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Abstract

Background: Asthma is one of the leading chronic illnesses among children in the
United States. Asthma prevalence is higher among African Americans (11.2%) compared to
European Americans (7.7%). Bronchodilator medications are part of the first-line therapy,
and the rescue medication, for acute asthma symptoms. Bronchodilator drug response
(BDR) varies substantially among different racial/ethnic groups. Asthma prevalence in
African Americans is only 3.5% higher than that of European Americans, however, asthma
mortality among African Americans is four times that of European Americans; variation in
BDR may play an important role in explaining this health disparity. To improve our
understanding of disparate health outcomes in complex phenotypes such as BDR, it is
important to consider interactions between environmental and biological variables.

Results:We evaluated the impact of pairwise and three-variable interactions between
environmental, social, and biological variables on BDR in 233 African American youth
with asthma using Visualization of Statistical Epistasis Networks (ViSEN). ViSEN is a non-
parametric entropy-based approach able to quantify interaction effects using an
information-theory metric known as Information Gain (IG). We performed analyses in
the full dataset and in sex-stratified subsets. Our analyses identified several interaction
models significantly, and suggestively, associated with BDR. The strongest interaction
significantly associated with BDR was a pairwise interaction between pre-natal smoke
exposure and socioeconomic status (full dataset IG: 2.78%, p = 0.001; female IG: 7.27%,
p = 0.004)). Sex-stratified analyses yielded divergent results for females and males,
indicating the presence of sex-specific effects.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Magaña et al. BioData Mining            (2020) 13:7 
https://doi.org/10.1186/s13040-020-00218-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-020-00218-7&domain=pdf
http://orcid.org/0000-0002-7344-5655
mailto:marquitta.white@ucsf.edu
mailto:marquitta.white@ucsf.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: Our study identified novel interaction effects significantly, and
suggestively, associated with BDR in African American children with asthma. Notably,
we found that all of the interactions identified by ViSEN were “pure” interaction effects,
in that they were not the result of strong main effects on BDR, highlighting the
complexity of the network of biological and environmental factors impacting this
phenotype. Several associations uncovered by ViSEN would not have been detected
using regression-based methods, thus emphasizing the importance of employing
statistical methods optimized to detect both additive and non-additive interaction
effects when studying complex phenotypes such as BDR. The information gained in this
study increases our understanding and appreciation of the complex nature of the
interactions between environmental and health-related factors that influence BDR and
will be invaluable to biomedical researchers designing future studies.

Keywords: Epistatic interactions; Non-parametric methods; Asthma drug response;
Health disparities; Pediatric asthma

Background
Asthma is an inflammatory disease of the lower respiratory tract, characterized by

symptomatic difficulty of breathing in affected individuals [1]. In the United States

(U.S.), asthma is one of the leading chronic illnesses among children [2]. Asthma is also

the most disparate common disease in pediatric populations, with asthma prevalence,

morbidity, and mortality rates varying widely by racial/ethnic group [3]. Specifically,

rates of asthma prevalence and mortality are two and four times higher, respectively, in

African American children compared to European American children [3]. Measures of

asthma morbidity, including emergency department visits and missed school days, are

also higher in African American children compared to their European American coun-

terparts [4]. Despite the higher asthma burden in the African American community,

this population has been historically underrepresented in asthma research [5, 6]. Recent

years have shown an increase in the inclusion of African Americans in large scale bio-

medical studies; however, this population is still comparatively understudied when con-

trasted with efforts aimed at European American populations [5, 6].

The disparity in asthma health outcomes across racial/ethnic groups may be due in part

to a difference in drug response. Bronchodilators, specifically short acting β2-agonist med-

ications such as albuterol, are the most commonly prescribed asthma medication in the

United States [7, 8]. Bronchodilator drug response (BDR) is the amount of airway obstruc-

tion that is reversible after the administration of bronchodilator medication. BDR varies

significantly between racial/ethnic groups [9–11]. Alarmingly, compared to other racial/

ethnic groups, African American children with moderate-to-severe asthma respond

poorly to bronchodilators, ranking second worst among all demographic groups [11].

The estimated genetic heritability of bronchodilator drug response is approximately

28.5% [12]. However, this estimate only represents the additive effect of each genetic

factor on BDR variability and does not account for gene/bio-environment, gene-gene,

or variant-variant effects.

For example, while measures of air pollution, socioeconomic status, genetic ancestry,

and obesity have all been independently associated with BDR and/or other asthma-

related phenotypes, the amount of variation in BDR independently explained by each of
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these variables is relatively small, leaving a large portion of the variation in BDR unex-

plained [7, 13–16]. A portion of the undefined variation in BDR is likely explained by

gene-gene, gene-environment, or biology-environment (bio-environment) interactions

[17]. While these interactions could be additive or non-additive in nature, historically

research in complex phenotypes, such as BDR, has traditionally focused primarily on

the identification of additive interaction effects through the use of regression-based

methods. Synergistic non-additive interactions (epistatic interactions) have recently

been recognized as a significant source of variation underlying complex diseases [18–

20]. The widely employed regression-based models characteristic of large-scale genetic/

biomedical/epidemiological studies of complex disease, while adept at detecting addi-

tive, or additive, interaction effects, are not well powered to detect non-additive interac-

tions. In addition, the majority of studies investigating interaction effects in complex

diseases have used additive models in largely European populations [21–23]. Conse-

quently, there is a significant lack of research investigating epistatic interaction effects

between environmental, psychosocial, demographic, and clinical factors in asthma re-

search. Furthermore, the lack of biomedical research in non-European populations per-

petuates asthma health disparities, especially for those populations that carry a high

disease burden, such as African Americans.

Visualization of Statistical Epistasis Networks (ViSEN) is a statistical program that

optimizes detection of epistatic interactions through information-theoretic quantities,

and is able to include multiple types of data as discrete random variables [20, 24].

ViSEN is also able to identify and quantify both additive and non-additive interactions

and provide intuitive visualization of the potentially complex relationships between

large numbers of variables using a network-based approach. Additionally, ViSEN has

been shown to be more powerful than standard regression-based methods in detecting

interaction effects, suggesting that ViSEN is a promising investigative tool that can be

applied to studies of complex traits such as BDR [20, 24–28].

In this study, we conducted pairwise (two-variable) and higher order (three-variable)

interaction analyses using ViSEN to study the impact of both additive and epistatic in-

teractions between social, psychological, and biological variables on BDR in 233 African

American youth with asthma. We then performed these analyses in sex-stratified sub-

sets to identify sex-specific effects in our study population. Our study is the first to

rigorously interrogate clinical, environmental, and demographic information to identify

hidden non-additive interactions affecting BDR in African American children with

asthma. By identifying previously overlooked epistatic interactions that significantly in-

fluence BDR in African American youth with asthma; our study aims to provide novel

information that can aid in characterizing targets for future health intervention strat-

egies and improving the design of future studies of BDR.

Results
Study participants

The SAGE study included African American participants aged 8 to 21 years with and

without asthma. After excluding Individuals without asthma and individuals missing

any phenotype data, a subset of 617 SAGE participants remained for potential inclusion

in our study. After applying an additional quality control procedure, local case control
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(LCC) subsampling (see Methods section), to remove the potentially confounding effect

of age, 233 individuals with asthma remained for study inclusion (Males = 136, Fe-

males = 97; see Additional File 1). In the full dataset, there were no significant associa-

tions between individual predictor variables and BDR status identified by either ViSEN

or standard descriptive statistics (Table 1). Similarly, we explored the possibility of

main effects in sex-stratified subsets of our population. For males, no main effects were

identified, while in females, ViSEN identified an association between an experience of

discrimination (EOD) and BDR responder status (p = 0.01); however, this association

was not significant after correction for multiple testing (Additional File 2, Add-

itional File 3). A borderline association between SES and BDR status (p = 0.05) was

identified by both ViSEN and standard descriptive statistics, however, this association

was not significant after correction for multiple testing (Supplemental Table 2, Supple-

mental Table 3) (Additional File 2, Additional File 3).

ViSEN pairwise (two variable) interaction effects

We identified one pairwise interaction significantly associated with BDR (significance

threshold, IG p ≤ 0.001) in the full dataset using ViSEN, and one additional interaction

that was suggestively associated (suggestive threshold, IG permutation unadj. p ≤ 0.004)

with BDR (Table 2A, Fig. 1). In order of strength (IG) and significance, our ViSEN

identified interactions were: [1] pre-natal smoke exposure and socioeconomic status

(PSE x SES) (IG = 2.78%, permutation unadj. p = 0.001) and [2] experience of

Table 1 Study Participant Demographics

ViSEN Descriptive Statistics

Categorical Variable BDR
Responders

BDR
Non-Responders

p-value1 p-value2

Sample Size, N 118 115 – –

Sex (% Female) 42% 42% 1.00 1.00

Age, yrs.
(Mean, [SE])

(14, [0.346]) (14, [0.323]) 0.67 0.373

Body Mass Index Obese 47 39 0.44 0.42

Non-Obese 71 76

Experience of Discrimination Yes 65 49 0.06 0.08

No 53 66

Pre-natal Smoke Exposure Yes 21 19 0.87 0.93

No 97 96

Socioeconomic Status > Low 81 73 0.41 0.49

Low 37 42

Air Pollution (NO2) ≥ Median 62 54 0.43 0.47

< Median 56 61

Global African Ancestry ≥ 80% 82 67 0.08 0.10

< 80% 36 48

Summary statistics for all phenotypic data included for analysis in this study are presented above. The Bonferroni
method was used to correct for multiple testing (threshold for statistical significance: permutation unadj. p ≤ 0.006 (0.05/
8 tests)). P-values represent the significance of the main effects, of specified variables on BDR responder status. 1p-values
calculated from ViSEN’s Mutual Information (MI) Test. MI is a metric that quantifies the reduction in uncertainty about the
distribution of one variable given an understanding of the other; 2p-values calculated from the χ2 Test of Independence
unless otherwise indicated; 3p-values calculated from Wilcoxon Rank Sum test
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discrimination and socioeconomic status (EOD x SES) (IG = 2.71%, permutation unadj.

p = 0.002) (Table 2A and Fig. 1). Logistic regression analysis was unable to produce any

significantly associated models; however, our significant and suggestive models were

identified at the suggestive level of significance in logistic regression (Table 2A). An as-

sociation between sex and socioeconomic status (Sex x SES; IG = 1.47%, permutation

unadj. p = 0.026) identified by ViSEN, though not significantly or suggestively associ-

ated with BDR after correction for multiple testing, indicated the potential presence of

sex-specific effects in our dataset. Socioeconomic status (SES) appeared in each associ-

ated interaction model identified by ViSEN, however, this variable did not show any

significant main effects (Mutual Information p-value = 0.49, χ2 p-value = 0.41; Table 1).

ViSEN analysis of pairwise interactions performed in sex-stratified subsets of our

study population also identified the PSE x SES interaction as the strongest effect in our

study (Table 2B). In females, the association remained suggestively associated with

BDR after correction for multiple testing (IG = 7.27%, permutation unadj. p = 0.004)

(Table 2B). After correction for multiple testing, logistic regression was unable to reli-

ably detect the PSE x SES interaction effect on BDR (p-value = 0.033). ViSEN analysis

in the male-only subset revealed that the PSE x SES interaction was once again the

strongest pairwise effect, however, in males the association was not significant after

correction for multiple testing (IG = 3.04%, permutation unadj. p = 0.015) (Table 2B).

The PSE x SES interaction was the only interaction model that was significantly associ-

ated in the full dataset, and suggestively or marginally associated in both of our sex-

stratified analyses (Table 2A, B). As the strength, if not the significance, of this interaction

Table 2 Age Adjusted Pairwise Interaction Models Associated with BDR Identified by ViSEN

A. Full Dataset

ViSEN Analysis Logistic Regression

Variable 1 Variable 2 IG p-value OR p-value

Pre-natal Smoke Exposure Socioeconomic Status 2.78% 0.001 0.105 0.004a

Experience of Discrimination Socioeconomic Status 2.71% 0.002a 0.166 0.003a

Sex Socioeconomic Status 1.47% 0.026 0.291 0.031

B. Sex-Stratified Subsets

ViSEN Analysis Logistic Regression

Subset Variable 1 Variable 2 IG p-value OR p-value

Female
N = 97

Pre-natal Smoke
Exposure

Socioeconomic
Status

7.27% 0.004a 0.054 0.033

Experience of
Discrimination

Socioeconomic
Status

4.52% 0.016 0.093 0.014

Male
N = 136

Experience of
Discrimination

Socioeconomic
Status

3.04% 0.015 0.135 0.035

Pre-natal Smoke
Exposure

Socioeconomic
Status

2.69% 0.032 0.082 0.038

Information Gain (IG) and unadjusted permutation p-value results for select interaction models (permutation unadj. p <
0.05) with BDR identified by the age adjusted ViSEN and logistic regression analyses. Positive IG values indicate
synergistic interactions, negative IG values indicate redundant models. The Bonferroni method was used to correct for
multiple testing. Bonferroni familywise error rate (FWER) thresholds of 0.05 and 0.1 were used to determine significantly
associated models (permutation unadj. p ≤ 0.002) and suggestively associated (permutation unadj. p ≤ 0.004),
respectively. Models significantly associated with BDR after correction for multiple testing are highlighted in BOLD.
Models suggestively associated with BDR after correction for multiple testing are indicated with a. Logistic regression
models were adjusted for age and the marginal effects of each independent variable included in the specified
interaction model. SES: Socioeconomic Status; Smoking: Pre-natal smoke exposure; EOD: Experience of Discrimination;
OR: Odd’s Ratio
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appeared to be conserved across all three populations, we performed post-hoc analyses and

data visualization to better characterize the nature of the relationship between the PSE x

SES interaction and BDR (Figs. 2 and 3) (Supplemental Figure 1; Additional File 5). Partici-

pants were separated into groups defined by their PSE x SES interaction phenotype as fol-

lows: [1] no PSE and low SES, [2] no PSE and med/high SES, [3] PSE and low SES, and [4]

PSE and med/high SES. Data visualization revealed that the distribution of continuous BDR

measurements varied by sex (Fig. 2). By visualizing the interquartile range (IQR) and median

of each interaction group in Fig. 2, we were able to determine that the majority of females

in Group 1 were beneath the critical threshold for BDR clinical response (Δ FEV1 ≥

12%)(Fig. 2); a similar phenomenon was seen in Group 4 males where the majority of the

Groups BDR distribution was beneath the clinical threshold for response (Fig. 2). Further

analysis revealed that, in females, Group 1 (no PSE and low SES) had a significantly lower

proportion of BDR responders compared to all other groups in females with the exception

of Group 4 (Fig. 3). Group 1 in females also had a significantly lower proportion of BDR re-

sponders than Group 1 in males (p-value = 0.005) (Fig. 3). In males, Group 4 (PSE and

med/high SES) had the lowest proportion of BDR responders compared to all other inter-

action groups in males (Fig. 3). Pairwise testing revealed that the difference in proportion of

BDR responders between Group 4 in males and Groups 1–3 in males was not statistically

significant after correction for multiple testing (Fig. 3). While proportion of BDR responders

in Group 4 in males was also lower than the corresponding Group proportion in females,

this difference was also not statistically significant (Fig. 3).

Fig. 1 Visualization of Pairwise Interactions in the Full Dataset. Visual representation of the interaction network for
pairwise models in the full dataset. The size of an individual node corresponds to the amount of Mutual
Information (MI) resulting from the main effects of each variable. The strength of significant pairwise interactions
corresponds to the thickness of the lines connecting individual nodes along the network. Line color denotes
statistical significance of pairwise interactions; blue lines represent interactions significantly associated with BDR
after correction for multiple testing, (Bonferroni significance threshold p< 0.002) orange lines represent interactions
suggestively associated with BDR after correction for multiple testing (Bonferroni suggestive threshold p< 0.004)
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ViSEN higher-order (three-variable) interaction effects

We identified five higher-order (three-variable) interactions associated with BDR in the

full dataset using ViSEN. After correction for multiple testing, only one interaction

model containing an experience of discrimination, age, and SES (EOD x AGE x SES)

remained suggestively associated with BDR (IG = 2.39%, permutation unadj. p = 0.003)

(Table 3A). Logistic regression analysis identified three of the five marginally associated

interactions, but after correction for multiple testing, none of the logistic regression re-

sults were significantly or suggestively associated with BDR. Additionally, one of the

interaction models (an experience of discrimination, pre-natal smoke exposure, NO2

air pollution exposure; EOD x PSE x NO2) was unable to be reliably evaluated using lo-

gistic regression due to limitations common to regression-based analyses in small sam-

ple sizes (i.e. separation and multicollinearity) (Table 3A).

ViSEN analysis of three-variable interactions performed in sex-stratified subsets of our

study population generated discordant results (Table 3B). Although several marginally as-

sociated interactions were identified in both sexes, there was no overlap in identified

models between the two sub-groups. In terms of model composition, models identified in

females all contained pre-natal smoke exposure while models identified in the male-only

sub-sample all contained an experience of discrimination (EOD). After correction for

multiple testing, a single interaction model in males composed of EOD, African ancestry,

and socioeconomic status was marginally significant (IG = 5.11%, permutation unadj. p =

0.001) (Table 3B). Logistic regression analysis was unable to reliably detect any of the

Fig. 2 Distribution of Bronchodilator Drug Response by Pre-natal Smoke Exposure and Socioeconomic
Status (Smoke x SES) Interaction Group. Grouped Error Plot Graph of Bronchodilator Drug Response by
Smoke x SES interaction group membership. Vertical lines denote the interquartile range (IQR) of group
data; circles indicate the group median. Line color indicates dataset (full, male-only, female-only). Blue
horizontal line indicates threshold for clinical response to bronchodilator treatment (Δ FEV1≥ 12%). Δ FEV1 is
the difference in % of Predicted FEV1 achieved before and after bronchodilator treatment. ▼ means that
the group median < study population median; ▲ means that the group median≥ study population
median. Smoke denotes pre-natal smoke exposure, while SES indicates socioeconomic status
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ViSEN-identified three-variable interaction effects; notably, three models were unable to

be assessed by logistic regression at all due to deviation from model parameters (model

testing revealed small bin sizes, quasi-separation, and/or multicollinearity).

Discussion
The high inter-individual variability of BDR between racial/ethnic populations may

contribute to disparities in asthma morbidity and mortality observed in African Ameri-

can children with asthma. An existing pharmacogenomic study has characterized gen-

etic components which may explain response to albuterol in this population [29].

Related studies have also noted ethnic-specific and other phenotypic differences in

bronchodilator drug responsiveness [9–11]. However, few have observed the joint effect

of biological (including genetic ancestry estimates) and environmental variables influen-

cing BDR. Investigating epistatic interactions is important to understanding variation in

BDR in the context of asthma outcomes, such as morbidity and mortality, and improv-

ing health equity across the U.S. Social determinants of health are recognized as some

the most predictive factors contributing to individual health outcomes. Therefore, the

inclusion of variables describing our “built environment” (i.e. psychosocial factors such

as socioeconomic status, an experience of discrimination, etc.) in population-based

studies of BDR is crucial.

It is also important to understand that parametric methods, such as logistic regres-

sion, are the statistical tool of choice in most scientific efforts to characterize interac-

tions associated with BDR and other complex biological phenotypes. The strength of

using parametric methods is that they are well-understood and therefore generally in-

terpretable. However, some parametric methods make data assumptions (normality of

variable sample distributions, patterns of correlation between variables, and/or the dis-

tributional relationship of any identified interactions to name a few) that may not hold

true for many complex traits. To the best of our knowledge, our study is the first to

Fig. 3 Proportion of Bronchodilator Drug Responders and Non-Responders by Pre-natal Smoke Exposure
and Socioeconomic Status (Smoke x SES) Interaction Group. Stacked Box Plots of Proportion of BDR
responders and non-responders by Smoke x SES Interaction group membership separated by sex. Blue
horizontal line indicates 50%. Bars are colored by BDR responder status. P-values presented are from the χ2

statistic of the two-group test of proportions; when bin sizes were < 5, the Fisher’s Exact test was used
instead. P-values in bold font were significant after Bonferroni correction for multiple testing
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demonstrate an integrative, investigative approach, which analyzes the interaction be-

tween clinical, biological, environmental, and psychosocial factors affecting drug re-

sponse in African American children and adolescents using a non-parametric method

optimized to detect epistatic interactions.

In our study, ViSEN consistently identified novel pairwise and higher-order interac-

tions occurring within our study population that, to our knowledge, have not been dis-

cussed elsewhere. Notably, the most informative interaction (IG = 7.27%) occurring in

females between pre-natal smoke exposure and socioeconomic status (PSE x SES) was

Table 3 Age Adjusted Higher-Order Interaction Models Associated with BDR identified by ViSEN

A. Full Dataset

ViSEN Analysis Logistic
Regression

Age Adjusted

Variable 1 Variable 2 Variable 3 IG p-value OR p-
value

Experience of Discrimination Age Socioeconomic
Status

2.39% 0.003 0.029 0.008

Experience of Discrimination African Ancestry Socioeconomic
Status

1.71% 0.012 0.026 0.040

Experience of Discrimination NO2 Air
Pollution

Socioeconomic
Status

1.80% 0.017 0.043 0.013

Sex Pre-natal Smoke
Exposure

Socioeconomic
Status

1.82% 0.041 1.525 0.817

Experience of Discrimination Pre-natal Smoke
Exposure

NO2 Air
Pollution

1.66% 0.043 – –

B. Sex-Stratified Subsets

ViSEN Analysis Logistic
Regression

Age Adjusted

Subset Variable 1 Variable 2 Variable 3 IG p-value OR p-
value

Female Experience of
Discrimination

Pre-natal Smoke
Exposure

African Ancestry 2.73% 0.018 1.000 1.000

Pre-natal Smoke
Exposure

Socioeconomic Status NO2 Air Pollution 4.92% 0.030 0.091 0.413

Experience of
Discrimination

Pre-natal Smoke
Exposure

Age 4.01% 0.039 – –

Male Experience of
Discrimination

African Ancestry Socioeconomic
Status

5.11% 0.001a 0.004 0.005

Experience of
Discrimination

NO2 Air Pollution Socioeconomic
Status

3.95% 0.008 0.012 0.015

Experience of
Discrimination

Age Socioeconomic
Status

3.90% 0.012 0.012 0.017

Experience of
Discrimination

African Ancestry NO2 Air Pollution 2.44% 0.038 – –

Information Gain (IG) and unadjusted permutation p-value results for select interaction models associated (permutation
unadj. p < 0.05) with BDR identified by the age adjusted ViSEN and logistic regression analyses. Positive IG values indicate
synergistic interactions, negative IG values indicate redundant models. The Bonferroni method was used to correct for
multiple testing. Bonferroni familywise error rate (FWER) thresholds of 0.05 and 0.1 were used to determine significantly
associated models (permutation unadj. p ≤ 0.0009) and suggestively associated (permutation unadj. p ≤ 0.002),
respectively. Models significantly associated with BDR after correction for multiple testing are highlighted in BOLD.
Models suggestively associated with BDR after correction for multiple testing are indicated with a. Logistic regression
analysis was performed in the same LCC age adjusted dataset as VISEN analyses for accurate comparison of results; to
maintain consistency with ViSEN analyses regression models were adjusted for the marginal effects of each independent
variable included in the specified interaction model. When interaction bin size was < 5, Firth’s Bias-Reduced logistic
regression OR and p-values are presented. ---: model could not be accurately assessed by regression modeling due to
deviation from model assumptions of no collinearity and no complete or quasi-complete separation; OR: Odd’s Ratio
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discovered completely independent of strong main effects for either variable (PSE Mu-

tual Information permutation unadj. p = 0.87; SES Mutual Information permutation

unadj. p = 0.41) (Table 1). Our sex-stratified analyses revealed that this interaction had

a complex relationship with BDR, with interaction group membership correlating with

different effects on BDR for males and females (Figs. 2 and 3). This model was not

identified as significantly associating with BDR using logistic regression. The strongest

higher order interaction model (EOD x AFR x SES) was also not identified as signifi-

cantly associating with BDR by logistic regression analysis. Importantly, of the eight sig-

nificant interaction effects identified by ViSEN in the full dataset, none of these effects

were detected using logistic regression (p-values not significant after correction for

multiple testing). These results suggest that the majority of the interaction effects re-

vealed by ViSEN are synergistic (non-additive) in nature and therefore may not always

be reliably identified, particularly in smaller datasets, using standard regression-based

methods. Our results also support the theory presented by Hu et al. that ViSEN is bet-

ter powered to detect interaction effects under certain conditions (i.e. no main effects

or weak main effects) [20, 30].

Another interesting result of our study was the discordance in the relationship between

interaction group membership for our significant interaction (PSE x SES) and BDR seen

between male- and female-only subsets. Our results suggest the presence of significant

sex-specific differences in the interactions affecting BDR status, especially in our more

complex higher-order models. Also, while similar pairwise interactions were detected in

both males and females, our post-hoc visualization efforts have shown the effect of PSE x

SES interaction group membership to be significantly different between the disparate

sexes. Another important revelation of our study was the ubiquity of higher-order inter-

action effects on BDR. In both the full dataset and sex-stratified subsets, ViSEN detected

more three-variable interaction models associated with BDR compared to pairwise inter-

action models (Tables 2 and 3). This suggests that incorporating the study of more com-

plex models may lead to novel discoveries in this complex phenotype.

Interpreting results from ViSEN entails several considerations. The first consideration

involves the nature of the variables and their method of collection. BDR represents a

clinical continuous measurement obtained via spirometry, but other variables such as

an experience of discrimination were collected via a self-reported questionnaire. There-

fore, measurement error may have contributed to the detection of interactions within

this study, especially in variables that are not easily validated by repeated measure-

ments. However, in our study we have rigorously identified classifications for each vari-

able and validated our measurements by either consulting clinical guidelines or

referencing previous literature [13, 14, 31–34]. All phenotype data included in this

study has also been successfully used in other studies relating to asthma phenotypes

[13, 14, 31–34]. Again, it is paramount to consider that regardless of the rigor of data

collection, ViSEN must collapse continuous variables into a ranked form and therefore

some information will be lost as result. It should also be noted that dichotomization of

continuous predictor variables can lead to over-simplification of the resulting inter-

action models. A countermeasure to this is the use of informative clinically or biologic-

ally relevant thresholds for dichotomization; while this will not entirely counteract

simplification of the underlying interaction network, it may potentially increase the in-

terpretability of the resulting interaction models.
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Furthermore, the need for replication and validation of our results should not be un-

derstated. The comparatively limited availability of BDR data in African American chil-

dren with asthma due to historic underrepresentation of minority populations in

biomedical studies, coupled with the decrease in sample size following the LCC sub-

sampling method used to correct for confounders in ViSEN analysis, served to substan-

tially decrease power in our analyses. While we contend that our results support the

utility of ViSEN to identify novel interactions, it is possible that some interactions went

undiscovered, or may not have passed correction for multiple testing, due to the mod-

est sample size of our study population. It should also be noted that because our results

have yet to be replicated in diverse populations, it is unclear as to whether the interac-

tions identified in our study are cosmopolitan or population-specific. We recognized

that replication of our results may be difficult, even in other African-descent popula-

tions, as differences in environmental exposure frequencies and biological predictors

(obesity, genetic ancestry, etc.) will vary both within and between groups. In an attempt

to counteract this, we were cognizant to standardize our phenotypic variables where

possible, to emphasize clinical importance during the ranking of data and to apply re-

producible methodology. We aim to continue this work in other underrepresented pop-

ulations for whom we have available data.

While ViSEN can identify additive and non-additive interactions and quantify the

amount of information provided by these models, it does not provide the directionality

of these effects (i.e. whether membership in different interaction group correlates posi-

tively/negatively to BDR responsiveness). To mitigate this limitation for studies in

which information on directionality of identified interaction effects would be useful,

ViSEN can be supplemented with additional visualization techniques and pairwise tests,

such as the Dunn test or the two group test of proportions (as demonstrated in our

study) [35, 36]. However, it should be noted that while supplementation of ViSEN ana-

lysis in this way is possible, results from these post-hoc tests may not be easily inter-

pretable for every phenotype or interaction model. It will be the responsibility of

individual researchers to determine if their specific study lends itself to this type of fur-

ther analyses. Another potential limitation of the ViSEN method is that the program

does not include a direct method to adjust for potentially confounding variables. These

effects must be adjusted for prior to ViSEN analyses using an appropriate method; for

the current study, the LCC approach was used to adjust for age as a potentially con-

founding variable. It is important to note that the effects of a potential confounder

must be removed from both the outcome variable, and any predictor variable that is

also significantly affected by the confounder. Consequently, to ensure correct inference

of ViSEN results, we stress the need to thoroughly investigate the relationship between

the outcome and predictor(s) to ensure that confounding effects have been appropri-

ately controlled. For instances in which researchers require outcomes and covariates to

remain continuous, ViSEN can potentially be used as a filtering analysis. For example,

quantitative multifactor dimensionality reduction (qMDR) is a non-parametric ap-

proach that is able to handle continuous outcomes directly and continuous covariates

indirectly [37]. Specifically, qMDR can adjust for the effects of continuous covariates

using the “regress out” method in which covariates are regressed on a continuous out-

come and the resulting residuals are used as the covariate-corrected input for qMDR

analysis. QMDR is not able to distinguish “pure” interactions from those that are
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simply the result of strong main effects. Interaction analysis could be run in both

qMDR (with continuous outcome) and ViSEN (with dichotomous outcome); concord-

ant results would suggest “true” interactions.

Conclusion
We identified novel interaction models significantly impacting BDR in a population

that carries a high disease burden (increased asthma morbidity and mortality compared

to European American children with asthma) and has been historically understudied

and underserved. We contend that a significant portion of interactions between bio-

logical and environmental affecting complex phenotypes like BDR are non-additive in

nature, and entropy-based methods, such as ViSEN, may be better able to reliably de-

tect these effects under certain conditions, as the results of this study indicate. The di-

versity and complexity of the interactions impacting BDR should be embraced by

incorporating non-parametric methods, such as ViSEN, into biomedical research aimed

at exploring complex traits.

The nonparametric nature of ViSEN facilitates analyses that are more inclusive of the

varying relationships and interactions between health factors likely impacting complex

clinical phenotypes versus traditional regression models as we highlight in this study of

BDR. Our study represents a collaboration of computer science, biology, and epidemi-

ology that lead to the identification of a novel interaction between pre-natal smoke ex-

posure and socioeconomic status that was significantly associated with BDR in African

American children with asthma. We believe that further collaboration between these

fields is necessary to conduct comprehensive studies of BDR that will lead to continued

novel discoveries and improved understanding of the etiology of BDR.

Methods
Study population

The Study of African Americans, Asthma, Genes, & Environments (SAGE) is a case-

control study consisting of 1710 participants ranging from ages 8 to 21 years old re-

cruited from the San Francisco Bay Area between 2008 and 2014. The SAGE study

protocol and patient population have been previously described in further detail else-

where [14, 29, 31]. Briefly, all SAGE participants included in this study self-identified as

African American, as did their parents and all four grandparents. All participants pre-

sented no history of other lung or chronic non-allergic illnesses upon study enrollment.

Trained interviewers administered questionnaires to the participants and/or the par-

ents/caretakers of the participants to collect basic demographic information, medical

histories, and environmental exposure-related information [14].

A total of 617 participants with physician-diagnosed asthma from SAGE, with

complete data on sex, age, global African genetic ancestry, body mass index (BMI), any

experience of discrimination, socioeconomic status, pre-natal smoke exposure, ambient

NO2 exposure over the first year of life, and BDR were available for potential inclusion

in our study (Additional File 1). After a final data processing procedure (see Methods

section, “Application of ViSEN in the Current Study”), a total of 233 participants

remained for inclusion in our study (Supplemental Table 1) (Additional File 1). Our

sex-stratified subsets consisted of 136 male and 97 female individuals (Supplemental
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Table 2, Supplemental Table 3) (Additional File 2 and Additional File 3). Appropriate

descriptive statistics for participants in the full dataset, as well as sex-stratified subsets,

were generated using the R statistical computing environment (Table 1, Supplemental

Table 2, Supplemental Table 3) (Additional File 2, and Additional File 3). ViSEN does

not accommodate continuous variables. Consequently, the outcome variable and all ex-

planatory variables included in interaction analyses were dichotomized prior to analysis

as described below and in Additional File 4.

Bronchodilator drug response (BDR)

The primary outcome of this study is bronchodilator responder status. Responder status

was determined from individual spirometry measurements taken before and after admin-

istration of albuterol. Following American Thoracic Society recommendations, pulmonary

function was measured prior to albuterol administration and then repeated 15min after

administration of four puffs (90 μg/puff) of albuterol [38]. This process was repeated a

third time after a second dosage of albuterol: two puffs for participants under the age of

16 and four puffs for older participants [29]. Asthma medications were withheld from par-

ticipants 12 h before spirometry [39]. BDR (ΔFEV1) was calculated as the mean percent-

age change in measured Forced Expiratory Volume (FEV1) measured before (pre-FEV1)

and after (post-FEV1) albuterol administration, using the post-albuterol spirometry with

the maximal change ((post-FEV1 – pre-FEV1) / pre-FEV1) × 100%. For each participant in

this study, BDR (ΔFEV1) was used to classify bronchodilator responder status as either a

responder, ≥ 12%, or a non-responder, < 12% [34]. We excluded two participants who

were statistical outliers for BDR (raw values) as previously described [40].

Age

The participant’s age was calculated as the difference between the age of enrollment

(the date on the eligibility form) and the date of birth. Discrete variables ranked from 0

to 1 were generated depending on whether an individual was aged below (ranked 0), or

at and above the median for the population (ranked 1).

Global African ancestry

Participants included in this study were previously genotyped using the Axiom® LAT1

array (World Array 4, Affymetrix, Santa Clara, CA) [41, 42]. For every individual, we esti-

mated the genetic proportion contributed by an African ancestral population. These esti-

mates, obtained using an unsupervised run of ADMIXTURE, were considered as an

average over each individual’s entire genome to comprise a global ancestry variable [43].

Reference haplotypes of African and European individuals used in ADMIXTURE were

gathered from the HapMap phase III YRI and CEU populations [15]. In this study, values

for global African ancestry were dichotomized according to their distribution above or

equal to (1) or below (0) the U.S. national average of 80% global African ancestry [44].

Body mass index

At the time of enrollment, each study participant was measured via a calibrated scale

and stadiometer for weight (kg) and height (m), respectively. Body mass index percent-

ile values were subsequently calculated through the following formula: BMI = (kg)/
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(m2). BMI percentile values were generated using guidelines for BMI categories from

the U.S. Centers for Disease and Control and Prevention Growth Charts. BMI percent-

ile values were dichotomized as either 0 or 1 depending on whether they fell below (<

95%) or above/equal to (≥ 95%) the Obese BMI classification [16].

Perceived experience of discrimination

Self-reported racial/ethnic discrimination was ascertained using the Experiences of Dis-

crimination Questionnaire [45]. Consistent with previous studies, we included ques-

tions pertaining to our population: “Have you ever experienced discrimination, been

prevented from doing something, or been hassled or made to feel inferior, in any of the

following situations because of your race, ethnicity, color, or language? (1) At School;

(2) Getting medical care; (3) Getting services in a store or restaurant; and (4) On the

street or in a public setting”; with choice for each question of Yes or No. [46, 47] Expe-

riences of discrimination were dichotomized as none or any (affirmative answer to at

least one situation). Interviewers required permission of caretakers to administer ques-

tions to participants equal to or less than 16 years of age. Perceived experiences of dis-

crimination were reported at time of recruitment [47].

Pre-natal smoking

Pre-natal exposure to smoke was determined from questionnaire information regarding

the self-reported smoking status of participant’s mother during pregnancy. Binary

values were assigned for smoking status based on whether the mother was a non-

smoker (0) or active smoker (1) during the pregnancy of the participant.

Socioeconomic status

We created a composite index for socioeconomic status (SES) derived from three socio-

economic indicators: mother’s educational attainment, insurance status, and household

income as previously described [32]. Each component variable was independently

assigned a value scored on a three-point scale ranging from low SES (0), to medium

SES (1), to high SES (2). Finally, for the purpose of our study, individuals were classified

as either having a low (0) or medium/high (1) composite socioeconomic scores.

Nitrogen dioxide exposure

TomTom/Tele Atlas EZ-Locate software (TomTom, Amsterdam, The Netherlands)

was used to assign geographic coordinates for each participant’s residential history. We

collected regional ambient air pollution data from the US Environmental Protection

Agency Air Quality System based on these geographic coordinates [13]. Measures of

average ambient NO2 exposure (μg/ppb) were estimated over the first year of each par-

ticipant’s life. If the participant moved during this period, NO2 exposure was weighted

depending on the number of months spent at each residence. Discrete binary variables

with values 0 or 1 were generated depending on whether the individual was exposed to

below (0) or greater than/equal to the median NO2 exposure (1) for the sample popula-

tion within the first year of life.
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Application of information theory metrics to identify interaction effects

The importance of including measures of epistasis (non-additive bio-environmental interac-

tions) in studies of complex traits has risen to the forefront in recent years [17, 19]. The ap-

plication of information theory metrics to bio-environmental data has been shown to be

particularly useful in the identification and characterization of epistatic interactions in stud-

ies of complex traits [30]. Information theory defines entropy as a measure of uncertainty,

and the information theory metrics of mutual information (MI) and information gain (IG)

have been re-discovered by biomedical researchers as entropy-based measures of synergistic

(non-additive) interaction effects between biological and environmental variables. For

discrete variables, mutual information (MI) quantifies the reduction in uncertainty about

the distribution of one variable given an understanding of the other. When applied to case-

control studies, MI quantifies the reduction in uncertainty about case/control status given

an understanding of single discrete predictor variable. A more intuitive interpretation of MI

in the context of case/control studies would be that MI quantifies the independent effect, or

main effect, of a single biological or environmental variable on phenotype status.

The measurement of MI can be extended to describe interaction effects by measuring

the amount of phenotypic class explained by considering two or more discrete vari-

ables, jointly. Information Gain (IG) is the gain in mutual information (MI) on pheno-

typic class from considering two variables jointly after subtracting the main effect of

each individual variable [20, 30]. IG estimates range from − 1 to 1; positive values of IG

indicate synergy between the two variables in an interaction model (i.e. a synergistic or

epistatic interaction) which negative values of IG indicate redundancy, or correlation,

between the two variables in an interaction model. The removal of main effects from

the calculation of IG is the main aspect of this information theory metric that makes it

an attractive measurement for biomedical researchers interested in discovering inter-

action effects that are unbiased to the presence of strong main effects.

Visualization of statistical epistasis networks (ViSEN)

ViSEN is a statistical program that implements the information theory metrics of MI and

IG to perform network-based analyses that quantify and visualize pairwise and higher-

order epistatic interactions in case control studies. Research suggests that ViSEN is more

powerful than standard regression-based methods for detecting additive non-additive

interaction effects [19, 26, 33]. ViSEN measures the effects of single explanatory variables

on case/control status in terms of MI, and the strength of pairwise interaction effects on

case/control status is quantified using IG. ViSEN is particularly suited for the analysis of

complex biological traits, as it has extended the calculation of IG to estimate the impact

of higher order (more than two predictor variables) interactions on phenotypic class. For

higher-order interactions, ViSEN removes not only the main effects (MI) of each inde-

pendent variable included in the interaction term, but also the effects of each synergistic

lower order interaction (IG) included in the higher order interaction (Formula 1) [30].

Formula 1. Calculation of Information Gain for Pairwise and Three-variable Inter-

action Models in ViSEN

IGpairwise P1; P2;Cð Þ ¼ MI P1; P2;Cð Þ �MI P1 : Cð Þ �MI P2;Cð Þ
IGthree−variable P1;P2; P3;Cð Þ ¼ MI P1; P2;P3;Cð Þ � IG P1; P2;Cð Þ � IG P2; P3;Cð Þ

� IG P1; P3;Cð Þ
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�MI P1;Cð Þ �MI P2;Cð Þ �MI P3;Cð Þ

IG: Information Gain; MI: Mutual Information; C: Case/Control Status, P: Predictor

Variable.

By subtracting the MI of each single predictor variable from the calculation of IG for

pairwise and three-variable models, and also subtracting synergistic pairwise IG from

three-variable models, ViSEN is able to capture the “pure” interaction effect only ob-

servable when considering all the predictors in the specified interaction model together.

It should also be noted that in the case of the higher order IG calculation, by only sub-

tracting synergistic lower-order interaction effects, ViSEN is able to accurately capture

higher-order interaction effects even in the case of extreme redundancy, or correlation,

between predictor variables [30].

Application of ViSEN in the current study

Informed by previous studies, we identified age as a potential confounder in our study

[13–16, 48]. To address this issue, age needed to be added as a covariate to all inter-

action analyses to ensure proper interpretation of results. The ViSEN program is cur-

rently unable to directly adjust for covariates; therefore, adjustment for age must be

performed prior to data analysis. Following a previously published protocol, we applied

a local case-control (LCC) subsampling method first presented by Fithian and Hastie

(2014) [49, 50].

Briefly, the LLC method involves selecting a subset of individuals from the larger

study population that a model containing only the covariates to be adjusted poorly pre-

dicts the outcome; data analysis is then restricted to the selected subset of individuals

for which the effects of the covariates have been effectively removed. In the context of

our study, we used the LLC method to extract a subset of individuals from the 617

SAGE participants with complete phenotype data for which a model containing only

age poorly predicted BDR responder status (n = 233; females n = 97, males n = 136)

(Table 1, Supplemental Table 1). All downstream interaction analyses were performed

in this age-adjusted population. We present participant demographics for the full un-

adjusted (n = 617) and age adjusted (n = 233) in Supplemental Table 1. Participant

demographics for sex-stratified analyses are presented in Supplemental Tables 2 and 3.

We calculated pairwise (two-variable) and higher order (three-variable) interaction ef-

fects on BDR in the full age- adjusted dataset and in gender-stratified subsets. Permuta-

tion (n = 1000) was used to generate p-values for IG values computed for pairwise and

higher order interactions. Permutation datasets were created by randomly shuffling BDR

responder status. For each permuted dataset, the IG was recomputed for every pairwise

and higher order interaction model to form a null distribution of IG values. P-values for

IG calculations were generated by comparing the number of permutation-based IG values

equal to or larger than the IG value observed in our real dataset. The Bonferroni method

was used to control the familywise error rate (FWER) and correct for multiple testing [51,

52]. Bonferroni FWER thresholds of 0.05 and 0.1 were used to generate critical values for

significant and suggestive associations, respectively. We performed a total of 28 pairwise

tests; the Bonferroni calculated critical value for significant association with BDR for pair-

wise models was IG permutation p-value < 0.002, and the Bonferroni critical value for

suggestive association with BDR was IG permutation p-value < 0.004. We evaluated a total
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of 56 higher-order (three variable) models; the calculated Bonferroni critical value for sig-

nificant association with BDR was IG permutation p-value < 0.0009, and the Bonferroni

critical value for suggestive association with BDR was IG permutation p-value < 0.002.

Assessment of ViSEN identified interactions using logistic regression

ViSEN has been shown to be more powerful than standard methods in identifying epi-

static interactions. However, since most previous interaction studies employed common

statistical methods to identify associations, it is possible that non-additive interactions

that significantly impact phenotype were overlooked [20]. Following the standard as-

sumption in biomedical studies of additive main effects and multiplicative interaction

effects, we created multiplicative interaction terms to reflect each significant interaction

model identified by ViSEN. We then investigated whether any of the newly created

interaction terms was significantly associated with BDR using logistic regression. For

direct comparison with ViSEN generated results, logistic regression analyses were per-

formed in the same LLC age adjusted dataset that was created for ViSEN analyses.

Also, to maintain consistency with ViSEN models, regression models were additionally

adjusted for the independent effects of all variants included in the interaction terms as

well as lower order interaction models included in the interaction term if applicable.

Prior to logistic regression analyses, interaction models were assessed for the presence

of multicollinearity and separation using the R packages safeBinaryRegression and

mctest, respectively [53, 54]. For instances in which standard logistic regression was in-

appropriate due to small bin sizes (n < 5) (which may have led to separation), an alter-

native method designed to accommodate these data issues, Firth’s Bias-Reduced

Logistic Regression, implemented by the R package logistf, was used instead [55–58].

All regression models assessing pairwise interactions were coded as follows:

BDR � ageþ variable1þ variable2
þ variable1�variable2 pairwise interaction termð Þ:

Logistic regression models assessing higher-order (three-variable) interaction terms

were coded as follows:

BDR � ageþ variable1þ variable2þ variable3þ variable1�variable2
þ variable2�variable3þ variable 1�variable3
þ variable1�variable2�variable3 three−variable interaction termð Þ:

All regression analyses were performed in R [59].

Post-hoc data visualization and characterization of significantly associated models

For all interaction models that were identified by ViSEN and significantly associated

with BDR, after correction for multiple testing, additional visualization and pairwise

comparisons were performed to further describe the nature of the relationship between

the interaction model and BDR. Boxplots and error plots of the continuous BDR distri-

bution by interaction group membership were generated to visualize the full spread of

the data, and the median and IQR, respectively (Supplemental Figure 1, Additional File

5) (Fig. 2). Stacked bar plots describing the percentage of BDR responders and non-

responders by interaction group were also generated; bar plots were complemented

with p-values from the two group test of proportions to describe the significance of
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differences in proportion of BDR responders between interaction groups. The Bonfer-

roni method was used to correct for multiple testing. All post-hoc data visualization

and pairwise testing were performed in R [60].
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