, IPI,

KPS, GCB, CD10, and rituximab) selected by the LR model as the predictors of the risk

model. According to these 7 variables, we pretrained the 5 machine learning algorithms

with 100 times. Then, we further incorporated the WBC, Ki-67 and β2-MG variables

Table 2 Variables selected by the LR model (P < 0.1)

Variable Grouping Coefficient OR P-value

Sex Male Reference Reference Reference

Female −0.466 0.628 0.037

Stage I Reference Reference Reference

II 0.744 2.105 0.161

III 1.573 4.823 0.006

IV 1.429 4.175 0.011

IPI Low Reference Reference Reference

Low-intermediate 0.907 2.478 0.008

High-intermediate 0.953 2.594 0.013

High 1.210 3.352 0.016

KPS ≥ 80 Reference Reference Reference

<80 0.734 2.084 0.014

GCB No Reference Reference Reference

Yes −0.792 0.453 0.041

CD10 Negative Reference Reference Reference

Positive −1.144 0.318 < 0.001

Rituximab Not use Reference Reference Reference

Use −0.502 0.605 0.027

IPI international prognostic index, KPS Karnofsky performance status, GCB germinal center B-cell-like lymphoma, CD10 is
immunohistochemical indicators

Fig. 1 Ranking of variables importance (only showed the first 7 variables)
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into each algorithm to observe changes in performance. Since the predictive perfor-

mances of all models were not significantly improved after included these 3 variables,

we excluded them for the sake of simplicity of the model. Finally, sex, stage, IPI, KPS,

GCB, CD10 and rituximab were used as the predictors to predict the 3-year recurrence

rate of patients with DLBCL.

Five machine learning algorithms

Five common machine learning algorithms that showed good classification ability in

previous reports were explored, namely, the NB, LR, RF, SVM and FFNN models.

The NB classifier [22], which calculates the posterior probability that an example be-

longs to each member according to Bayes’ theorem, partitions the example into the

member with the largest posterior probability. The LR model [23] has the “regression”

term but actually belongs to a class of generalized linear models that solves classifica-

tion tasks. Since it uses the logistic function as the link function, LR can generate the

posterior probability that an observation belongs to a certain class.

The RF algorithm [24], which generates a series of “bootstrap” datasets of identical size

as the original data based on sampling with replacement, develops a decision tree on each

bootstrapped dataset. The results of all trees are voted (classification problem) or averaged

(regression problem) to obtain the final prediction. In this research, the voting ratio of all

decision trees was used as the probability estimate of the RF algorithm.

The SVM model [25], which is a generalization of the maximal margin classifier, at-

tempts to find a separating hyperplane to partition samples into different classes. SVM

classifies examples according to their scores s(x), which are proportional to the distance

from x to the separating hyperplane. The sign of the score determines the category,

and its magnitude can also be used as the measure of predictive confidence since an ex-

ample far from the separating hyperplane is more likely to be classified correctly [13].

Although s(x) ∈ R, we can scale them into an interval between 0 and 1 by using min-

max normalization.

An artificial neural network (ANN) [26] consists of a number of simple adaptive units

and represents a wide parallel interconnection network. The FFNN is a common net-

work structure in which the units in each layer are fully connected to the units in the

next layer and there is no loop in the structure. In this study, we developed a 3-layer

network structure, including one input layer, one hidden layer and one output layer.

The hidden layer contained 1000 units, and the output layer consisted of a single unit

that used the sigmoid function as the active function. Our FFNN had a large number of

hidden units since the network with excess capacity has better generalization than the

simple network when using back propagation and early stopping training [27–29].

Studies have showed that a multilayer feedforward network, which has a single hidden

layer containing enough neurons, can approximate a continuous function with arbitrary

complexity [30].

Three probability calibration methods

We employed 3 methods (Platt, IsoReg, and RPR) to develop probability calibration-

based versions of the above 5 machine learning algorithms. A total of 20 models were

established in our research, including the 5 uncalibrated algorithms.
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Probability calibration tries to find a mapping function that transforms the initial

probability estimate or score of a classifier into more accurate prediction, i.e., find a

calibration function f that satisfies following objective [31]:

f sð Þ ¼ P Y ¼ 1f j S xð Þ ¼ sg

where s is the initial probability estimate or score of an example x. P is the true prob-

ability of this example belongs to the category of interest (i.e., Y = 1).

Platt maps the original prediction into accurate posterior probability by using a sig-

moid function [11]. The calibrated probability is generated by the following function:

P Y ¼ 1jsf g ¼ 1
1þ exp Asþ Bð Þ

The parameters A and B are estimated by using the maximum likelihood estimation

(MLE) on the calibration training set fðsi; yiÞgNi¼1 . To avoid overfitting, yi = (N+ + 1)/

(N+ + 2) if the example belongs to the positive member; otherwise, yi = 1/(N− + 2). Con-

stants N+ and N− are the number of positive and negative examples in the training data,

respectively.

IsoReg calibrates the initial prediction by using an isotonic (nondecreasing) function f

that satisfies the following restriction [13]:

Min
1
N

XN

i¼1

f yið Þ−yi½ �2 s:t: f 1≤ f 2≤…≤ f N

Pair-adjacent violators (PAV) algorithm is often used to estimate the isotonic func-

tion [32]. With this algorithm, the examples are first sorted according to their initial

predictions, and all positive samples have a probability of 1 and all negative samples

have a probability of 0. A sequence of assigned probabilities can be obtained, i.e., yi =

[ y1 y2…yN]. Subsequently, recursively replace a pair-adjacent violator with their average

of assigned probabilities, e.g., if yn > yn + 1 (pair-adjacent violator), then update both with

their average. The above replacement is executed recursively until f(y1) ≤ f(y2) ≤… ≤

f(yN). Finally, we can obtain a stepwise constant solution over the interval of initial pre-

dictions. To predict a new example x, we find the i-th interval in which the s(x) is lo-

cated and assign f(i) as the calibrated probability for this example.

Compared to the Platt and IsoReg, RPR is a more flexible and powerful method that

uses a polynomial function to calibrate a classifier [19]:

f sð Þ ¼ a0 þ a1sþ a2s
2 þ…þ aks

k ¼
Xk

l¼0

als
l

The polynomial coefficients a are solved by the following optimization problem:

Min
a∈Rkþ1

1
N

XN

n¼1

Xk

l¼0

als
l
n−yn

" #2

s:t:
Xk

l¼0

als≥0;
Xk

l¼0

als
l ≤1 ð1Þ
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Xk

l¼1

alls
l−1≥0;∀s∈ s; s½ � ð2Þ

Xk

l¼0

a1j j≤λ ð3Þ

All calibrated probabilities are forced to fall in the interval between 0 and 1 by using

the restriction (a). Restriction (b) derives from the differentiability of f(s), and is used to

ensure the monotonicity of the calibration function. In the restriction (c), a l1-norm of

coefficients is used to avoid overfitting of the polynomial.

Model construction

The construction and evaluation of all models are completed by using the stratified hold-

out test. We randomly sampled two-thirds of the observations (340) as the training data

and the residual observations (170) as the testing data. To ensure the consistency of the

data distribution, stratified sampling was used to partition the data. To reduce the statis-

tical variability, the above partition and evaluation were repeated 500 times. The perform-

ance comparison was based on the average results of the 500 hold-out tests.

We first developed traditional NB, LR, RF, SVM and FFNN models for risk predic-

tion. Threefold cross-validation was performed on the training data to determine the

optimal hyperparameters of the RF, SVM and FFNN models. For the RF, the choices

for the number of candidate attributes of each node partition were {2, 3}, and the num-

ber of decision trees was selected from {500, 600, 700…, 1500}. For the SVM, the kernel

was selected from the linear or Gaussian kernels. The search space for the parameters

C and gamma was f10ig4i¼−4 . For the FFNN, the training epoch was determined by the

validation sets. Subsequently, we used all training data to fit the NB and LR models and

trained the RF, SVM and FFNN models with the determined hyperparameters. Finally,

we assessed their performance on the testing data. To extract the predicted values of

the model in the validation sets, we also performed 3-fold cross-validation on the train-

ing set for the NB and LR models, although they have no hyperparameters that need to

be determined.

Then, we developed probability calibration-based versions of the above 5 algorithms. To

avoid overfitting, we used the union of the predicted values on the 3 validation sets of the

above 5 algorithms as the training set of the calibration function. We first employed 3-

fold cross-validation on the calibration training set to determine the optimal hyperpara-

meters of the RPR. The choices for the polynomial degree k were {4, 5,…, 20}, and the

choices for regularization constant λ were f4ig5i¼0. Subsequently, we used all training data

from the calibration to fit Platt, IsoReg and the RPR with the determined k and λ. Finally,

we calibrated the predicted values on the testing set of the 5 algorithms by using the

trained Platt, IsoReg and RPR models and then assessed their performances.

Model evaluation

Although our purpose is to generate accurate risk estimates, classification ability is the

foundation of a prediction model. When a model has a poor discrimination ability, then

the accuracy of the predicted probabilities does not need to be further evaluated [10].
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Thus, both discrimination ability and calibration ability of the model were considered

in the performance evaluation. Discrimination is the ability to differentiate those at

lower risk of an event of interest from those at higher risk. Calibration measures the

similarity between predicted risk and true risk in patients in different risk strata. In our

study, we used the AUC to assess the discrimination and measured the calibration by

using the H-L test, ECE, MCE and BS.

The H-L test, ECE and MCE are metrics related to the calibration plot. To calculate

these metrics, all examples are first sorted according to their predictions and then di-

vided into k bins of similar size. In each bin, the predicted risk is the mean of the pre-

dictions of all examples in the bin and the true or observed risk is the ratio of positive

members in the bin. The H-L test can measure whether the difference between the pre-

dicted risk and the true risk is caused by sampling error [33]:

CH−L ¼
Xk

i¼1

X1

c¼0

Oc
i−P

c
i

� �2

Pc
i

Oc
i is the sum of cases with c = 0 or c = 1 in the i-th bin. Pc

i is the sum of predicted

probabilities with c = 0 or c = 1 in the i-th bin. The statistic CH − L is then compared to

a chi-square distribution with k − 2 degrees of freedom. The ECE and MCE calculate

the average and maximum predicted errors of these bins, respectively [17]:

ECE ¼
Xk

i¼1

j pi−oi j =k

MCE ¼ max jpi−oijð Þ; i ¼ 1; 2;…; k

The pi and oi are the predicted risk and the observed risk in the i-th bin, respectively.

The BS is another metric to assess the calibration ability of a model:

BS ¼ 1
N

XN

m¼1

pm−ymð Þ2

The pm is the predicted risk of an example and the ym is true label of this example.

Lower ECE, MCE and BS values corresponding to a lower risk of prediction errors.

Results
We first developed the NB, LR, RF, SVM and FFNN models and then used 3 methods

(Platt, IsoReg, and RPR) to construct probability calibration-based versions of these al-

gorithms. The performance comparison was based on the average results of the hold-

out test repeated over 500 rounds. A model that obtained a H-L test value greater than

0.05 was defined as a well-calibrated model.

Five traditional machine learning algorithms

As shown in Table 3, the AUCs of the 5 algorithms were approximately 0.75, suggest-

ing that they achieved useful discrimination. Except for the SVM, the AUCs of the

other 4 algorithms were all greater than 0.75. In terms of the AUC, the FFNN had the

best classification capacity, followed by the NB model.

From the calibration, the LR and FFNN models were well calibrated. For these two

algorithms, both the ECE and BS values of the FFNN were lower than those of the LR
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model, whereas the MCE value was slightly higher than that of the LR model. By com-

parison, the NB, RF and SVM models were poorly calibrated and had large errors in

the probability estimate. Among them, the NB model had the lowest accuracy (ECE =

15.711, MCE = 34.350, BS = 0.212), followed by the RF model (ECE = 12.740, MCE =

27.200, BS = 0.201).

Probability calibration-based models

Since the Platt, IsoReg and RPR methods do not change the order of the predictions of

the examples, the AUCs of all calibrated models will not be discussed in this section.

The results are shown in Table 4.

Through probability calibration, the errors of the NB, RF and SVM models decreased

significantly, especially for the NB model. Except for the BS value in the LR model, the

calibration errors of the LR and FFNN models were not further decreased, regardless of

the probability calibration method. Of the 3 calibration methods used, RPR obtained

the best correction for the RF and SVM models, regardless of the ECE, MCE or BS

metric. For the NB algorithm, NB-RPR had the lowest ECE, NB-Platt had the lowest

MCE, and the BS values of the two models were identical. For these 3 poorly calibrated

algorithms (NB, RF, and SVM), the correction effects of IsoReg were not obvious. The

ECEs of the NB-IsoReg, RF-IsoReg and SVM-IsoReg models decreased compared to

those of the uncalibrated models, whereas the MCEs of these models increased to dif-

ferent degrees. In addition, the BS value of SVM-IsoReg was also higher than that of

the uncalibrated model, while the BS values of NB-IsoReg and RF-IsoReg were lower

than or equal to those of the uncalibrated models.

Improvement of the calibration

We further explored improving the model calibration performance after probability

calibration. In terms of the H-L test, if the result of a model was not statistically signifi-

cant (P > 0.05), then it was defined as well-calibrated; otherwise, it was defined as

poorly calibrated. Since the LR and FFNN models were well-calibrated, their calibrated

models were not discussed in this section. The results are shown in Fig. 2.

Table 3 Performance of the 5 traditional machine learning algorithms

AUC ECE MCE BS P_value

NB 0.760 (0.741–
0.783)

15.711 (13.557–
17.914)

34.350 (29.275–
39.800)

0.212 (0.199–
0.228)

< 0.001(< 0.001- <
0.001)

LR 0.758 (0.733–
0.779)

8.517 (7.244–
10.093)

20.100 (16.675–
25.025)

0.188 (0.180–
0.196)

0.152 (0.022–0.403)

RF 0.757 (0.739–
0.776)

12.740 (10.910–
14.336)

27.200 (23.375–
31.925)

0.201 (0.190–
0.211)

< 0.001(< 0.001- <
0.001)

SVM 0.748 (0.724–
0.771)

9.872 (8.317–
11.777)

23.800 (19.000–
28.925)

0.194 (0.185–
0.204)

0.016(< 0.001–0.117)

FFNN 0.767 (0.747–
0.787)

8.238 (6.805–
9.611)

20.150 (16.600–
24.500)

0.184 (0.177–
0.192)

0.244 (0.075–0.518)

NB naïve Bayes, LR logistic regression, RF random forest, SVM support vector machine, FFNN feedforward neural network.
In each cell M (P25 - P75): M is the median, P25 is the 25th percentile and P75 is the 75th percentile of 500 evaluations. The
best performance in each column is in bold; The secondary best performance in each column is underlined

Fan et al. BioData Mining           (2021) 14:38 Page 10 of 18



For the 5 uncalibrated models, the FFNN had the highest frequency (403) of achiev-

ing a well-calibrated performance out of 500 evaluations, followed by the LR model

(341). By comparison, the frequencies of the NB, RF and SVM models were 1, 0 and

190, respectively. Of these poorly calibrated algorithms (NB, RF, and SVM), the prob-

ability calibration improved their performances significantly. Compared with Platt and

IsoReg, the RF-RPR and SVM-RPR models achieved the highest number of well-

calibrated performances, which were 395 and 391 rounds, respectively. For the NB

model, NB-Platt had the highest frequency (383), followed by NB-RPR (375).

Distribution of probability estimates

We finally explored the distribution of all estimated probabilities. According to the

fixed cut points of 0.1, 0.2, …, 1, all examples were grouped based on their predictions.

In each interval, we calculated the count of examples and expressed it using the median

Table 4 Performance of the probability calibration-based algorithms

ECE MCE BS P_value

NB 15.711 (13.557–
17.914)

34.350 (29.275–39.800) 0.212 (0.199–0.228) < 0.001(< 0.001- <
0.001)

NB-Platt 9.008 (7.919–10.647) 21.550 (17.475–
25.800)

0.189 (0.181–
0.197)

0.179 (0.055–0.389)

NB-IsoReg 9.820 (7.740–12.190) 40.000 (23.475–57.100) 0.208 (0.195–0.227) < 0.001(< 0.001–0.057)

NB-RPR 8.743 (7.397–10.307) 21.600 (17.575–25.700) 0.189 (0.182–
0.197)

0.191 (0.051–0.431)

LR 8.517 (7.244–10.093) 20.100 (16.675–
25.025)

0.188 (0.180–0.196) 0.152 (0.022–0.403)

LR-Platt 8.981 (7.478–10.485) 20.900 (17.300–25.325) 0.189 (0.182–0.196) 0.215 (0.065–0.437)

LR-IsoReg 9.140 (6.970–11.810) 31.550 (20.000–50.175) 0.204 (0.193–0.220) 0.008(< 0.001–0.348)

LR-RPR 8.744 (7.308–10.143) 20.300 (16.700–24.425) 0.187 (0.181–
0.194)

0.255 (0.092–0.507)

RF 12.740 (10.910–
14.336)

27.200 (23.375–31.925) 0.201 (0.190–0.211) < 0.001(< 0.001- <
0.001)

RF-Platt 8.998 (7.518–10.447) 21.100 (17.500–26.700) 0.192 (0.184–0.200) 0.156 (0.030–0.435)

RF-IsoReg 9.292 (7.332–11.353) 27.850 (20.000–40.000) 0.201 (0.191–0.215) < 0.001(< 0.001–0.131)

RF-RPR 8.949 (7.387–10.524) 20.900 (17.400–
26.025)

0.189 (0.182–
0.196)

0.194 (0.061–0.458)

SVM 9.872 (8.317–11.777) 23.800 (19.000–28.925) 0.194 (0.185–0.204) 0.016(< 0.001–0.117)

SVM-Platt 9.077 (7.702–10.895) 21.750 (17.600–27.300) 0.192 (0.184–0.201) 0.169 (0.029–0.412)

SVM-IsoReg 9.501 (7.332–12.453) 30.350 (20.000–42.200) 0.205 (0.194–0.221) 0.003(< 0.001–0.249)

SVM-RPR 8.796 (7.362–10.439) 21.000 (16.775–
26.550)

0.190 (0.183–
0.199)

0.211 (0.064–0.471)

FFNN 8.238 (6.805–9.611) 20.150 (16.600–
24.500)

0.184 (0.177–
0.192)

0.244 (0.075–0.518)

FFNN-Platt 8.991 (7.721–10.642) 20.950 (16.875–26.100) 0.186 (0.179–0.194) 0.192 (0.056–0.425)

FFNN-
IsoReg

10.866 (8.603–13.347) 40.550 (27.800–57.025) 0.211 (0.196–0.230) < 0.001(< 0.001–0.003)

FFNN-RPR 8.703 (7.393–10.361) 21.400 (17.700–26.025) 0.185 (0.178–0.193) 0.227 (0.073–0.473)

NB naïve Bayes, LR logistic regression, RF random forest, SVM support vector machine, FFNN feedforward neural network,
Platt Platt scaling, IsoReg isotonic regression, RPR shape-restricted polynomial regression. “-Platt”, “-IsoReg” and “-RPR”
represent performing probability calibration by using corresponding method. In each cell M(P25 - P75): M is the median,
P25 is the 25th percentile and P75 is the 75th percentile of 500 evaluations. For each algorithm, the best performance in
each column is in bold
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of 500 hold-out tests. Since the LR and FFNN models achieved good calibration, the re-

sults of their calibrated models were not discussed in this section. The results are

shown in Fig. 3.

For the two well-calibrated models (LR and FFNN), the peaks clustered around the

interval between 0.1 and 0.2. There was no example near the point where the predicted

value was 1. Between 0.3 and 1, the numbers of examples decreased gradually as the

probability increased.

For the uncalibrated NB model, the peaks were concentrated at approximately 0 and

1, and the former accounted for a larger proportion. Between 0.1 and 0.9, the count of

each interval was roughly identical. For the 3 calibrated NB models, most estimated

probabilities appeared in the interval between 0.1 and 0.2. For the NB-Platt and NB-

RPR models, the number of examples with predicted probabilities of approximately 0

and 0.9 was 0.

For the uncalibrated RF model, the peak is approximately 0. Between 0 and 1, the

count decreased gradually as the probability increased. For the 3 calibrated RF models,

most estimated probabilities appeared in the interval between 0.1 and 0.2. For the RF-

Platt and RF-RPR models, the number of examples with predicted probabilities of ap-

proximately 0 and 1 was 0.

For the uncalibrated SVM model, the peak at approximately 0.2. For the SVM-Platt

and SVM-RPR models, most estimated probabilities appeared in the interval between

0.2 and 0.3, while the peak of the NB-IsoReg appeared in the interval between 0.1 and

0.2. For the SVM-Platt and SVM-RPR models, the number of examples with predicted

probabilities of approximately 1 was 0. There were also no examples near points where

the probability was 0 for the SVM-Platt model. In the interval between 0.3 and 1, the

number of examples of the 4 models decreased regularly as the probability increased.

Discussion
We developed probability calibration versions of the 5 traditional machine learning al-

gorithms to predict the 3-year recurrence rate in patients with DLBCL and validated

them in terms of both discrimination and calibration. Although the initial risk

Fig. 2 Frequency of well-calibrated models over 500 hold-out tests
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prediction of several algorithms had large errors, probability calibration improved their

accuracy.

We used 7 variables, i.e., sex, stage, IPI, KPS, GCB, CD10 and rituximab, to predict

the 3-year recurrence rate of patients with DLBCL. Most of these variables are associ-

ated with the clinical outcome of DLBCL. To our knowledge, the prognosis of patients

is highly correlated with the tumor stage in almost all cancers. The higher the stage,

the more severe the disease and the more complex the treatment; thus, a poor progno-

sis is likely. This fact is also true in DLBCL [34]. IPI is often used to estimate a patient’s

prognosis by clinicians, and it is a recognized prognostic indictor of DLBCL [34, 35].

The IPI value is between 1 and 5, and a higher value corresponds to a greater likelihood

that the patient will have a poor clinical outcome. DLBCL can be further classified into

two (GCB and non-GCB) categories based on the expression of specific proteins. Sig-

nificant differences in prognosis were observed between these two types, and the overall

survival rate was considerably inferior in non-GCB patients [36–39]. In addition, sev-

eral studies have suggested that the expression of CD10 is closely associated with pa-

tient survival and has a favorable effect on clinical outcomes [40, 41]. The application

of rituximab is a breakthrough in DLBCL, and current studies have shown that rituxi-

mab improves survival in almost all DLBCL subgroups [4, 42–44]. The KPS reflects the

physical condition of a patient, and a higher score corresponds to a better condition.

Although few studies have focused on the correlation between KPS and DLBCL, we

speculate that the performance status will affect patient treatment, such as the drug

dosage, and thus indirectly affect patient prognosis.

The 5 machine learning algorithms discussed in this study are often used in classifica-

tion tasks, and they all have good discrimination ability. In our research, although their

Fig. 3 Distribution of estimated probabilities over different intervals
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discrimination performances were very similar, the differences in calibration were large.

Both the LR and FFNN models were well calibrated, and their performances were not

further improved after probability calibration. Their low calibration errors were more

likely the result of a direct optimization for log-loss of probability [45]. By comparison,

the NB, RF and SVM models were poorly calibrated, and their errors in estimated

probabilities were large. The NB model only achieved good calibration once out of 500

evaluations. Studies have suggested that the predictions of the NB model are often

pushed to 0 or 1 since its basic assumption (i.e., assume that each variable affects the

result independently) may not be valid in reality [12, 13, 45]. In our study, the predic-

tions of the NB model were concentrated at approximately 0 and 1, with the former ac-

counting for a larger proportion. For the RF model, a good calibration performance

was not achieved once out of 500 evaluations. To increase the difference between deci-

sion trees, the RF algorithm introduces the sample and attribute perturbations when

constructing each tree. Several studies have suggested that it is difficult to get identical

predictions from all trees; thus, the voting ratios of the RF are often pushed away from

0 and 1 [31, 45, 46]. However, most predictions from the RF model are concentrated at

approximately 0, and the number of examples in the interval between 0.9 and 1 is not

the lowest in our study. We suggest that three reasons may explain this difference.

First, each decision tree of the RF model has good classification ability since our data

are not complex. Despite the diversity imposed on the tree, most of them generate the

same output. Second, the negative examples account for a large proportion in our

study. Third, the RF model achieves high discriminative power for these negative exam-

ples. Furthermore, the SVM model pushes the outputs away from 0 and 1, which is

consistent with the previous study [45]. Our study also suggests that probability calibra-

tion is necessary for the SVM algorithm since normalizing its scores is insufficient to

obtain accurate probability estimates.

We selected 3 methods (Platt, IsoReg, and RPR) to develop probability calibration-

based versions of 5 traditional machine learning algorithms. Platt is a popular paramet-

ric method that uses a sigmoid function to calibrate a classifier. If the distribution of

the initial probability estimates is inconsistent with the assumed parametric form, how-

ever, Platt does not work well. In our study, the biased NB, RF and SVM models were

well-corrected by the Platt method. If a classifier can rank examples correctly, then the

mapping function from initial predictions into accurate probabilities should be nonde-

creasing. Based on this assumption, IsoReg uses an isotonic (i.e., nondecreasing) func-

tion to calibrate the biased prediction. Due to its simple restriction, IsoReg has become

a popular nonparametric probability calibration method with good universal ability.

However, the NB-IsoReg, RF-IsoReg and SVM-IsoReg models in our study were still

poorly calibrated. Although the ECE values of these 3 models were all lower than those

of the uncalibrated models, their MCEs were all increased. After investigation, we

found that the calibration error of IsoReg for those examples with high predicted values

is large. We speculate that overfitting occurred in these intervals with high predicted

values since there were insufficient positive examples in our study. When the calibra-

tion set is small, the risk of IsoReg overfitting is large. Niculescu-Mizil and Caruana

[45] also confirmed that IsoReg is not suitable for the case of training sizes less than

1000. By comparison, RPR is more powerful and flexible. Compared with Platt, RPR

uses a polynomial function to calibrate a classifier and can theoretically correct the
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initial predictions of any distribution as the polynomial degree increases. Unlike IsoReg,

the calibration function of RPR is continuous over the entire interval. Therefore, two

examples with similar predicted values will not differ considerably after calibration. In

our study, RPR achieved the best correction for the RF and SVM models in terms of

ECE, MCE and BS values. For the NB model, NB-RPR was best in terms of the ECE, al-

though its MCE was slightly higher than that of NB-Platt.

This paper focused on calibration rather than discrimination and aimed to provide

accurate membership probability (i.e., the 3-year recurrence rate of patients with

DLBCL). In practice, we will never know the true membership probability and we usu-

ally use the empirical probability (i.e., the proportion of positive events under a certain

score or within a certain interval of score) to measure the membership probability. For

a sample in which the event of interest has occurred, the true membership probability

is not necessarily 100%. In fact, it may be 0.5, 0.6 or other values, just the existence of

“probability” allows us to observe the occurrence of this event. In chapter 3.4, we can

find in this research that there were some estimated probabilities that fell in the middle

of the [0, 1] interval even if a well-calibrated model. These probabilities with moderate

values such as those between 0.3 and 0.7 may be considered less confident for a classifi-

cation task (assuming that the cut-off of classification is 0.5), since they are near the

threshold. However, these moderate predictions would be of enormous help to clinical

practice if the focus is on calibration rather than discrimination. For example, probabil-

ities include those with moderate values can be used as the basis of patient risk stratifi-

cation, e.g. patients with a predicted value of less than 0.3 can be regarded as low-risk

individuals, those with a predicted value of 0.3 to 0.7 as medium-risk individuals, and

those with a predicted value of more than 0.7 as high-risk individuals. Then, personal-

ized treatments or interventions can be applied to different groups to improve the clin-

ical outcomes of patients with distinct prognostic characteristics. Currently, estimating

membership probability has received more and more attention and has critical clinical

significance as the advent of precision medicine era [7]. Accurate risk estimates based

on personalized characteristics can help improve individual risk counseling, stratifica-

tion of patients for clinical trials, and timing of clinical intervention [7, 47]. Moreover,

the exclusion of patients who are unlikely to respond to a standard treatment can

minimize the exposure of patients to costly therapies that are unlikely to help them [7].

The risk model developed in our study achieved good performance on both discrimin-

ation and calibration and has the potential to improve the clinical outcomes of patients

with DLBCL.

This research has limitations. First, the calibration performance can be further

improved. Since the calibration function has to ensure monotonicity over the entire

interval of initial predicted values, the calibrated probability of an example may not

change significantly. Therefore, the calibration error will be largely influenced by

those misclassified examples. We will collect more information of patients to im-

prove the discriminative ability of the model, thus, indirectly increase the accuracy

of the estimated probabilities. Second, only 5 machine learning algorithms are dis-

cussed in this study. The other algorithms and their probability-calibration-based

versions can be further explored. Third, the data used in this study are provided

by a certain hospital, therefore, an external validation is needed to evaluate the

generalizability of the model.
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Conclusions
To accurately predict the 3-year recurrence rate of patients with DLBCL, we developed

probability calibration-based versions of 5 traditional machine learning algorithms. In

the current study, we could show that (i) some algorithms (i.e., NB, RF and SVM

models) when predicting the 3-year recurrence rate of DLBCL patients cannot generate

accurate risk estimates, although they have good discrimination capacity. The evalu-

ation of performance via ECE, MCE and BS values showed that probability calibration

improves the calibration performance of these algorithms effectively. Especially for the

NB model, probability calibration reduced the ECE value from 15.711 to 8.743, the

MCE value from 34.350 to 21.550, and the BS value from 0.212 to 0.189. These im-

provements provided by probability calibration are helpful to clinical practice, for ex-

ample, DLBCL patients with high risk of recurrence would be identified more

accurately (ii) Probability calibration did not further reduce the probabilistic error of

the FFNN model in this research, regardless of which calibration method was used.

Among the 20 models developed, the uncalibrated FFNN model performed best in

terms of the ECE and BS values. This result may indicate that accurate risk estimates

can be obtained directly by selecting a well-calibrated model in advance, without add-

itional probability calibration.
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