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Abstract

Background: Identifying adverse drugs effects (ADEs) in children, overall and within
pediatric age groups, is essential for preventing disability and death from marketed
drugs. At the same time, however, detection is challenging due to dynamic
biological processes during growth and maturation, called ontogeny, that alter
pharmacokinetics and pharmacodynamics. As a result, methodologies in pediatric
drug safety have been limited to event surveillance and have not focused on
investigating adverse event mechanisms. There is an opportunity to identify drug
event patterns within observational databases for evaluating ontogenic-mediated
adverse event mechanisms. The first step of which is to establish statistical models
that can identify temporal trends of adverse effects across childhood.

Results: Using simulation, we evaluated a population stratification method (the
proportional reporting ratio or PRR) and a population modeling method (the
generalized additive model or GAM) to identify and quantify ADE risk at varying
reporting rates and dynamics. We found that GAMs showed improved performance
over the PRR in detecting dynamic drug event reporting across child development
stages. Moreover, GAMs exhibited normally distributed and robust ADE risk
estimation at all development stages by sharing information across child
development stages.

Conclusions: Our study underscores the opportunity for using population modeling
techniques, which leverage drug event reporting across development stages, as
biologically-inspired detection methods for evaluating ontogenic mechanisms.
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Background
Adverse drug events (ADEs) in children are common and can result in injury

and death [1, 2]. Clinical trials rarely include children [3] and pediatric-specific

trials are limited in identifying possible ADEs in the population [4]. Pediatric

drug safety studies can evaluate large numbers of ADEs from the population [5]

but current methodologies are limited in their ability to identify the mechanisms
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that drive pediatric ADEs [6]. Children undergo evolutionarily conserved and

physiologically dynamic biological processes, collectively called ontogeny, as they

grow and develop from birth through adolescence [7, 8]. The mechanisms may

include varying protein activity [9, 10] as well as include functional and structural

changes that occur during maturation [11, 12]. These ontogenic changes can alter

pharmacodynamics and pharmacokinetics resulting in adverse effects, as is the

case for doxorubicin-induced cardiotoxicity [13] and valproate-induced hepatotox-

icity [14]. With a few notable exceptions, however, many pediatric adverse events

are idiopathic with no known, clear connection to developmental biology [15, 16].

Additionally, adverse event mechanisms established in adults may not translate to

the pediatric population [17]. There is an opportunity to combine known onto-

genic biology with real-world pediatric drug effect data to identify ontogenic-

mediated adverse events.

To date, elucidation of ontogenic mechanisms has relied on hypothesis-driven ap-

proaches. For example, juvenile mouse models have been used to identify genetic vul-

nerabilities of hematopoiesis [18] and investigate effects by a glutamatergic agonist on

the neural developmental sequence [19] during early life. More recently, pharmaco-

metric tools have been used to extrapolate drug effects from adults to children, such as

projecting acetaminophen exposure across pediatric age groups [20], and investigate

drug action in children, such as predicting clearance of zidovudine during infancy [21].

However, juvenile animal studies are low-throughput and require complex study de-

signs [22], and there is limited experimental data to parameterize manually designed

pharmacometric models [23, 24]. While lacking specificity, top-down studies are com-

plementary in that they evaluate thousands of hypotheses simultaneously and can iden-

tify idiosyncratic effects that would otherwise go unnoticed [25, 26]. Moreover, analyses

of large population datasets start from clinically significant events which can take de-

cades to identify [27, 28]. Top-down studies can close the pediatric evidence gap [23]

by sifting through large databases to identify clinically significant although perhaps less

studied and rare adverse drug events during the period of child growth and

development.

While pediatric pharmacovigilance has been able to identify adverse drug events, it is

limited in identifying growth and development processes that underlie those observa-

tions [10, 29]. A common approach when identifying ADEs is to stratify the pediatric

population into age groups. The Proportional Reporting Ratio, which was designed to

be sensitive even when data is scarce [30], is an established detection method and has

been shown to unmask ADE signal within child development stages compared to de-

tection within the larger pediatric population [31]. However, this common practice in

pediatric drug safety directly reduces the amount of data available to identify ADEs

during childhood. Reduced data within these strata was shown to significantly affect

PRR detection performance across pediatric age groups [31]. In contrast to population

stratification, the continuous, time-dependent biological processes during growth and

development suggest using all information across child development stages to identify

pediatric ADEs.

Generalized additive models (GAMs) are supervised machine learning approaches

that can quantify non-linear effects reflective of natural phenomena [32]. GAMs may

be able to quantify signal reflecting dynamic, continuous processes such as ontogeny.
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These models are extensively used for spatial and temporal analysis in ecological stud-

ies [33], such as explaining cardiovascular mortality risk from heat waves over time

[34] and rat infestation from environmental factors within geographic areas [35]. Simi-

lar to evaluating ecological responses using shared information across time or space,

we can evaluate adverse events from temporally-connected ontogenic processes using

shared information across child development stages.

Our study evaluates the novel application of the GAM in modeling age groups in

the pediatric population to detect co-occurring and possibly dynamic adverse drug

event reporting across childhood. We performed a data simulation and augmenta-

tion study that 1) simulated drug event reporting temporal trends of different ef-

fect sizes and shapes, 2) augmented existing pediatric drug event data by inserting

the simulated reporting rates within observational data, and 3) evaluated population

stratification (PRR) and modeling (GAM) methods to detect these injected ADE

reporting dynamics. We found the detection scores generated by the GAM showed

improved risk estimates and increased detection of drug event reporting among the

various simulated dynamics compared to the PRR. Detection methods that capture

temporal adverse drug event dynamics within observational databases can improve

our understanding of the interactions between child developmental biology and ad-

verse drug effects.

Results
Pediatric FAERS

Our study evaluates population stratification versus modeling statistical methods to de-

tect co-occurring adverse events and drugs in the FDA Adverse Event Reporting Sys-

tem (FAERS). There were 339,741 pediatric drug event reports in FAERS, which

contained 519,555 unique drug-event pairs. We constructed positive and negative sets

of drug-events to evaluate detection of putative dynamic drug event reporting. We ran-

domly sampled 500 drug-event pairs to be augmented with simulated drug event

reporting dynamics, representing our positive control set for drug-events with putative

dynamics. We then randomly sampled another 10,000 complementary drug-event pairs

where the underlying data was untouched, representing our negative control set of

drug-events with no known dynamics. We showed there was no significant difference

in the amount of drug-event reporting between FAERS and the negative control (2-

sample Student t-test p-value = 0.98) or positive control (p-value = 0.79) drug-event

pairs (Fig. 1).

Data simulation and augmentation

We augmented the 500 drug-event pairs in the positive control set with putative drug

event dynamics (see Methods). Augmenting the positive control data with drug event

reporting dynamics did not have a systematic effect on the amount of drug event

reporting compared to the untouched negative control set (Figure S1). However, apply-

ing the PRR and GAM detection methods onto the positive control data showed the

generated risk scores reflected the simulated dynamics classes (Fig. 2).

We evaluated the drug event risk scores of each detection method in reflecting the

putative drug event reporting dynamics. The GAM generated all finite and nonzero
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ADE risk that resembled normally distributed scores (Shapiro-Wilk test average p-value

and 95% confidence interval: 0.56 [0.12, 0.98], 90mse: 0.34 [0.023, 0.83]) in comparison

to the PRR (score: 0.04 [1.29E-10, 0.22], 90mse: 0.14 [8.06E-10, 0.78]) at child develop-

ment stages (Fig. 3A). Moreover, 47% of PRR scores were zero and 18% were unable to

be computed, on average, for drug-event pairs (Fig. 3B).

ADE dynamics detection performance

We compared the performance of the GAM and PRR for detecting drug event report-

ing dynamics. Additionally, we further investigated the performance contribution at

each child development stage within the dynamics class. We found that the GAM had

higher AUROC and power across stages (Fig. 4 and Figure S2) and similar performance

within each child development stage (Figure S3, 4) when detecting drug event reporting

dynamics compared to the PRR. When considering low reporting of drug-events, the

GAM had substantially higher AUROC and power, at the expense of excess false posi-

tives, compared to the sensitive-by-design PRR (Fig. 5 and Figure S5).

ADE dynamics sensitivity analysis

We investigated the detection of drug event reporting across all dynamics while removing

drug reports within child development stages (Figure S6 and see Methods). The ADE risk

scores generated by the GAM showed dependent, flexible risk estimates across child devel-

opment stages unlike the PRR (Figure S7). We found that the GAM had more robust and

higher overall performance and sensitivity (Fig. 6 and Figure S8) to detect the various drug

event reporting dynamics as adverse drug events became rare at child development stages.

Real-world validation

We conducted real-world validation to evaluate ADE risk detection against a manually

curated reference set of pediatric adverse drug events. We compared the performance of

Fig. 1 Comparison of drug event reporting in drug-event datasets. A boxplot summary overlayed by the
amount of drug event reports for drug-event pairs between (pediatric) FAERS (N = 519,555), the positive
control set (N = 500), and the negative control set (N = 10,000). ‘N’ is the sample size
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the GAM and PRR for detecting drug-event pairs in a real-world pediatric reference set of

26 drug-event pairs (see Methods and Figure S9). We found that the GAM had slightly

improved overall performance and sensitivity compared to the PRR for detecting pediatric

adverse drug events (Table 1 and Figure S10). Moreover, we found no difference in the

fraction of drug-event pairs with significant ADE risk at child development stages (Table 2;

Fig. 2 ADE detection method risk score distribution across child development stages. Risk scores resulting
from applying the A GAM and B PRR ADE detection methods on the positive control drug-event pair data
of each dynamics class. The score distributions at each child development stage were produced after 100
bootstraps of the original scores for each method and score type. We show the average difference of the
resampled score distributions between a given drug event reporting dynamics class and uniform (random
drug event reporting across childhood) with the 95% confidence interval

Giangreco and Tatonetti BioData Mining           (2021) 14:34 Page 5 of 17



proportion test p-value = 0.39). We found that the GAM identified two real-world

pediatric drug events with putative dynamic ADE risk (Fig. 7). Specifically, the GAM

showed periods of lower risk during early and late childhood and higher risk during the

middle stages of childhood. While the PRR and GAM performed approximately the same

overall, the GAM captured dynamic ADE risk where the PRR did not.

Discussion
We present the first study to evaluate methods to detect drug event reporting patterns

across childhood in large observational data. Children undergo a period of dynamic

growth and development, presenting a challenge in identifying and evaluating adverse

drug events [10, 36]. We hypothesize that dynamic ontogenic processes as children

grow and develop may be reflected by temporal drug event reporting in the population.

Fig. 3 Summary of ADE detection method risk score quality. A Deviation from the normal score
distributions for each method and score type across development stages. The score distributions were
produced after 100 bootstraps of the original scores at each child development stage. The Shapiro-Wilk test
calculated a significance probability value for the resampled scores being drawn from a normal
distributions. B PRR detection method risk score quality summary. Across the positive and negative controls
as well as drug event reporting dynamics classes, we calculated the number of scores with a zero, NaN
(unable to be computed; the drug not reported at a stage or the drug not reported with the event at a
stage), or nonzero positive score across child development stages
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We found that GAMs, a population modeling technique, outperformed the PRR, a

population stratification method, as well as generated robust risk scores to detect ad-

verse drug events during childhood. This work represents a first step in transitioning

from performing event surveillance towards uncovering putative mechanisms of

pediatric adverse drug events.

The goal of our study is to improve the specificity of top-down data mining for generating

pediatric drug safety hypotheses. We hypothesized that temporal drug event reporting

trends found in observational data are dependent on ontogeny, which exhibits high and low

molecular and physiological levels throughout childhood [7, 37, 38]. To test this within a

top-down approach, we generated temporal trends in observational data to correspond with

putative temporal trends from ontogeny as opposed to identifying temporal trends from

confounded frequency [39] or feature-derived [40, 41] measures. This motivated both simu-

lating dynamic drug event reporting rates and then augmenting real-world data to generate

different classes of dynamic drug event reporting trends. While we simulated dynamic drug

event reporting rates, we showed that augmenting the FAERS data did not change the over-

all characteristics of the pediatric drug reports. This was crucial for establishing the use of

real-world drug event data to evaluate hidden dynamic reporting trends. Importantly the

ADE detection methods were in fact able to identify the simulated dynamics within the

data. The data simulation and augmentation of FAERS laid the foundation for evaluating

statistical methods to investigate ontogenic-mediated adverse event mechanisms.

Fig. 4 GAM and PRR drug event dynamic detection score performance. A The receiver operating
characteristic curves showing the true positive rate versus the false positive rate for each method by drug
event reporting dynamics class. The B area under the receiver operating characteristic curve (AUROC),
power (i.e. sensitivity or true positive rate, positive predictive value (i.e. precision), and negative predictive
value across child development stages for each dynamic class
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We found that the generalized additive model (GAM) showed improved detection of

dynamic drug event reporting compared to the proportional reporting ratio (PRR).

While the PRR produced ADE risk scores that were more erratic and unable to be

computed, the GAM scores were both more flexible and robust. The GAM assumes a

flexible relationship yet reduces ‘wiggliness’ to stable risk estimates based on observed

data [42, 43]. While bayesian modeling techniques such as Monte Carlo Markov Chain

can also learn flexible relationships from observed data, these models still require ex-

pert knowledge to build, implement, and interpret [44]. The GAM, on the other hand,

generates an interpretable smooth relationship in a familiar regression framework [32]

that shares information across child development stages. Using this shared information

framework, the GAM was able to detect injected dynamic ADE risks across childhood

even when drug event reporting was low. We further showed that the GAM not only

generated visually dynamic ADE risk when injecting dynamics (Figure S11A), but we

also identified putative dynamic risk for real-world psychiatric adverse events from ex-

posure to montelukast medication (Figure S11B). We demonstrated that GAMs can be

used to detect dynamic reporting of adverse drug events by sharing information across

child development stages.

Our study highlighted when sharing information resulted in the GAM performing

well as well as the methods limitations. We found that detecting drug event report

dynamics overall was at least similar if not improved for risk scores, with slightly

reduced advantages by the more conservative 90% lower bound scores. Interest-

ingly, at stages that did not have reports of a drug and event co-occurring, the

GAM showed substantial power to detect dynamics using information from

Fig. 5 GAM and PRR drug event dynamic detection score performance at low drug reporting. The area
under the receiver operator characteristic (AUROC) curve, the True positive rate (i.e. power) or sensitivity,
the positive predictive value (i.e precision), and the negative preedective value for with a given amount of
drug reports
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adjacent stages. However, increased detection often came at the expense of higher

false positives for the GAM especially at low reporting. Moreover, removing drug

reports significantly reduced the ability of the PRR to detect dynamics with larger

uncertainty compared to the GAM (Figure S12). Overall, we argue the benefits

afforded by the GAM, namely robust, flexible risk estimates at small data and in-

creased sensitivity, presents an opportunity for biologically-inspired data mining for

detecting often rare pediatric adverse events.

This study has limitations. First, observational data has inherent bias and con-

founding factors which may affect both the sample of drug-event pairs in our study

as well as the performance of the detection methods. We showed that the random

sample of drug events correspond to the reporting patterns found in the FAERS

database. Also, performing a power analysis allowed for identifying drug events for

which the detection methods were able to identify the dynamic reporting to pro-

vide a fair performance comparison. Second, other regulatory agencies, such as the

Food and Drug Administration and European Medicines Agency, define pediatric

age ranges for development stages by different methods. While varying child stage

definitions were not explored here, we chose stages defined by NICHD that were

established after consultation and agreement among several US-based organizations

such as the American Academy of Pediatrics and the Centers for Disease Control

and Prevention [45]. Third, fixed development stages may serve more useful in

Table 1 Real-world pediatric drug-event detection performance. The area under the receiver
operating characteristic curve (AUROC) and sensitivity or true positive rate to detect real-world
pediatric drug-events observed within FAERS per each method and score type. The prediction
threshold for the sensitivity was the null statistic for each method (null threshold: GAM==0;
PRR==1). The performance interval is the 95% confidence interval

Real-world pediatric drug-event detection performance

AUROC Sensitivity

90mse score 90mse score

PRR GAM PRR GAM PRR GAM PRR GAM

Performance
value

0.62 [0.58,
0.66]

0.65 [0.59,
0.69]

0.62 [0.58,
0.67]

0.73 [0.69,
0.77]

0.28 [0.22,
0.36]

0.28 [0.23,
0.35]

0.49 [0.40,
0.56]

0.85 [0.81,
0.89]

Fig. 6 GAM and PRR drug event dynamic detection score performance as drug reports become more rare.
The drug reporting drug-event pairs was reduced at 10% decrements only within a specific child
development stage. For example, 0% drug reporting reduction indicates no reduction in drug reporting
and 100% drug reporting reduction indicates all drug reports were removed. The area under the receiver
operating characteristic (AUROC) curve, the power (i.e. true positive rate or sensitivity), the positive
predictive value (i.e. precision), and the negative predictive value as drug reports become rare at child
development stages
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drug regulations and trial design than representing dynamic child growth and

development. Nevertheless, the detection performance and risk scores for both

methods could only be compared when considering data found within child devel-

opment strata. Fortunately, the further advantage of the GAM is its ability to

model childhood as a continuous period using age without restrictive strata. This

increases the sharing of information for identifying adverse event risk during

childhood which may cross development stages and affect specific periods during

childhood. This approach to share information becomes less powerful as the noise-

to-signal content increases.

Fig. 7 GAM and PRR detection scores on putative real-world dynamic adverse drug events. We highlight
two psychiatric adverse events, A Paranoia and B Affective Disorder, from exposure to the drug
montelukast exhibiting dynamic ADE risks across child development stages

Table 2 ADE detection method risk score quality and significance on real-world pediatric drug-
events. The number of drug-event pairs that contained a child development stage with a risk
score of each score quality (null threshold: GAM==0; PRR==1). A 90% lower bound score above
the null threshold indicates a significant risk.

Number of drug-event pairs with score
quality in atleast one stage

Zero NaN Finite Infinite Score
above null

90% lower bound
above null

GAM 0 0 26 0 26 14

PRR 23 14 25 5 26 18
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Conclusion
In this study, we evaluated ADE risk detection methods to identify dynamic drug event

reporting within observational data. By simulating drug event reporting and augment-

ing simulated rates into existing observational data, we can make comparisons between

methods to detect dynamic drug event reporting patterns. We found GAMs result in

more robust scores, overall improved performance to detect dynamics, and improved

ability to detect simulated and real-world pediatric drug-events compared to the state-

of-the-art in pediatric drug safety studies. This study lays the foundation to detect and

evaluate pediatric adverse drug events for ontogenic-mediated mechanisms.

Methods
ADE data source

We retrieved drug event reports from the Food and Drug Administration’s openFDA

[46] download page, utilizing an API key with extended permissions, containing the

FAERS data. Using custom python notebooks and scripts available in the ‘openFDA_

drug_event-parsing’ github repository (DOI: https://doi.org/10.5281/zenodo.4464544),

we extracted and formatted all drug event reports prior to the third quarter of 2019.

Data fields included the safety report identifier, age value, age code e.g. year, adverse

event MedDRA concept code (preferred terms), and drug RxNorm code (various) used

in our analyses. The age value was standardized to year units for categorizing reports

into the 7 child development stages according to the Eunice Kennedy Shriver National

Institute of Child and Human Development [45]. Adverse drug event MedDRA codes

were mapped to standard concept identifiers using concept tables [47] from the OMOP

common data model. The drug RxNorm code was similarly translated to the standard

RxNorm concept identifier (ingredient level) in OMOP and was further mapped to the

equivalent ATC concept identifier (ATC 5th level) using the concept relationship table.

The occurrence of an adverse drug event is defined as any safety report where both the

adverse event and drug concepts are reported together. The pediatric report space for

any adverse drug event is all reports which have age above zero and less than or equal

to 21 years old which is the upper bound for the late adolescence child development

stage. The drug event data for a given drug-event pair composed of 339,741 safety re-

ports with a binary indicator for reports of the event and drug, as well as the category

of NICHD child development stage for the report’s patient.

Simulated ADE dynamics

The objective of this study was to evaluate detection of drug-event reporting as the

reporting rate changes across child development stages with varying dynamics and ef-

fect sizes. We assert that reporting dynamics during childhood reflect ontogenic pro-

files observed on molecular, functional, and structural levels [7, 37, 38].

We simulated dynamic ADE reporting by combining hyperbolic tangent functions

that produced symmetric probability distributions around a given effect size to define

the probability of event reporting at drug reports. These dynamic reporting classes rep-

resent nonlinear trends of drug-event reports across childhood. The average drug and

event reporting across reports equaled the event reporting rate multiplied by a fold

change factor resulting in the effect size of dynamic drug event reporting. The fold
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change followed a negative exponential distribution with rate parameter 0.75 resulting

in a fold change distribution ranging from 1 to 10 (Figure S13). The simulated report-

ing probabilities set the Bernoulli random variable to assign the presence (1) or absence

(0) of the event being reported for each of the 339,741 safety reports. We designed 5

different dynamic reporting rates, namely ‘uniform’ (random), ‘increase’, ‘decrease’,

‘plateau’, and ‘inverse_plateau’ (Figure S14).

ADE data augmentation

We augmented the original drug event data from FAERS with the simulated drug event

reporting dynamics. We randomly selected 500 drug-event pairs to be the positive con-

trol set for drug-events with putative drug event reporting dynamics. We augmented

the drug event data for each pair with the previously described dynamics that we want

to detect. We then randomly selected 10,000 mutually exclusive drug-event pairs to be

the negative control set which were not augmented and represented observed reporting

of drugs with events within FAERS. Differences of the average drug event reporting be-

tween the drug-event sets was computed by comparing 10 million resamples of each

distribution.

Augmenting the positive control drug-event pairs resulted in 5 sets of 500 drug-event

pairs, forming (drug-event, stage, dynamic) triples. The (drug-event, stage, uniform dy-

namic) triple scores were the reference distribution for comparing the average differ-

ence in scores, after 20 resamples, with ADE risk scores from the other dynamics

classes.

ADE detection methods

Our study evaluates population stratification versus modeling statistical methods to de-

tect co-occurring adverse events and drugs in observational data. The proportional

reporting ratio (PRR) stratified the pediatric population into child development stages

to quantify the odds for event reporting prevalence with a drug compared to without a

drug reported. The logistic generalized additive model (GAM) quantifies the log odds

for event reporting with the drug compared to without the drug across child develop-

ment stages. The methods are applied onto the drug event data to evaluate adverse

drug event detection in the presence versus the absence of putative drug event report-

ing dynamics.

We employed the Proportional Reporting Ratio (PRR):

a
aþ c
b

bþ d

where ‘a’ is the number of reports with the drug and event, ‘b’ is the number of reports

without the drug and with the event, ‘c’ is the number of reports with the drug and

without the event, and ‘d’ is the number of reports without the drug or event of inter-

est. These are the four parameters of the PRR equation. For each drug-event pair, we

applied the PRR to each of the 7 child development stages resulting in 7 scores. The

PRR scores were log10 transformed when conducting the Shapiro-Wilk test for

normality.
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We also evaluated the logistic generalized additive model [48] (GAM):

g E Eventð Þð Þ ¼ s nichd; by ¼ Drugð Þ

where g is a logit link function, E(Event) is the expected value of event reporting, s

is a spline function with a penalized cubic basis, nichd is the child development

stage of the report’s subject, and Drug is an indicator i.e. 0 or 1 of drug reporting.

Details for GAMs can be found at references [42, 49] and we specified the model

using the mgcv package in R.

Briefly, the GAM is a flexible statistical model that captures nonlinear effects of co-

variates onto a response. In this paper, we model the effect of the child development

stage interacting with drug reporting on the reporting of an event where the event is

the reporting of the MedDRA preferred term and the drug is the reporting of the ATC

5th level drug concept. The s() function is a spline function where the interaction of

the child development stage (main effect) and the drug (interaction using the ‘by’ vari-

able) is modeled according to a set of basis functions. Each development stage defines

the knot (7 in total) in which the expectation of event reporting is quantified. In the

spline function, a penalized cubic spline basis (bs = ‘cs’) is used for fitting the basis

functions where the first and second derivative of the event expectation is zero at each

knot, resulting in a smooth event expectation across stages. To mitigate overfitting or

‘wiggliness’, we used a penalized iterative restricted likelihood approach, called ‘fREML’,

with a wiggliness penalty in the objective function. Fitting the GAM model (using the

‘bam’ function and discrete = T) produces coefficient terms, similar to beta coefficients

in logistic regression, for each child development stage. This produces a model with 8

parameters, one for each coefficient and intercept term (the intercept term is not uti-

lized in this study). For each drug-event, GAM scores are generated for each child de-

velopment stage resulting in 7 scores. It is important to note that all GAM scores

produced are finite, nonzero values.

The scores generated by each method have different variations and uncertainty in the

estimated population value. We additionally determined the lower confidence bound in

which the population-based score would be greater than 90% of score replicates. The

population score and the 90% lower confidence bound, called ‘score’ and ‘90mse’ re-

spectively, are the score types for each method.

ADE dynamic detection power analysis

We performed a power analysis to determine which of the positive control drug-

event pairs could be detected for each method and score type. The generated

scores may not show a drug and event association (score above the null statistic or

another significance threshold) for a child development stage due to the method’s

different assumptions and biases when applied onto observational data. To mitigate

these issues, we determined the drug event data characteristics, namely the number

of drug reports and the effect size, for each method in which reporting dynamics

could be detected at or above t = 80% power (the power or true positive rate is the

fraction of scores above a number of drug reports and effect size out of all scores;

Figure S15). Specifically, for the (drug-event, stage, dynamic) triple scores in the

positive control set, we determined the power to differentiate scores at high report-

ing rates about a given score threshold (GAM score threshold==0; PRR score
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threshold==1). The reporting rates were higher at different child development

stages for each dynamics class e.g. the ‘increase’ dynamics class had higher report-

ing at the ‘early_adolescence’ and ‘late_adolescence’ stages (Table S1). The scores

from (drug-event, stage, dynamic) triples with a high reporting rate were only con-

sidered for reflecting dynamic drug event reporting associations. The scores from

(drug-event, stage, dynamic) triples with a low reporting rate were not considered

further due to spurious scores generated at stages without injected signal. The drug

event characteristics were determined for both the estimated population score

(‘score’) and the 90% lower bound score (‘90mse’) that represent scores with lower

and higher confidence, respectively, for the ‘true’ population score.

Choosing drug-event pairs at or exceeding the characteristics for each method and

score type at or above t = 80% power resulted in a superset of (drug-event, stage, dy-

namic) triples designated as positives in a reference standard for each drug event

reporting dynamics class (Table S2). The negative control set contained the same

(drug-event, stage) doubles or 70,000 scores for each reference standard. Excluding the

drug-event scores generated by the uniform class, there were 4 reference standards of

positive and negative drug-event pairs for each ADE reporting dynamics class used for

detection performance evaluation.

ADE dynamic detection performance

We evaluated the GAM and PRR methods to detect drug event reporting dynamics across

the child development stages. Specifically, we determined the performance in differentiat-

ing scores from (drug-event, stage, dynamic) triples in the positive control set versus the

negative control (drug-event, stage) score doubles. The positive control set contained a

superset of the 500 (drug-event, stage, dynamic) score triples (Table S2). The negative

control set contained the same (drug-event, stage) doubles or 70,000 scores for each refer-

ence standard. For each of the four reference standards, we quantified the area under the

receiver operating characteristic (AUROC) curve using the R package ROCR for each de-

tection method and score type. Confidence intervals for other performance metrics in-

cluding the AUROC were calculated using 100 bootstraps of the risk score distributions.

Performance metrics followed the conventional definitions:

– AUROC was defined as the probability of a randomly chosen positive control score

being greater than a randomly chosen negative control score.

– Sensitivity (i.e. power and true positive rate or TPR) was defined as the fraction of

positive drug-events risks greater than a score threshold out of all positive drug-events.

– Positive predictive value (i.e. precision) was defined as the fraction of positive drug-

events risks greater than a score threshold out of drug-events predicted as positive.

– Negative predictive value was defined as the fraction of negative drug-events risks

at or less than a score threshold out of drug-events predicted as negative.

Dynamics sensitivity analysis

We assessed the sensitivity of the ADE detection methods to detect drug event report-

ing dynamics within child development stages. We artificially removed, at 10% decre-

ments, random drug reports at each child development stage separately. Removing
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drug reports lowers the rate of drug reporting while maintaining the event reporting

rate. Specifically, at each stage, we determined the performance of each method and

score type to detect (drug-event, stage, dynamic) score triples compared to the same

negative control (drug-event, stage) score doubles at that same reduced stage. Sensitiv-

ity was assessed iteratively at the 10% decrements within each child development stage.

We calculated performance metrics such as the above to quantify detection of drug

event reporting dynamics for each method and score type.

Real-world ADE validation

We applied the ADE detection methods on observed FAERS data for drug-event pairs

within the pediatric drug-event reference standard from the Global Research in

Pediatrics consortium [50]. A machine-readable dataset can be found at the ‘GRiP_

pediatric_ADE-reference_set’ github repository (DOI: https://doi.org/10.5281/zenodo.

4453379). We assigned drug-event pairs with epidemiological or mechanistic evidence

in children (Control==‘C’) as the positive class (N = 26), and the cross-product of all

drugs and events that were complementary to drug-event pairs in the reference set as

the negative class (N = 123). We calculated the AUROC using the ROCR package in R

and the true positive rate using the null statistic of each method as the prediction

threshold.
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