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Abstract

Tremendous amount of whole-genome sequencing data have been provided by
large consortium projects such as TCGA (The Cancer Genome Atlas), COSMIC and so
on, which creates incredible opportunities for functional gene research and cancer
associated mechanism uncovering. While the existing web servers are valuable and
widely used, many whole genome analysis functions urgently needed by
experimental biologists are still not adequately addressed. A cloud-based platform,
named CG (ClickGene), therefore, was developed for DIY analyzing of user’s private
in-house data or public genome data without any requirement of software
installation or system configuration. CG platform provides key interactive and
customized functions including Bee-swarm plot, linear regression analyses, Mountain
plot, Directional Manhattan plot, Deflection plot and Volcano plot. Using these tools,
global profiling or individual gene distributions for expression and copy number
variation (CNV) analyses can be generated by only mouse button clicking. The easy
accessibility of such comprehensive pan-cancer genome analysis greatly facilitates
data mining in wide research areas, such as therapeutic discovery process. Therefore,
it fills in the gaps between big cancer genomics data and the delivery of integrated
knowledge to end-users, thus helping unleash the value of the current data
resources. More importantly, unlike other R-based web platforms, Dubbo, a cloud
distributed service governance framework for ‘big data’ stream global transferring,
was used to develop CG platform. After being developed, CG is run on an
independent cloud-server, which ensures its steady global accessibility. More than 2
years running history of CG proved that advanced plots for hundreds of whole-
genome data can be created through it within seconds by end-users anytime and
anywhere. CG is available at http://www.clickgenome.org/.

Introduction
The rapid development of next-generation sequencing and array-based profiling

methods now generate large quantities of diverse types of genomic data [1]. Corres-

pondingly, public data portals like TCGA (The Cancer Genome Atlas) and COSMIC

[2] provide more and more genome data in different formats and file types. While all

of these enable researchers to study the genome at unprecedented resolution, due to

the precondition of computer skills and mathematical/statistical techniques, analyzing

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Bi et al. BioData Mining           (2019) 12:12 
https://doi.org/10.1186/s13040-019-0202-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-019-0202-3&domain=pdf
http://orcid.org/0000-0001-9195-6160
mailto:ksong@tju.edu.cn
mailto:ksong@tju.edu.cn
http://www.clickgenome.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


of such big and diverse data sets is still a rate-limiting step in many studies. For

instance, there are more than 32,555 cases in 310,859 files are available in GDC data

portal. For a new user, it’s a very time-consuming process to figure out a way to down-

load the proper data. Additionally, it is not reasonable for a given researcher to get

familiar with all these kinds of trials of data downloading and analyzing. Therefore, a

number of applications have been proposed to make it as friendly and timesaving as

possible. For example: Tablet [3], BamView [4], IGV [5], MethylMix [6], GISTIC [7],

Web-TCGA [8], TCGA-assembler [9], cBioPortal [10], GEPIA [11], The UCSC Cancer

Genomics Browser [12] and so on.

Unfortunately, extremely varied requirements make it impossible for a given tool

or platform to provide services to all kinds of end researchers. Consequently, even

big consortium projects like TCGA and COSMIC provide only preprocessed data

in different levels without any further analyzing; UCSC provides only different

kinds of annotation information; TCGA-Assembler [9], GISTIC, MethylMix and

GEPIA and so on provide only profiling or visualizing services for certain kinds of

data type, e.g. MethylMix and GEPIA for only methylation and/or mRNA expres-

sion data; GISTIC for only CNV data.

Regarding to the profiling or visualizing web servers aiming for serving clinicians or

experimental biologists, the number of them is increasing. But there are still many

stumbling blocks. For instance, most of these applications require data downloading or

package installation which makes them have requirements on users’ hardware and

operation system configuration. Several available tools, such as cBioPortal [10], TCGA-

Assembler [9] or Firebrowse (http://firebrowse.org/) require programming skills or

show limitations when comparing multiple studies. Furthermore, none of the existing

tools allow analyses based on the quantified difference of global CNV (copy number

variation) patterns among pan-cancers since it has been proved that CNVs play import-

ant roles in histologic classifications of different cancer types [13–15]. Moreover, most

of them were developed with R language instead of the professional web-developing

languages, which limits their interaction and visualizing performance. More import-

antly, most of them are single-server based platform which makes their accessibility is

not very stable nor accountable.

To overcome these bottlenecks, we developed the CG (ClickGene) platform

(http://www.clickgenome.org/), a cloud-based one, to deliver fast and customizable

functionalities to complement with the existing tools. Different from TCGA-Assembler

which does not include any graphical interface, the graphical interface is an important

integral part of CG. Several available DIY analysing tools make CG is different from

Firebrowse since Firebrowse is only capable of displaying pre-calculated results. Indeed,

Web-TCGA provides an infrastructure for comprehensive analyzing and visualizing the

most common data types provided by TCGA. But besides the global profiling visualization

for different data types, distributions of each individual gene are also available in CG. In

addition, three new powerful plots (Mountain plot, Deflection plot and Directional

Manhattan plot) and a similarity scoring method are proposed by us for analysing genome

variations among different types of cancer. These methods are also available for analysing

users own in-house data. More importantly, unlike other R-based web platforms, CG is

developed with Java language. By making good use of ECharts, JavaScript and other

professional web developing languages and MySQL database, several advanced plots can
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be created by only mouse-button clicking by end users. Additionally, Dubbo, a cloud dis-

tributed service governance framework for ‘big data’ stream global transferring, is used as

the framework to develop CG platform. After being developed, CG is run on a cloud-

server provided by an independent third-part cloud-service company, which ensures its

accountably steady global accessibility. More than 2 years running history of CG proved

that advanced plots for hundreds of whole-genome data can be created through it within

seconds by end-users anytime and anywhere.

Material and methods

The architecture of the cloud-based CG platform

Bioinformatics research involves the storage of massive data, frequent calls, and

compute-intensive algorithm analysis. Therefore, we adopted BootStrap (an open

source toolkit for developing with HTML, and JavaScript. https://getbootstrap.com),

jQuery (https://jquery.com), ECharts (https://github.com/apache/incubator-echarts) to

build the front-end system for data parser and visualized interface with end-users. To

make sure the high-performance, high-availability, high-concurrency are the features of

the services provided by CG platform, the back-end of it was developed at the basis of

a cloud-based distributed system architecture. In addition, our CG cloud-based plat-

form combined Dubbo (http://dubbo.apache.org/en-us/), the integrative web applica-

tion development SSM (SpringMVC, Spring, MyBatis) framework. An overview of the

platform is presented in Fig. 1. Due to the limited space, only the brief introduction of

each language and technique was given here. Details of them are available in the

Additional file 1.

Dubbo is an RPC (Remote Procedure Call) service governance framework that

enables our cloud-based platform to be distributed, modular and pluggable design

and deployment. DispatcherServlet, as the core of the SpringMVC framework, is

Fig. 1 An overview of the CG cloud-based architecture
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mainly used to intercept external requests and to distribute them to different

controllers. According to the result processed by the controller, a corresponding

response is generated and sent to the client. Spring is characterized by IOC

(Inversion of Control) and AOP (Aspect Oriented Programming). Spring controls

the life cycle of the object and the dependence between objects by IOC rather than

directly by the program in the traditional implementation. AOP is implemented by

a dynamic proxy. Java is a language for object-oriented programming. MyBatis is

one of the most popular ORM (Object Relational Mapping) frameworks. The ORM

automatically persists objects in a program to a relational database by means of

metadata that describes the mapping between the object and the database. MySQL

(https://www.mysql.com/), an open-source relational database management system

(RDBMS), was used to manage all downloaded and preprocessed data. Additional

file 2: Figure S1 shows a logical view of MySQL’s architecture. To make the data-

base small enough, reduce disk I/O, and increase system throughput, we used table

compression method. An example of the related data tables created in MySQL is

shown in Additional file 2: Figure S2.

Once a user inputs cancer or gene-related parameters at the front-end interface and

submits a request, the back-end response processing is divided into three steps: receiving

and allocating a request; processing a request, matching a method, statistically analyzing

and processing the data; returning the result to the front-end. Finally, the front-end parses

and visualizes the data. In short, user-server communication is implemented using TCP/IP

sockets. A profile of the functional module design of the entire system is shown in Fig. 2.

Please see the Additional file 1 for more detailed introduction of these web-

developing languages and toolkits. Detailed manual including in-house data upload-

ing format instructions are available at the corresponding webpage at CG platform

(http://www.clickgenome.org/guide/).

Fig. 2 A profile of the functional module design of the entire system
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Data processing

Over a decade after its initial funding, The Cancer Genome Atlas (TCGA) has gen-

erated vast amounts of data of 33 different kinds of primary tumor in different

data types (including mRNA expression values, copy number variations, methyla-

tions and so on). Since it has included the most comprehensive information about

the cancer landscape for researchers to further exploration, we downloaded and

preinstalled TCGA public portal data in our database as examples to demonstrate

the analyzing tools provided by CG platform. Up to now, all data was directly

downloaded from the “Legacy GDC portal”. Considering about the different

requirements on the data version, we provide two kinds of data updated before 10/

05/2016 and 10/01/2018, respectively. It has been updated on a regular basis. Data

analysis is restricted to autosomes. All non-primary samples are removed before

any further pre-process and analysis. The available types of cancer in CG are listed

in Additional file 3: Table S1. Since the TCGA (Legacy GDC) data format is still

more familiar by end users, it was used as an example in this paper. The level 3

mRNA expression data in ‘*.rsem.genes.normalized_results’ files; the level3 CNV

data in ‘*.hg19.seg.txt’ are used as examples in this paper. The average value of

CNVs of all segments mapped to a specific gene partially or entirely is used as the

CNV of it. Only HUGO symbols are acceptable for all CNV analyzing tools. Details

of other provided TCGA and GDC data format are available in CG platform.

Please go to Legacy GDC portal and GDC portal for more details of these data.

Private in-house data

All analyzing tools provided by CG platform are available for analyzing users’

private in-house data. To secure the copyright of users uploaded private data, it

will not be stored in our database for any further analysis. Detailed manual for

data uploading format and examples are available at the corresponding webpage

(http://www.clickgenome.org/guide/).

Curve similarity analysis

According to the biological mechanism, CNVs of adjacent genes are closely related to

each other. This means the position and ordering of CNV points of genes along

chromosome arms can be seen as sequences or curves. To quantity the similarity of

arm-wise to genome-wise CNV patterns between different types or trails of cancer, the

curve similarity analysis was introduced as a measurement.

DTW (dynamic time warping) is a very widely used method for similarity analysis. In

general, DTW is a sophisticated similarity measure that calculates an optimal match

between two given sequences (e.g. time series) with certain restrictions. It can be non-

trivially transformed. The sequences are “warped” non-linearly in time dimension to

determine a measure of their similarity independent of certain non-linear variations. In

genomic signals, after representing time instances by nucleotide positions and ampli-

tude to the cumulated phase of signals, DTW is then suitable for adjustment of derived

genomic signals [16–18]. For the same reason, it also can be used to measure the CNV

curve similarity in Mountain plot.
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DTW aligns sample values based on the minimization of the distance between pairs

of samples. The values of accumulated distance are calculated from pairwise distances

for each pair of samples in accordance with Eq.1.

D i; jð Þ ¼ min D i−1; j−1ð Þ;D i−1ð Þ þ d i; jð Þ½ � ð1Þ

where D symbolizes accumulated distance and d is a value of pairwise distance.

The value of accumulated distance D(i, j) is determined by pairwise distance d(i, j)

and minimum from the previous values of accumulated distances. This set of accu-

mulated distances for each pair of samples forms a table which determines the

criterion for alignment and repetition of samples. The result sequence warping is

derived on the basis of minimization of the backward way from the right upper

corner to the left lower corner.

DTW score is normalized to the range < 0, 1>. ‘0’ means the two sequences are com-

pletely different to each other while ‘1’ means they are basically coinciding with each

other. Therefore, the closer the similarity to 1, the more similar they are to each other.

To test whether the inconsistent between the Mountain curves of two selected group

samples are caused by random fluctuations, Bootstrapping test is provided to evaluate

the significance of the differences between these two kinds of samples [19, 20]. Please

see the Additional file 1 for more details.

Besides DTW, to quantity the similarity, we also introduced other three popular

scores shown in the following equations:

Distance based similarity score
X

i
CNVxi−CNVyi
� � ð2Þ

Absolute distance based similarity score
X

i
CNVxi−CNVyi

�� �� ð3Þ

Square distance based similarity score
X

i
CNVxi−CNVyi
� �2 ð4Þ

Please see the Additional file 1 or go to http://www.clickgenome.org for more details.

Results
The ClickGene (CG) user interface

There are six main web pages for users to explore CG platform and to use the

provided functions:

Home page. Displays an overview of this website, our team and all available

analyses functions.

Data Analysis. Provides all links to all provided tools using TCGA data as examples.

Analyze yours. Users can analyze their own data with the tools provided by CG.

User’s Guide. The detailed manual for users to apply the provided tools to analyze

TCGA or their own in-house data. For user’s convenience, it is available in both HTML

and PDF file types.

Papers. A list of published research articles with the results obtained by using the

analysis methods provided by CG.

About us. Introduction of our lab, developing team and other members.
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The bioinformatics functions currently provided by CG

Making good use of the RPC (Remote Procedure Call) technique based on Dubbo for ‘big

data’ stream service, the high speed big genome data global transferring was realized by

CG platform. Along with the application of high sophisticated data pre-processing and

data-mining methods, the following multiple level data profiling tools are provided by

CG. The examples are shown in Fig. 3.

Genome-wise profiling tool: Volcano plot.

Volcano plot is a type of scatter-plot that is used to quickly identify changes in

large data sets [21] [22]. It plots significance versus fold-change respectively on the

y (−log10 of p-value) and x axes. The dashed horizontal line shows the cutoff of

p-value (normally, p = 0.05) with points above it having p < cutoff and points

below it having p > = cutoff.

Chromosome-wise profiling tools

For illustrating chromosome or global expression/CNV patterns, CG provides different

kinds of profiling and analyzing tools including: Mountain plot, Manhattan plot

(directional/ regular) and Deflection plot. The corresponding genome-wise profile can be

obtained by combining these plots chromosome by chromosome. Please see the demonstra-

tion examples of them in the Discussion section. In these chromosome-wise plots, for chro-

mosomes 13, 14, 15, 21, and 22, only genes on q arms are visible due to the fact that only

them are represented on the microarray. Please see the Additional file 1 for more details.

Mountain plot. Mountain plot is named by Dr. Kai Song because its ups and downs

look like mountain outlines seen from afar. It is a very useful scatter plot, invented by

Dr. Adi F. Gazdar and Dr. Kai Song, originally for profiling genome-wide variations of

Fig. 3 The example figures created by analyzing tools provided by CG
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copy numbers [13, 23]. In Mountain plot, each spot is the median/mean value of copy

numbers of each gene in a group of cancer samples. The genes are sorted according to

their genome locations. The space between two arms of each chromosome is the loca-

tion of the corresponding centromere.

Manhattan plot. Normally, in genome-wide association studies (GWAS), a Manhattan

plot is a type of scatter plot, usually used to display data with a large number

non-zero amplitude data-points [24]. To improve the feasibility and transmitting

speed of our global website service, we did several modifications to the original

Manhattan plot:

� Manhattan plot for genes rather than for SNPs (Single nucleotide polymorphisms),

which means the Q-values are calculated for genes in two different groups of samples.

� Besides regular Manhattan plot, Directional Manhattan plot is provided as an option

to show more information. If the median value of the gene in group1 is smaller than

that in group2, the corresponding line is under the base line (normally, it’s zero line),

otherwise, it is above the base line.

Deflection plot. To Deflection plot, genomic coordinates are displayed along the

x-axis. Each line stands for a gene. The amplitude of it stands for the negative

logarithm of the Q-value, which is the significance testing value for each gene’s

mRNA expression/copy number values in two concern groups (e.g. tumour samples

in cancer type1 or cancer type2). Therefore, the more significant the difference

between values in these two groups, the higher the y-axis value is. In addition, if

the bigger variation for a gene is a negative one (median value in tumor samples is

smaller than that in non-malignant samples), then the corresponding line is under

the base line. Otherwise, it would be above the base line. Two default colors are

assigned to these two types of cancer. Color1 indicates that the deflection (tumors

vs. non-malignant samples) in cancer type1 is comparatively greater, whereas color2

indicates that the deflection in cancer type2 is comparatively greater. A gap within

the individual chromosome data indicates the location of the centromere.

Gene-wise visualization tools: Bee-swarm plot (by gene/by cancer) and Linear

regression analysis.

It’s very practical to have an overview of the distribution of mRNA expression values

or CNVs of specific genes in a certain type of cancer or across different types of cancer.

Therefore, Bee-swarm plot and linear regression analyses are provided. By making good

use of these tools, CNV/expression profiles determined by tissue of origin of cancer

and biomarker identification for different therapeutic purposes can be performed

efficiently by experimental biologist or clinicians themselves.

The Bee-swarm plot is a one-dimensional scatter plot like “stripchart”, but with

closely-packed, non-overlapping points. Here, the Bee-swarm plots with or without

other options (e.g. box plot) are provided. In addition, the statistical hypothesis test

(such as the student’s t-test) is also provided to test whether the difference in the values

of the two concern groups is significant.

The Pearson correlation coefficient (PCC), the most widely used measure of the

linear correlation between two variables X and Y, is used to evaluate the linear relation-

ship between mRNA expression values and CNVs of given genes.

Bi et al. BioData Mining           (2019) 12:12 Page 8 of 15



Discussion
The ever-increasing development of public cloud has revolutionized many trad-

itional technology concepts and architectural design patterns. The use of the cloud

can provide structural reliability, management convenience, cost controllability and

service security.

Concurrent programming is a feature of the Java language. Concurrency refers to the

ability to handle things in a unit of time. Especially for compute-intensive and IO-

intensive programs, we can take full advantage of this feature to run multiple threads

synchronously to complete computing tasks. Although concurrent programming has

high requirements for developers, compared with R language, it can make full use of

CPU resources, speed up program response, modularize development, and enable

asynchronous calls. Therefore, we chose Java-based language to develop CG.

At present, front-end and back-end separation has become a standard way to develop

Internet project. It can be realized by using Nginx (front-end server) and Tomcat

(back-end server). The separation of front-end and back-end lays a solid foundation for

large-scale distributed architecture, flexible computing architecture, multi-terminal

services (browser, iPad, etc.) architecture and so on. In this architecture, the front-end

and back-end projects are deployed independently. The front-end page invokes the

back-end interface asynchronously and interacts with the back-end programs using

JSON (JavaScript Object Notation, data format of the front-end interaction) data

format. It speeds up the overall response. Even it causes more professional skills and a

longer developing time, therefore, it was still chosen by our CG platform developing

team for the better using experience of end-users and for the easier maintenance.

The cloud-based distributed system adopted by our back-end system has the follow-

ing characteristics: multiple computers cooperate with each other and provide powerful

service capability to the outside world; each internal computer can communicate with

each other through the cloud; a request from a client to a server will go through multi-

computers. Compared with the traditional monolithic architecture, consequently, it can

increase the system capacity, enhance the system availability, make system modules

more reusable, and make the system more scalable. The key of the distributed system is

service governing and scheduling. Therefore, CG adopts Dubbo distributed service

governance framework which can provide efficient service governance solutions.

At the initial stage of CG developing, SSM (SpringMVC, Spring and MyBatis) frame-

work was just emerging and gradually gaining popularity, while SSH (Struts, Spring

and Hibernate) was still the mainstream of Java web. The switch from SSH to SSM

made us realize the vital importance of well-encapsulated generic modules. It proved

the superiority of the front-end and back-end separation architecture.

Spring is a lightweight framework dedicated to various solutions for java web applica-

tions. Spring’s goals are: making existing technologies easy to use; promoting good

programming habits. Spring is a comprehensive solution that adheres to the principle

of ‘no building new wheels’. In the areas where there are already good solutions, Spring

never repeats implementations but provides good support for them. Therefore, its

openness lays a very good foundation for the updating of our CG platform.

The main existing technologies for operating databases are: JDBC (Java DataBase

Connectivity), Hibernate and MyBatis. The main drawbacks of the traditional JDBC

programming operation database technology are: the operation database has a big
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workload; the code coupling degree is high and the reusability is poor; the database

connection resource needs to be manually closed which makes it a potential danger

once it is forgotten to be closed. Hibernate and MyBatis are two major frameworks for

the operational databases. They encapsulate the traditional JDBC operation database

technology in different ways to overcome the above drawbacks of JDBC. Since Hibernate

are unable to customize the assembly of SQL (Structured Query Language), weakly

support for complex associations and complex SQL statements and hard to optimize

SQL, it is not suitable for large-scale Internet high-performance requirements. Therefore,

MyBatis was chosen as the framework for our operational database considering about its

advantages such as: it is highly flexible; it can customize and optimize SQL based on the

bottom layer; it has low learning threshold and is easy to maintain.

To meet the varied requirements of different potential users, Mountain plot, Manhattan

plot and Deflection plot can be created using the median or mean values of a group of

samples. In Manhattan plot and Deflection plot, Q-value instead of p-value is used to con-

trol the false discovery rate of the multiple hypothesis testing [25]. Additionally, user’s can

control it by specifying a different significance level rather than the defaulted 0.05. For

example, according to the Bonferroni correction (the most conservative family-wise error

control), the significance level is 0.05/n, (n is the number of independent hypothesis

testing) [26, 27]. Even though, Volcano plot is a multiple hypothesis testing too, it’s still

the p-value rather an Q-value is more widely used in this plot.

To verify the performance of CG, we firstly applied the provided tools to a collection

of TCGA GBM (Glioblastoma multiforme) samples due to the fact that those func-

tional roles of a substantial number of copy number alterations have already been

validated in preclinical models [13, 28, 29].

Since MEAN value is particularly sensitive to outliers, we used median-value-

Mountain-plot as an example to illustrate the process of using tools provided by

CG. Figure 4 shows the CNV Mountain plots of the first 22 chromosomes of GBM

in TCGA. Table 1 lists the DTW scores and the corresponding Bootstrapping test

p-values of each arm of the entire genome of it.

From Fig. 4, it is very clear to see the amplifications and deletions. There are

three broad amplifications: 7, 19 and 20. Among them, 7, 19p and 20 are proved

by other publications [30–32]. The broad amplification of Chr 7 with overlapping

focal EGFR (7p11.2) amplification is a very well known one (shown in Additional

file 2: Figure S3) [7, 30].

According to the Beeswarm plots shown in Additional file 2: Figure S4, we could see

that the copy numbers of EGFR in 43.7% (including one outlier) of GEM tumour sma-

ples are higher than 4. These results strongly confirm the focal gains on this gene. The

patient ID of outlier of EGFR is TCGA-06-0187-01 and the corresponding copy num-

ber is 151.4319. Its expression value is 86,384.59 which is the second highest one in the

Beeswarm plot of this gene in GBM tumour samples. These results indicate that this

patient needs a further checking.

Besides these broad amplifications, there are broad deletions on 9p and 10, which are

very obvious and consistent with what have been reported by other papers [30]. The

broad deletion of 9p with overlapping focal CDKN2A/B (9p21.3) deletion is also a very

well-known one [13]. Additional file 2: Figure S5 show that: ESCA, HNSC and LUSC

in SCCs; PAAD in ADCs; BLCA in other epithelial; GBM, MESO and THYM in non-
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Table 1 The DTW scores and the corresponding Bootstrapping test values for GBM

Chr Arm GBM Chr Arm GBM

DTW p-value DTW p-value

1 P-Arm 0.98 < 0.1E-05 11 P-Arm 0.99 < 0.1E-05

1 Q-Arm 0.97 < 0.1E-05 11 Q-Arm 0.99 < 0.1E-05

2 P-Arm 0.98 < 0.1E-05 12 P-Arm 0.97 < 0.1E-05

2 Q-Arm 0.98 < 0.1E-05 12 Q-Arm 0.99 < 0.1E-05

3 P-Arm 0.98 < 0.1E-05 13 Q-Arm 0.99 < 0.1E-05

3 Q-Arm 0.96 < 0.1E-05 14 Q-Arm 1.00 8.00E-03

4 P-Arm 0.98 < 0.1E-05 15 Q-Arm 0.99 3.00E-04

4 Q-Arm 0.98 < 0.1E-05 16 P-Arm 0.99 < 0.1E-05

5 P-Arm 0.97 < 0.1E-05 16 Q-Arm 0.99 < 0.1E-05

5 Q-Arm 0.97 < 0.1E-05 17 P-Arm 0.98 < 0.1E-05

6 P-Arm 0.99 < 0.1E-05 17 Q-Arm 0.98 < 0.1E-05

6 Q-Arm 0.99 < 0.1E-05 18 P-Arm 0.97 < 0.1E-05

7 P-Arm 0.67 < 0.1E-05 18 Q-Arm 0.97 < 0.1E-05

7 Q-Arm 0.67 < 0.1E-05 19 P-Arm 0.96 < 0.1E-05

8 P-Arm 0.99 < 0.1E-05 19 Q-Arm 0.95 < 0.1E-05

8 Q-Arm 0.97 < 0.1E-05 20 P-Arm 0.92 < 0.1E-05

9 P-Arm 0.88 < 0.1E-05 20 Q-Arm 0.92 < 0.1E-05

9 Q-Arm 0.98 < 0.1E-05 21 P-Arm 1.00 1.68E-02

10 P-Arm 0.80 < 0.1E-05 21 Q-Arm 0.97 < 0.1E-05

10 Q-Arm 0.69 < 0.1E-05 22 Q-Arm 1.00 7.00E-04

Fig. 4 The genome-wise Mountain plots of CNV in GBM in GDC dataset
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epithelial cancer types all have CDKN2A/B focal deletion. Among them, GBM shows

the greatest deletion, then the MESO. The relationship among these primary tumors

may be worthy of further research.

Compared with MEAN value, MEDIAN value is more robust. This is the reason that

fewer amplifications and deletions were found by using median-value-Mountain-plot.

In our previous study about Genome-wide copy number variation patterns, we ana-

lysed the differences among CNV patterns in LUAD, LUSC and other histologically

similar tumours arising at other sites. But all these analyses are qualitative rather than

quantitative. Therefore, we introduced curve similarity analysis to quantity the variants

among different cancer types. Together with Bootstrapping test, both the similarity and

the significance of the Mountain curves can be quantified.

Among these methods, DTW is a normalized measurement for the scores calculated

with it are scaled to [0, 1]. Due to the limited space, we used only DTW scores as

examples to measure the differences in CNV patterns among different cancer types.

According to the definition of DTW score, we could see that the length of the

alteration is more important than the height of it. Taking GBM as an example:

there are about 400 more genes located in 7q than in 7p. Even with one big focal

amplicon on 7p, its DTW score is 0.67 (p < 0.1E-05 for Bootstrapping test) while

the DTW score for the longer 7q is also 0.67 (p < 0.1E-05 for Bootstrapping test).

Therefore, it’s better to use it together with Mountain plot, Deflection plot and

Manhattan plot for more details.

Additional file 4: Table S2 shows the genome-wide arm-wise DTW scores and the

corresponding p-values of main ADCs and SCCs. For each type of cancer, the DTW

score is the difference between the tumor group and the corresponding non-malignant

samples. If we take ADCs as one kind and SCCs as another kind, the biggest difference

between CNV patterns of these two kinds happens on 3q. Additional file 2: Figure S6

shows their Mountain plots of 3q. All SCCs have big arm-wise amplifications on 3q

while ADCs (except for OV) have only very mild ones.

From Additional file 4: Table S2, we could see that OV has the smallest genome-wide

DTW score (19.63) among ADCs and SCCs. Bootstrapping test shows that the CNV pat-

tern across the whole genome is also significantly different from that of non-malignant

group. This result indicated that among all these primary tumors, CNV pattern of OV is

the most varied one compared with non-malignant samples. LUSC (DTW= 20.44) and

READ (DTW= 20.45) are the second and third varied one, respectively.

The Mountain plots of ADCs and SCCs on 5p, 20q and Chr13 are shown in

Additional file 2: Figures S7, S8 and S9, respectively. From Additional file 2: Figure S7

we could see that genes located on 5p in LUSC, CESC, CHOL, LUAD and OV show

arm-wise amplifications. Among them, CNV patterns have the highest median values

in LUSC tumor samples. The Mountain plot on 20q in OV, COAD and READ shown

in Additional file 2: Figure S8 show arm-wise amplifications. Among them, CNV pat-

terns have the highest mean values in READ tumor samples. It means copy number

pattern of 20q in READ tumor is most different from non-malignant samples [33, 34].

Additional file 2: Figure S9 shows great amplification on Chr13 in READ and COAD

tumor samples while those of other ADCs and SCCs are very similar to those of the

control samples. Additionally, OV shows arm-wise deletion on 13p. These figures

strongly confirmed that DTW score could quantify the CNV similarity correctly.
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The DTW scores of THCA across the entire genome are almost equal to 1 but some

of p-vaules are smaller than 0.05, which means that it almost has no copy number al-

terations (the distributions may have different standard deviation values). This confirms

the results found in ref. [35]. Only Chr 22 of it is a little bit different from the non-

malignant samples whose DTW score is 0.99 (shown in Additional file 2: Figure S10).

Conclusions
The cloud-based distributed service governance framework for ‘big data’ stream global

transferring and calculating make it possible to store and transfer data as big as genome

SNPs and so on in several seconds. Using high sophisticated Java, ECharts and other

web developing and database management techniques, together with advanced data

mining technology, the developed cloud-based CG platform enables end-users without

any computational programming skills to perform a diverse range of gene expression

and CNV analyses. Three new methods created by us and the introduced similarity

scores are very helpful for specific profiling or gene targeting clinical analysis. The

performance of it is strongly confirmed by the results consistent with what has been

proved by published research. By using it, therefore, end-users can easily explore the

large TCGA data and their own private in-house datasets for any specific pan-cancer

analysis. Meanwhile, the customizable parameters of CG also enable users to exten-

sively customize the results and the visualization. It complements well with other avail-

able tools such as MethylMix, GEPIA and so on. With the continuous further

enhancement, CG platform has the potential to become an integral part of routine data

analyses for experimental biologists and clinicians.

Additional files

Additional file 1: Details of languaging tools, methods and examples. (DOCX 55 kb)

Additional file 2: Figure S1. A logical view of MySQL server architecture. Figure S2. The ERS (Entity-relationship
model) for describing the relationship between data tables saved in MySQL database. Figure S3. A) Mountain plot of
Chr7 of GBM in GDC dataset. Figure S4. The Beeswarm plots of copy numbers of gene EGFR in GBM tumor and non-
malignant samples. Figure S5. Mountain plot 9p with CDKN2A/B focal deletions. Figure S6. Mountain plots of Chr3 in
ADCS and SCCS. Figure S7. Mountain plot of 5p of all available ADCS and SCCS in GDC dataset. Figure S8. Mountain
plot of Chr20 of all available ADCs and SCCs in GDC dataset. Figure S9. Mountain plot of Chr13 of all available ADCs
and SCCs in GDC dataset. Figure S10. Mountain plot of Chr22 of THCA in GDC dataset. Figure S11. Volcano plots of
copy numbers and mRNA expression values in LUAD vs LUSC. y axis is p-value of significance test (usually base 10).
The x axis is the log of the fold change between the two conditions. (PPTX 2610 kb)

Additional file 3: Table S1. The available types of cancer in CG are listed. (XLSX 12 kb)

Additional file 4: Table S2. The arm-wise DTW scores for ADCs and SCCs. (XLSX 38 kb)
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