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Abstract

Background: As next-generation sequencing technologies make their way into the
clinic, knowledge of their error rates is essential if they are to be used to guide patient
care. However, sequencing platforms and variant-calling pipelines are continuously
evolving, making it difficult to accurately quantify error rates for the particular
combination of assay and software parameters used on each sample. Family data
provide a unique opportunity for estimating sequencing error rates since it allows us to
observe a fraction of sequencing errors as Mendelian errors in the family, which we can
then use to produce genome-wide error estimates for each sample.

Results: We introduce a method that uses Mendelian errors in sequencing data to
make highly granular per-sample estimates of precision and recall for any set of variant
calls, regardless of sequencing platform or calling methodology. We validate the
accuracy of our estimates using monozygotic twins, and we use a set of monozygotic
quadruplets to show that our predictions closely match the consensus method. We
demonstrate our method’s versatility by estimating sequencing error rates for whole
genome sequencing, whole exome sequencing, and microarray datasets, and we
highlight its sensitivity by quantifying performance increases between different
versions of the GATK variant-calling pipeline. We then use our method to demonstrate
that: 1) Sequencing error rates between samples in the same dataset can vary by over
an order of magnitude. 2) Variant calling performance decreases substantially in
low-complexity regions of the genome. 3) Variant calling performance in whole exome
sequencing data decreases with distance from the nearest target region. 4) Variant calls
from lymphoblastoid cell lines can be as accurate as those from whole blood. 5)
Whole-genome sequencing can attain microarray-level precision and recall at
disease-associated SNV sites.

Conclusion: Genotype datasets from families are powerful resources that can be used
to make fine-grained estimates of sequencing error for any sequencing platform and
variant-calling methodology.
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Background
In order to responsibly use the results of genetic testing in patient treatment, clinicians
need good estimates of the likelihood of false positive and false negative test results [1].
This is a major obstacle for moving next generation sequencing methods into the clinic
since variant calls are highly dependent not only upon the details of the sequencing assay
itself, but also on the software pipeline used to analyze the data [2]. While best-practices
have been established [3], software pipelines are continuously evolving, with new ver-
sions released every few years. This makes it difficult to estimate error rates for the exact
combination of sequencing platform and software pipeline used to generate data for each
patient.
The primary method for estimating the error rate of a sequencing method is replication

[4]. The same individual is sequenced multiple times, often using different sequencing
platforms and variant calling pipelines in order to produce a set of consensus calls. These
consensus calls are then used as the ground truth in order to evaluate a new sequenc-
ing platform or software pipeline. This method has been used by the genome-in-a-bottle
(GIAB) consortium [5] and Illumina’s platinum genomes project [6] to produce publicly-
available “gold-standard” calls that have been widely used to benchmark new methods
and algorithms. The consensus method has been used to quantify the performance of
sequencing platforms [7], aligners [8, 9], and variant calling algorithms [10, 11].
Consensusmethods have several limitations. First, sequencing the same individual mul-

tiple times is expensive, so sometimes computational replicates (running different analysis
pipelines on the same raw sequencing data) or technical replicates (sequencing the same
sample) are used in place of true biological replicates (sequencing multiple samples from
the same individual). Using replicates from different points in the sequencing process can
cause replicates to share errors, which in turn produces erroneous consensus calls. For
example, because computational replicates all work off of the same raw reads, they will be
susceptible to the same PCR-amplification errors, when true biological replicates would not.
Consensusmethods are also sensitive to the number of replicates conducted per sample.

Sometimes as few as two or three replicates are used, in which case consensus meth-
ods can produce an estimate of precision, but struggle to estimate recall. This is because
with a small number of replicates, calls where all methods agree are considered true posi-
tives, but calls where methods disagree are more difficult to classify. An estimate of recall
requires knowledge of the number of false negatives, which is only available if you have
enough replicates to identify which call is correct when replicates disagree.
Finally, consensus methods focus on comparing replicates of a single individual, or at

best a handful of individuals, making it difficult to study error rate variability from individ-
ual to individual or sample to sample. Inter-individual variability in sequencing error has
been observed in the HLA region due to mapping bias, where reads containing variants
map less accurately than reads without variants, resulting in erroneous calls occurring
more frequently in individuals with non-reference genotypes [12]. Furthermore, dif-
ferences in sample preparation have also been shown to affect sequencing error rates
[13, 14]. Sample-specific error models have been shown to improve sensitivity and speci-
ficity of variant calling in tumor samples [15], suggesting that sequencing error rates may
vary considerably from sample to sample. Our inability to quantify variability in error
rates from sample to sample makes it difficult to extrapolate error rates estimated from
GIAB reference material to patient data.
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Using sequencing data from parents and their children provides a unique opportunity
to address these problems. Since children share 50% of their genetic material with each
of their parents, sequencing data from families is similar to a biological replicate, allow-
ing a fraction of the sequencing errors present in the family to be observed as Mendelian
errors. Of course, not all sequencing errors result in Mendelian errors, so methods have
been developed to use counts of Mendelian errors to predict the total number of sequenc-
ing errors in a family [16] and to identify quality control metrics that are indicative of
sequencing errors [17]. Here, we extend these approaches to produce estimates of pre-
cision and recall at heterozygous and homozygous alternate sites for each individual in
the family. Our method uses Poisson regression to model the observed frequencies of
different Mendelian errors to estimate error rates and can be applied to any sequenc-
ing pipeline. We validate the accuracy of our error estimates using identical twins. We
then use a set of identical quadruplets to show that our family-based method produces
estimates of precision and recall that closely match those produced by the consensus
method. We then apply our method to five large sequencing datasets, allowing us to
study individual-level variability in precision and recall across thousands of individuals
sequenced by whole-genome, whole-exome and microarray platforms. We show that by
using our method within family data, we can more effectively detect errors than current
approaches.

Results
Estimating sequencing error rates

Family data allows us to directly detect some, but not all, sequencing errors because they
produce non-Mendelian observations in the family, as shown in Fig. 1. By using Poisson
regression to model the frequency of these non-Mendelian observations as compared to
the frequency of their neighboring Mendelian-consistent observations, we can estimate
the precision and recall of variant calls at both heterozygous and homozygous alternate
sites for each individual in a family. Our method uses familial relatedness to produce

Fig. 1 Some sequencing errors produce non-Mendelian observations in the family. By modelling the
frequency of these non-Mendelian observations, as compared to the frequency of neighboring Mendelian
observations, we can estimate the overall sequencing error rate for each individual
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estimates of the overall variant call error rate for each sample, even thoughmany errors do
not result in non-Mendelian family genotypes and are therefore not directly observable.
More detail along with a derivation of our model is given in “Methods” section.

Validating sequencing error rate estimates using monozygotic twins

We begin by validating our family-based error-estimation method using monozygotic
twins. Sequencing data from monozygotic twins do not necessarily provide perfect
ground truth genotype information, because when twins exhibit different genotypes at a
site, we have no way of knowing which twin’s genotype is correct and which is the result
of a sequencing error. However, we can still use monozygotic twins to validate our error
estimates by comparing the number of sites where the twins have mismatched genotype
calls to the number of such sites we would expect given our error estimates.
We use monozygotic twins from three different datasets to validate our method, includ-

ing one whole-genome sequencing dataset (iHARTWGS), one whole-exome sequencing
dataset (SPARKWES), and one microarray dataset (SPARK Array).
Figure 2 compares the observed genotype mismatches for each pair of twins to the pre-

dicted number of mismatches, given our error estimates. Differing sequencing error rates
and SNP densities between sequencing platforms cause the number of mismatched geno-
types to vary over five orders of magnitude. Our method produces accurate predictions
across this wide range.

Validating sequencing error rate estimates with the consensus method

Next, we validate our family-based error rate estimates by comparing them to the con-
sensus method using a set of identical quadruplets from the iHART dataset. To produce
consensus estimates, we use all sites where three or more of the quadruplets have the
same variant call, and we consider the consensus call to be the ground truth genotype. We
then calculate precision, recall, and F1 score for each quadruplet and compare these val-
ues to those produced by our family-based method. Figure 3 shows that our family-based
method and the widely-used consensus method produce very similar results.

Comparing variant calling performance across sequencing platforms

Next, we use our error estimation method to look at both inter-dataset and intra-dataset
error rate variability across samples from a variety of sequencing platforms. We use
sequencing data from five different sequencing datasets to evaluate our method. These
include two whole-genome sequencing datasets (iHART WGS and SSC WGS), one
whole-exome sequencing dataset (SPARK WES), and two microarray datasets (iHART
Array and SPARK Array).
Sequencing platforms such asmicroarrays orWES can only identify variants within par-

ticular genomic regions (target regions for WES and target sites for microarrays), while
WGS identifies variants anywhere in the genome. Our precision and recall measure-
ments take these restrictions into account, so precision and recall for microarray samples
are evaluated only on sites targeted by the microarray, while for WGS samples, they are
evaluated using all variants in the genome.
Figure 4 shows per-sample distributions of precision, recall, and F1 score for each

dataset. Our algorithm produces these estimates for both heterozygous sites and homozy-
gous alternate sites. We see immediately that precision, recall, and F1 score all vary
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Fig. 2 We validate our method using monozygotic twins. Using our estimated error rates, we predict the
number of sites that will differ between identical twins. We then compare our predictions to the observed
counts. We see that the predicted number of mismatches closely matches the observed counts

dramatically between samples within the same dataset, meaning that even if samples are
sequenced using the same platform and processed with the same variant calling pipeline,
precision and recall may still vary across an order of magnitude. This indicates that many
samples are required to gain an accurate picture of the performance of a sequencing
pipeline. The accuracy of microarray variant calls in particular seems to have the largest
per-sample variance.

GATK v3.2 vs GATK v3.4

Next, we demonstrate that our method is sensitive enough to quantify improvements in
variant calling pipelines from one version to another. GATKv3.2 and GATKv3.4 are two
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Fig. 3 Using a set of monozygotic quadruplets, we compare our family-based error estimation method to
the consensus method. We see that our family-based estimates closely match consensus estimates

Fig. 4 Error rates exhibit inter- and intra-dataset variability. The violin plots show the distribution of
per-sample precision and recall measurements. The top panels show precision and recall at heterozygous
sites. The bottom panels show precision and recall at homozygous alternate sites. The grey bars indicate the
most extreme precision and recall measurements that can be supported by the SNP density of the dataset.
Unsurprisingly, precision and recall vary across sequencing datasets. However, we noticed unexpected
sample-level variability in precision and recall within datasets, indicating that samples sequenced on the
same platform and analyzed with the same software pipeline may have dramatically different error rates
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Fig. 5 Our method is sensitive enough to detect differences in performance between different software
versions of the GATK variant calling pipeline. We compare precision and recall for 965 samples from iHART
using GATKv3.2 and GATKv3.4, using the same raw reads. We see an improvement in both precision and
recall at heterozygous sites, and a slight improvement in recall at homozygous alternate sites

versions of the same variant calling software pipeline. In Fig. 5, we compare variant calling
error rates between these versions. Variants were called on the same set of samples from
iHART, using the same read alignments.
GATKv3.4 improves precision and recall as compared to GATKv3.2 with a median

decrease in false discovery rate (1-precision) of 15% and 10% for heterozygous and
homozygous alternate sites respectively and a median decrease in false negative rate
(1-recall) of 15% and 14% for heterozygous and homozygous alternate sites respectively.

Human reference GRCh37 vs GRCh38

During the variant calling process, reads are first aligned to the human reference genome
before variants are called. Reads containing variants as compared to the human reference
map less well than reads with no variants, and this mapping bias has been shown to result
in poorer variant calling performance at sites where an individual differs from the ref-
erence [12]. These results suggest that as the human reference improves, variant calling
performance should also improve.
Figure 6 compares the variant calling performance of GATK when using human ref-

erence GRCh37 and GRCh38 on the same raw reads from the same iHART samples. At
heterozygous sites, using GRCh38 greatly improves precision (median decrease in false
discovery rate of 81%) at the cost of a modest decrease in recall (median increase of false
negative rate of 18%). This result supports other work showing that GRCh38 improves
read mapping and results in fewer false positive variant calls [18].
However at homozygous alternate sites, GRCh38 improves recall (median decrease in

false negative rate of 15%) at the expense of precision (median increase in false discovery
rate of 5.83x). This may be a good tradeoff since we saw in Fig. 4 that whole genome
sequencing datasets typically provide very high precision at homozygous alternate sites.

WGS datasets in low-complexity regions

Whole-genome sequencing allows us to sequence the non-coding regions of the genome
along with the coding regions. The non-coding region was long thought to be “junk”



Paskov et al. BioDataMining           (2021) 14:27 Page 8 of 19

Fig. 6 We compare GATK’s variant calling performance using different versions of the human reference. We
called variants for 2,034 samples from iHART using version GRCh37 and GRCh38 of the human reference.
Human reference version had little impact on recall, but improved precision at heterozygous sites at the
expense of precision at homozygous alternate sites

DNA, but non-coding variants have recently been implicated in a variety of complex dis-
orders [19]. However, the non-coding region of the genome contains long stretches of
low-complexity regions (LCR), which can be extremely challenging to sequence using
short read methods.
We use our error-estimation method to investigate how variant calling performance

deteriorates in low-complexity regions as compared to the rest of the genome, which
we call high complexity regions (HCR). For this analysis we use both the iHART and
SSC WGS datasets. Figure 7 shows that low complexity regions exhibit decreased preci-
sion and recall for nearly all samples. We see a median false discover rate (1-precision)
increase of 5.7x and 16.6x for heterozygous and homozygous alternate calls respectively,
as well as a median false negative rate (1-recall) increase of 7.1x (heterozygous sites) and
9.6x (homozygous alternate sites). These error rate increases are in line with estimates
from a previous study [20]. However, this effect shows dramatic heterogeneity across
samples, with some samples exhibiting nearly the same levels of precision and recall in
low-complexity regions as in the rest of the genome.

Fig. 7 Looking at WGS data, we compare variant calling performance for low-complexity regions to all other
regions of the genome (which we denote high-complexity). Precision and recall are reduced on average by
10x in low-complexity regions. However, there is quite a bit of heterogeneity across samples
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Variant calls in WES decrease in quality outside of target regions

WES is designed to target exonic regions; however, more than half of the genetic data pro-
duced by WES falls outside these target regions [21], and many of these off-target variant
calls are accurate enough to be used (with imputation techniques) in association studies
[22]. Furthermore, variants in these exon-flanking regions are believed to be highly rele-
vant to disease since they may lie within promoters or UTRs which are known to impact
gene expression. However in WES data, read depth decreases with distance from the
target [21], likely impacting variant calling accuracy.
In order to explore how the accuracy of variant calls inWES data changes outside of tar-

get regions, we compared the calling accuracy for variants in five categories: (1) variants
within the target regions defined by the exome capture, (2) variants between 0-25 bp from
the nearest target region, (3) variants between 25-50 bp from the nearest target region,
(4) variants 50-75 bp from the nearest target region, and (5) variants > 75 bp from the
nearest target region. We then estimated variant calling performance separately for each
category. We found that precision and recall do in fact decrease with distance from the
nearest target for both heterozygous and homozygous alternate sites (Fig. 8). While sites
within 25 bp of the nearest target are nearly indistinguishable from sites within targeted
regions, sites 50 bp or more away show substantially decreased variant call performance.
Recall is most impacted, meaning many variants away from the targets are missed, likely
due to decreased read depth.

Fig. 8 We compare variant calling performance in WES data as distance from the nearest target region
increases. Performance at sites within 25bp of a target region is very similar to performance within the target
regions. However, as distance from the nearest target increases, both precision and recall decay, with the
most dramatic reduction occurring at sites more than 50bp from the nearest target



Paskov et al. BioDataMining           (2021) 14:27 Page 10 of 19

Variant calls from lymphoblastoid cell lines vs whole blood

Every step of the sequencing pipeline has the potential to introduce sequencing errors,
including the sample preparation process. Lymphoblastoid cell lines (LCLs) are a useful
tool for creating a renewable source of DNA, particularly when primary cells are in short
supply. While early-passage LCLs have been shown to produce accurate genotype calls,
late-passage LCLs can introduce substantial sequencing errors [13], likely due to the accu-
mulation of de novo mutations over many cell passages. Unfortunately, when analyzing
LCL-derived sequencing data, the number of LCL passages is often unknown.
We compared WGS error rates in LCL-derived and whole blood samples, taken from

the same 17 individuals in the iHART dataset, shown in Fig. 9. The samples were
sequenced at the same sequencing center and processed together using the same variant
calling pipeline. We find that whole blood and LCL samples exhibit similar performance
in high-complexity regions. However performance diverges in low-complexity regions,
with whole blood samples producing higher precision and LCL samples producing higher
recall. The lower precision of LCL samples may be due to the accumulation of de novo
mutations over repeated cell passages, however it is unclear why this would occur primar-
ily in low-complexity regions and not throughout the entire genome. Differences in the
distribution of sequencing depth across the genome, observed between LCL and whole
blood -derived samples [23], may also contribute to differences in variant calling perfor-
mance. Overall, these results suggest that the LCL samples from the iHART dataset are
faithful representations of the DNA of their donors, particularly if low-complexity regions
of the genome are excluded.

WGS outperformsmicroarrays at disease-associated sites

Only a small number of sites in the human genome have been associated with disease phe-
notypes. Given our previous result thatWGS sequencing accuracy decreases dramatically

Fig. 9 We compare variant calling performance for the same 17 individuals with samples sequenced from
whole blood vs lymphoblastoid cell line (LCL). Performance in low-complexity regions (LCR) is shown with
stars and performance in high-complexity regions (HCR) is shown with dots. Both precision and recall are
plotted on a log-scale. Interestingly, whole blood and LCL samples exhibit very similar performance in
high-complexity regions with LCLs slightly outperforming whole blood for most samples. However in low
complexity regions, whole blood samples produce better precision while LCL samples produce better recall
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Fig. 10 We compare the variant calling performance of WGS at sites with known disease associations
recorded in GWAS Catalog to the performance of microarrays. We see that whole genome sequencing can
attain precision and recall performance akin to microarrays datasets at these disease-associated sites

in low complexity regions, we investigate howWGS performs at disease-associated sites.
In Fig. 10, we show that WGS attains microarray-level performance for sites in GWAS
Catalog. This result support the findings of previous studies which have shown that the
majority of sites with disease-associations lie in regions of the genome that are easier to
sequence [24].

Discussion
We developed a method for using nuclear biological families to estimate per-sample pre-
cision and recall estimates for any sequencing platform or variant calling pipeline. We
validated the accuracy of our method using identical twins. By using family structure to
estimate sequencing error rates, we were able to leverage large, family-based sequenc-
ing cohorts to produce error rate estimates for thousands of individuals per sequencing
method. Large cohorts allow us to produce more robust estimates of error rates and to
understand how error rates vary between samples within the same sequencing dataset.
Our method can also be used to examine how much error is introduced at each step

in the sequencing process. The two WGS datasets we studied demonstrated remarkably
similar performance, with amedian error rate on non-reference genotype calls of 0.001 for
iHART and 0.004 for SSC, in line with the 0.001-0.006 range identified by another next-
gen sequencing study which looked at bothWGS andWES data [25].While these datasets
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were sequenced on similar platforms with similar variant calling pipelines, they differ
with respect to library preparation. iHART used a PCR-based protocol while SSC using
a PCR-free protocol. The similar performance between the two datasets suggests that
PCR does not significantly impact sequencing error. We also used our method to quantify
variant calling improvements when using different versions of GATK or aligning reads to
different versions of the human reference. Our approach could be used to evaluate other
factors that are likely to impact variant calling performance, such as sequencing depth or
read length.
By restricting our method to consider variants in certain genomic regions, we were able

to replicate the results of previous studies showing that next-generation sequencing data
is degraded in low complexity regions [20] and in off-target regions [21] By using large,
family-based cohorts we were able to confirm these findings using much larger sample
sizes than have been previously published. Both low-complexity and off-target regions
often suffer from decreased read depth, so more work is needed to understand whether
the increased error rates are a result of these lower read depths.
Lymphoblastoid cell lines (LCLs) are a commonly used as a renewable source of DNA.

However, there have been conflicting results regarding whether LCLs may introduce
substantial sequencing errors. By applying our method to iHART samples sequenced
from whole blood and LCLs, we were able to show that the samples derived from LCLs
demonstrate nearly equivalent error rates to the samples derived from whole blood.
This supports previous results that LCLs can faithfully represent the genetic material of
their donors [26]. Furthermore, our work shows how our method can be applied to any
sequencing dataset containing LCL data from families to verify that error rates are within
an acceptable range. This will increase confidence in the use of calls from LCL data.
Finally, we compared the performance of WGS at disease-associated sites in GWAS

Catalog to the performance of microarrays and found that WGS attains microarray-level
performance at these sites. These results support previous work showing that WGS can
produce extremely high accuracy genotype calls [24], but care must be taken to ensure
that the variant(s) of interest fall into high-confidence WGS regions.

Conclusion
Clinical applications require reliable genotype calls, and the choice of the best sequenc-
ing platform relies on a careful understanding of each platform’s unique error profile.
Genetic data from nuclear families, when utilizing the method proposed here, provides
an opportunity to quantify the precision and recall of sequencing platforms and their
associated software pipelines. Providing accurate error profiles for sequencing pipelines
empowers clinicians to choose the best sequencing assay for each patient and to make the
best-possible decisions for patient health.

Methods
Estimating sequencing error rates

Our method estimates nine different error rates for each individual, as shown in Fig. 11.
Family data allows us to detect some sequencing errors because they produce non-
Mendelian observations in the family, as shown in Fig. 1. By modelling the frequency
of these non-Mendelian observations, we can estimate per-individual error distributions
and estimate the total number of sequencing errors in the dataset.
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Fig. 11 We estimate detailed error distributions for each genotype in each individual. The ./. observation
represents missing data

Let C(i)
g be a random variable representing the observed variant call for individual i at a

biallelic site with ground-truth genotype g ∈ {0/0, 0/1, 1/1}. Sequencing errors can
cause C(i)

g �= g, so our goal is to estimate the distribution of C(i)
g within a genomic dataset.

Specifically, we would like to estimate P
(
C(i)
g = c

)
with c ∈ {0/0, 0/1, 1/1, ./.}

for all g, c, and i. The ./. observation represents a site where the variant caller was unable
to assign a genotype to the individual. By modeling these missing sites, we are able to
estimate the rate of missing data for each individual while we estimate the other error
rates. Here we make three main assumptions in order to simplify modelling:

1 We assume sequencing errors are rare, so P
(
C(i)
g �= g

)
is very small.

2 We assume that all observations of Mendelian errors in a family are the result of
sequencing error. This may not be true in the case of de novo variants or variants
falling within inherited deletions, duplications, or other structural variants.
However, we expect this assumption to hold over the majority of the genome.

3 We assume each sequencing error occurs independently in different family
members, so the chance of observing multiple sequencing errors at the same site
within the same family is vanishingly small. This may not be true in repetitive or
otherwise hard-to-sequence regions, but we expect these special cases to be
infrequent.

We define a family genotype as a tuple of genotypes, representing the genotypes
of a mother, father, and their child(ren), respectively, at a given site. For example
(0/0, 0/1, 0/1, 0/0) is a family genotype for a family of four where the mother
is homozygous reference, father heterozygous, first child heterozygous, and second
child homozygous reference. Some family genotypes are valid, meaning they contain
no missing genotypes and obey Mendelian inheritance. Let V represent the set of valid
family genotypes and let W represent the set of invalid family genotypes. For exam-
ple, (0/0, 0/1, 0/1, 0/0) is valid. However, (0/0, 0/0, 0/1, 0/0) is invalid
because both parents are homozygous reference, but one of the children has a variant.
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We can represent any sequencing dataset as a set of family genotypes. Let xj represent
the ground-truth number of occurrences of family genotype j, if we could sequence per-
fectly without any sequencing error or missing data. We do not have access to xj. Instead,
we have access to yj, the number of times we observe family genotype j in our dataset,
in the presence of sequencing error and missing data. Since we assume that all sites
obey Mendelian inheritance, for all invalid family genotypes w ∈ W , xw = 0. However
sequencing error may cause yw > 0.
Let pv→w represent the probability that sequencing errors cause valid family genotype v

to be observed as invalid family genotype w. We model Yw, a random variable represent-
ing the number of times we observe the invalid family genotype w, using Yw to denote
a random variable and lowercase yw to denote a realization of that random variable (in
this case, our observations). Assuming sequencing errors are rare, we can apply a gen-
eralization of Le Cam’s theorem [27] to show that the Yws, as sums of multinomials, are
approximately distributed as independent Poissons.

Yw ∼ Pois
(∑
v∈V

xvpv→w

)

The error of the approximation is bounded by 2
∑

v∈V xvδ2v where δv is the probability
of a sequencing error occurring at a site with family genotype v. Since sequencing errors
are rare, we expect δv to be very small for all v, so the approximation is quite good.
We would like to use our Poisson approximation to develop a maximum likelihood

estimate for each P
(
C(i)
g = c

)
. Since we assume that the chance of multiple errors occur-

ring at the same site within the same family is vanishingly small, pv→w �= 0 only if v
and w differ for only a single family member. In this case, we call v and w neighbors.
Every pair of neighboring genotypes has a corresponding P

(
C(i)
g = c

)
where i is the

index of the family member that has different genotypes in v and w, g is the genotype
of family member i in v, and c is the genotype of family member i in w. For example,
family genotype (0/0, 0/0, 0/1, 0/0) has only three valid neighbors: (0/0, 0/1, 0/1, 0/0),
(0/0, 0/0, 0/0, 0/0), and (0/1, 0/0, 0/1, 0/0). Y(0/0,0/0,0/1,0/0) is therefore distributed
as:

Pois

⎛
⎜⎜⎜⎝

⎡
⎢⎣
x(0/0,0/1,0/1,0/0)
x(0/0,0/0,0/0,0/0)
x(0/1,0/0,0/1,0/0)

⎤
⎥⎦
T

⎡
⎢⎢⎢⎣

P
(
C(0)
0/1 = 0/0

)

P
(
C(1)
0/1 = 0/0

)

P
(
C(2)
0/0 = 0/1

)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

We do not have access to xv, the ground truth number of occurrences of valid fam-
ily genotype v. However, since sequencing errors are rare, we assume most valid family
genotypes are observed correctly, so we can use yv as an approximation of xv. Since our
model is linear in the parameters of interest, Poisson regression will produce a maximum
likelihood estimate of each P

(
C(i)
g = c

)
.

Limitations on estimating error rates in parents

Certain sequencing errors in parents will never produce an invalid family genotype. For
example, if we want to understand the probability of observing a heterozygous variant call
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in a parent when the underlying genotype is homozygous reference, our method imme-
diately runs up against a problem. This type of 0/0→0/1 error in a parent will never
result in an invalid family call, because regardless of whether the parent is heterozygous
or homozygous alternate, all of her children may inherit the reference allele. Our method
therefore cannot be used to estimate 0/0 → 0/1 or 1/1 → 0/1 errors in parents. How-
ever, it can estimate these error rates for children. Throughout the paper, we report error
rate distributions in children only.

Estimating the expected numbers of errors

Once we have an estimate of the probability of a particular type of sequencing error, we
can calculate the expected number of errors of this type. Let P

(
C(i)
g = c

)
represent the

rate of observing variant call c at a site with genotype g in individual i. LetW (i)
g→c represent

the number of times individual i was observed to have variant call c at a site with true
genotype g, then

E
[
W (i)

g→c

]
= x(i)

g P
(
C(i)
g = c

)

where x(i)
g is a count of the number of sequenced sites where individual i has genotype g

(for example x(i)
0/0 represents the number of sites where individual i is homozygous refer-

ence). Our data contains sequencing errors, so we do not know x(i)
g , but since we expect

error rates to be small, we can use the number of times we observe individual i to have
genotype g as a good estimate.

Estimating precision and recall

Precision is the fraction of observed variants that are real, calculated with TP
TP+FP (where

TP represents true positives and FP represents false positives). Recall is the fraction of
real variants that are observed, calculated with TP

TP+FN (whereTP represents true positives
and FN represents false negatives). We can use these formulas along with our estimates
of expected number of errors

(
W (i)

g→c
)
to estimate precision and recall at heterozygous

and homozygous alternate sites for each individual i.

Precision(i)
0/1 =

E
[
W (i)

0/1→0/1

]

∑
g∈G E

[
W (i)

g→0/1

]

Precision(i)
1/1 =

E
[
W (i)

1/1→1/1

]

∑
g∈G E

[
W (i)

g→1/1

]

Recall(i)0/1 =
E

[
W (i)

0/1→0/1

]

∑
c∈C E

[
W (i)

0/1→c

]

Recall(i)1/1 =
E

[
W (i)

1/1→1/1

]

∑
c∈C E

[
W (i)

1/1→c

]

where G = {0/0, 0/1, 1/1} is the set of possible true genotypes and C =
{0/0, 0/1, 1/1 ./.} is the set of possible variant call observations.
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Sequencing dataset details

Several sequencing datasets were used throughout the paper. Here we provide detailed
information on the sequencing pipelines used to generate this data.

iHARTWGSWhole genome sequencing data from iHART [28], a dataset of
multiplex autism families, containing 886 families and 3,943 individuals. Individuals
were sequenced at 30x coverage using Illumina’s TruSeq Nano library kits, reads
were aligned to build GRCh38 of the reference genome using bwa-mem, and variants
were called using GATKv3.4. Only biallelic variants that pass GATK’s Variant
Quality Score Recalibration (VQSR) were included in analysis. This dataset contains
63,206,842 informative sites, where an informative site is defined as a biallelic SNP
where at least one individual in the dataset has a non-reference genotype.

iHARTWGS v3.2Whole genome sequencing data from iHART, sequenced as
described for iHARTWGS. Reads were aligned to build GRCh37 of the reference
genome using bwa-mem, and variants were called using GATKv3.2. Only biallelic
variants that pass GATK’s Variant Quality Score Recalibration (VQSR) were
included in analysis. This dataset contains 75 sets of twins which are used to validate
our algorithm. This dataset contains 47,890,555 informative sites.

iHARTWGS v3.4Whole genome sequencing data from iHART, sequenced as
described for iHARTWGS. Reads were aligned to build GRCh37 of the reference
genome using bwa-mem, and variants were called using GATKv3.4. Only biallelic
variants that pass GATK’s Variant Quality Score Recalibration (VQSR) were
included in analysis. This dataset contains 68,963,585 informative sites.

iHART Array Illumina Human BeadChip 550 microarray data from iHART
containing 482 families and 2,607 individuals. This dataset contains 445,575
informative sites.

SSCWGSWhole genome sequencing data from SSC [29], a dataset of simplex
autism families containing 519 families and 2075 individuals. Individuals were
sequenced at 30x coverage using an Illumina PCR-free library protocol, reads were
aligned to build GRCh38 of the reference genome using bwa-mem version 0.7.8 and
variants were called using GATKv3.5. Only biallelic variants that pass VQSR were
including in analysis. This dataset contains 44,469,152 informative sites.

SPARKWESWhole exome sequencing data from SPARK [30], a crowdsourced
dataset of simplex and multiplex autism families, containing 5,903 families and
13,906 individuals. Exome capture was performed using VCRome. Samples were
sequenced at 20x coverage. Reads were aligned to build GRCh37 of the reference
genome with bwa and variants were called using both FreeBayes and GATK. Only
biallelic variants within the VCRome target regions with allele quality greater than 30
were included in analysis. This dataset contains 47 sets of twins which are used to
validate our algorithm. This dataset contains 2,511,175 informative sites.

SPARK Array Illumina HumanCoreExome microarray data for 550K SNP sites from
SPARK [31], containing 3,239 families and 13,248 individuals. This dataset contains
47 sets of twins which are used to validate our algorithm. This dataset contains
588,046 informative sites.
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Validating sequencing error rate estimates using monozygotic twins

We represent a pair of twins as individuals A and B. LetMa,b be a random variable repre-
senting the number of observations where twin A has variant call a and twin B has variant
call b such that a �= b and a, b ∈ {0/0, 0/1, 1/1, ./.}. In order to model Ma,b,
we make a couple of assumptions:

1 We assume that the probability of observing sequencing errors in different family
members at the same site is very small.

2 We assume that mismatches between twin pair A and B are caused by sequencing
errors. While de novo mutations may also cause mismatches, the de novo mutation
rate is around 10−8 per generation [32], and the current sequencing error rates are
closer to 10−5 [20]. Thus we assume that most mismatches between twins are due
to sequencing errors, not to de novo mutations.

Under these assumptions, we can model the expected number of Ma,b mismatches as
the expected number of times twin A has a b → a error plus the expected number of
times twin B has a a → b error.

E
[
Ma,b

] = E
[
W (A)

b→a

]
+ E

[
W (B)

a→b

]

We then compare these estimates to the observed number of mismatches between twin
pair A and B in our dataset. Our method relies on family data to estimate error rates, so to
produce as fair a comparison as possible, we estimate error rates for each twin separately,
using only non-twin family members.

WGS variant calling in low-complexity regions

Next-gen sequencing is known to struggle in low-complexity regions (LCR). In order
to examine performance in these regions as compared to the rest of the genome, we
used the low-complexity regions described by [20] and generated by the mdust program.
In GRCh37, 2.0% of the genome is considered low-complexity. We considered all other
genomic regions to be high-complexity regions (HCR). We estimated variant calling per-
formance in both the LCR and HCR by restricting our method to only consider variants
within LCRs or HCRs respectively, using the same set of samples.

WGS versus microarrays at disease-associated sites

To investigate performance at disease-associated SNPs, we estimated error rates for the
WGS datasets restricted to sites included in GWAS Catalog [33]. We used liftover from
the UCSCGenome Browser [34] to transfer GWASCatalog sites from grch38 coordiantes
to grch37 coordinates. We then compared the performance of our WGS datasets at these
sites to the performance of our microarray datasets.
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