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Abstract
Background: In Genome-Wide Association Studies (GWAS), the concept of linkage
disequilibrium is important as it allows identifying genetic markers that tag the actual
causal variants. In Genome-Wide Association Interaction Studies (GWAIS), similar
principles hold for pairs of causal variants. However, Linkage Disequilibrium (LD) may
also interfere with the detection of genuine epistasis signals in that there may be
complete confounding between Gametic Phase Disequilibrium (GPD) and interaction.
GPD may involve unlinked genetic markers, even residing on different chromosomes.
Often GPD is eliminated in GWAIS, via feature selection schemes or so-called pruning
algorithms, to obtain unconfounded epistasis results. However, little is known about the
optimal degree of GPD/LD-pruning that gives a balance between false positive control
and sufficient power of epistasis detection statistics. Here, we focus on Model-Based
Multifactor Dimensionality Reduction as one large-scale epistasis detection tool. Its
performance has been thoroughly investigated in terms of false positive control and
power, under a variety of scenarios involving different trait types and study designs, as
well as error-free and noisy data, but never with respect to multicollinear SNPs.

Results: Using real-life human LD patterns from a homogeneous subpopulation of
British ancestry, we investigated the impact of LD-pruning on the statistical sensitivity
of MB-MDR. We considered three different non-fully penetrant epistasis models with
varying effect sizes. There is a clear advantage in pre-analysis pruning using sliding
windows at r2 of 0.75 or lower, but using a threshold of 0.20 has a detrimental effect on
the power to detect a functional interactive SNP pair (power <25%). Signal sensitivity,
directly using LD-block information to determine whether an epistasis signal is present
or not, benefits from LD-pruning as well (average power across scenarios: 87%), but is
largely hampered by functional loci residing at the boundaries of an LD-block.

Conclusions: Our results confirm that LD patterns and the position of causal variants
in LD blocks do have an impact on epistasis detection, and that pruning strategies and
LD-blocks definitions combined need careful attention, if we wish to maximize the
power of large-scale epistasis screenings.

Keywords: Genome-wide association interaction studies (GWAIS), Model-based
multifactor-dimensionality reduction (MB-MDR), Gametic phase disequilibrium (GPD),
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Introduction
A single-nucleotide polymorphism (SNP) is a variation in a single nucleotide that occurs
at a specific position in the genome, where each variation is commonly present within a
population (e.g. >1%). Their frequency and wide-spread distribution across the genome
make them interesting markers for known complex diseases in genome-wide associa-
tion studies (GWAS). The success of GWAS using SNPs as genetic markers in part relies
on Linkage Disequilibrium (LD) as a population concept. LD is a property of SNPs in a
genomic sequence that refers to allelic association and linkage. It can be considered to be
linkage betweenmarkers on a population scale [1]. It is different fromGametic Phase Dis-
equilibrium (GPD) that describes the non-random association of alleles within gametes
(even for physically unlinked loci on different chromosomes). LD is a special case of GPD
when the loci are linked.
Gametic Phase Disequilibrium-Linkage Disequilibrium in natural populations may

result from different evolutionary forces, including random genetic drift due to sam-
pling of gametes during reproduction, but also epistatic selection [2]. This explains why
researchers on two-loci epistatic selection with recombinant inbred lines have used the
idea to screen for distortions of pairwise segregation [3] or to look for epistasis selection
networks via first screening for loci that show significant long-range LD [4]. For unrelated
humans, long-range haplotypes have been shown to extend to over a few hundred kilo-
bases [5], yet altogether only span a very small fraction of an entire chromosome. Hence
when evidence is found for substantial long-range LD, special forces should be thought of
(see for instance [6]). One of these forces may be epistatic selection, which can maintain
LD indefinitely [7], but may also be selection with strictly additive genes [8]. The presence
of different GPD structures between cases and controls has been explicitly used in epista-
sis detection tools such as EPIBLASTER [9]. This exploitation should be made with care
as complete confounding may exist between GPD and interaction [10].
GPD/LD is important to GWAS as it allows identifying genetic markers that tag the

actual causal variants to complex human diseases. In the search for causal variants, sev-
eral authors have speculated that understanding the interplay between genetic loci may
further contribute to understanding disease-underlying mechanisms [1, 11–13]. Epista-
sis, in its broadest sense, refers to the dependence of the outcome of a mutation on the
genetic background (refer to [14] and [12, 15] for reviews). From a biological perspective,
genetical epistasis refers to a masking effect whereby a variant or allele at one locus masks
the expression of a phenotype at another locus [16]. Statistical epistasis describes the sit-
uation where the combined effect of two or more loci cannot be predicted from the sum
of their individual single-locus effect in a mathematical model [17]. The discovery of bio-
logical epistasis via statistical methods is a big challenge, especially in the absence of prior
hypotheses [1, 18, 19] and limits coupling biological relevance to statistical findings. The
interpretation and reproducibility of findings is hampered by the vast number of epistasis
data mining tools that exist, non-consensus about GWAI protocols to carry out the anal-
yses on noisy or confounded data, and the fact that signals are detected on tagSNP pairs
rather than functional or causal SNPs [20, 21]. Recent advances in simulating synthetic
data that faithfully enough represent the complexity of the biological nature of human
disease systems will be helpful in this sense [22].
In the scenario of so-called genome-wide association interaction studies (GWAIS),

GPD/LD can be a merit, similar to GWAS, but it may also be a burden. GPD/LD may
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actually interfere with the detection of genuine epistasis signals in that there may be com-
plete confounding between Gametic Phase Disequilibrium (GPD) and interaction [10].
One of the strategies to deal with such confounding is to eliminate GPD. This can be
done via SNP selection to only keep a set of SNPs that are mutually uncorrelated (e.g., by
taking r2 as a measure of allelic association and a threshold of r2 = 0.20). Several algo-
rithms for pruning SNPs in this way or for reducing the degree of LD between SNPs exist,
often involving a sliding windows approach to reduce the number of SNP pairs to inter-
rogate. Popular pruning strategies are implemented in PLINK 1.07/1.9 [23, 24], which
sequentially scan the genome for pairs of correlated SNPs, not using phase information
but only using allele counts. In contrast to pruning, clumping retains a single represen-
tative SNP per highly-correlated region of SNPs. With ever increasing datasets generated
via the latest sequencing technologies, the search for computational efficient algorithms
is an ongoing effort (for instance, SNPrune [25]).
In this study, we investigate the impact of correlated SNPs on the performance of

large-scale epistasis screening and argue about correlation thresholds that keep a balance
between maintaining sufficient epistasis screening power and reducing the occurrence
of redundant epistasis. In addition, we point towards the necessity of exploiting LD-
block information while interpreting epistasis results and give recommendations about
unbiased LD estimation in this context. As tool analytic example, we take Model-
Based Multifactor-Dimensionality Reduction (MB-MDR). MB-MDR is a non-parametric
method, in the sense that no assumptions are made regarding genetic modes of (epistatic)
inheritance. It can be model-based (MB) when a particular model is chosen to separate
main SNP effects from pure epistasis in joint locus signals. The data reduction part in
MB-MDR relies on association tests, which may or may not be parametric [26].

Methods
A total of 1200 synthetic datasets were built, corresponding to 4 scenarios of ‘causal’ Dis-
ease Susceptibility Loci (DSL) pairs, embedded in real human LD blocks extracted from
a single HapMap3 subpopulation of British ancestry, × 3 effect sizes for a pure epistatic
interaction × 100 retrospective case-control replicates with 1000 subjects in each cohort.
We explain below how these synthetic datasets were constructed and which analysis
workflows were conducted.

Forward time simulationmodels to generate realistic genetic profiles for individuals

Here, we evolved a founder population of all 91 subjects from the GBR subpopulation of
the HapMap3/1000 Genomes Project (GRCh37.p13 assembly) [27–30], using simuPOP
1.1.8.3 [31, 32]. The aim was to generate 100 synthetic datasets with 1000 cases and 1000
controls, exhibiting realistic complex LD patterns and haplotype blocks, extracted from
a selected population of size 10,000 expanded from the homogeneous British ancestry
subpopulation of 91 subjects (England and Scotland), for different disease model settings.
This GBR homogeneous subpopulation of 91 subjects was chosen for two reasons:

1) to guard against large-scale population substructure or stratification issues;
2) to facilitate making links between synthetic data analysis and real-life data analysis

on Ankylosing Spondylitis dataset fromWTCCC2, which mainly involved
individuals of British ancestry [33].
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Forward-time simulation (Peng [31, 32]) was practically carried out with Python scripts
from the simuPOP simulation environment developed by Peng et al. [31], in 4 steps,
which are described in more detail below.

Step 1

Two segments of two chromosomes from the 91 individuals of the GBR subpopulation of
HapMap3 [29, 30] were selected with their starting and ending physical positions on the
human genome:

• (chr 7:110,200,000-110,450,000) which spans a 250 kbp region with 964 markers
(SNPs) at an average marker distance of 260 bp.

• (chr 8:91,525,000-91,775,000) which spans a 250 kbp region with 787 markers (SNPs)
at an average marker distance of 318 bp.

We removed SNP rs28568272 on chr8 at locus position 91,652,958 so as to retain only
bi-allelic markers for convenience, even though MB-MDR is able to analyse any categori-
cal variable. All SNPs were subjected to the following QC checks: minor allele frequency
MAF higher than 1%, missingness rate less than 10%, Hardy-Weinberg Equilibrium (sig-
nificance level at 5 · 10−15). This resulted in a total of 1751 bi-allelic markers, typed for
all the 91 individuals in the founder population of British ancestry. The LD pattern cor-
responding to the two juxtaposed DNA segments is displayed on Figs. 1 and 2. It shows
interesting features of separate LD blocks of different sizes and LD intensities. DSL 1 and
DSL 2(A-D) refer to disease susceptibility loci pairs (DSL 1, DSL 2 A-D) and were cho-
sen in such a way that they exhibit different properties regarding their location in the LD
blocks.

Step 2

The population of Step 1 was evolved forward in time, following a demographic model. In
particular, the founding population - considered to be isolated and homogeneous -, was
expanded linearly to a larger population, by adding the same number of individuals, at
each generation during the evolutionary expansion process. The targeted final population

Fig. 1 Two LD block structures on two chromosomes: Presented are two LD blocks corresponding to
HapMap3 GBR subpopulation of 91 unrelated individuals. The selected regions are from chromosome 8 (left)
and 7 (right) consist of 787 and 964 SNPs respectively. The positions of causal epistatic variants are indicated
by arrows
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Fig. 2 LD block structures on chromosome 8 selected region. Zoom-in on the positions of causal DSLs on
chromosome 8 corresponding to 3 out of 4 epistatic scenarios

size was fixed to 10,000 indviduals (∼ 500 generations). In general, depending on the
algorithm settings of the evolution-expansion process, all SNP markers are potentially
allowed to be mutated according to a symmetric bi-allelic mutation model with a spe-
cific mutation rate (e.g.∼10−8 per base pair per generation). Here, the mutation rate was
defaulted to zero to make sure that all alleles stayed bi-allelic. At each generation, parents
are chosen at random (random mating) and pass their genotypes to offspring accord-
ing to Mendelian laws. Parental chromosomes can be allowed to recombine according
to the fine-scale genetic map estimated from the data. Here, such recombinations were
not allowed in order to preserve the initial linkage disequilibrium patterns of interest, by
setting the Haldane genetic distances between SNPs to zero. Given that mating was com-
pletely at random, the last generation of the expanded population can thus be considered
in Hardy-Weinberg equilibrium. Furthermore, the process uses a trajectory simulation
method to control the frequency of the disease predisposing alleles (DPAs) of the DSLs:
0.05 for DSL 1 and 0.40 for DSL 2. The simulation starts from the pre-specified frequency
of each DPA in the initial population and is restarted if the allele frequency at the present
generation falls out of the desired range. The simulated trajectory forward in time over
500 generations is displayed in Fig. 3: The 2 loci DSL 1 and DSL 2 A (DSL 2B, DSL 2C,
DSL 2D – see next section) were chosen as functional SNPs and buried in the LD block
configuration referred to as setting A (B, C, D).

Step 3

Case-control samples were drawn according to a rejection-sampling algorithm. Samples
were drawn following case/disease probabilities conditional on multi-locus genotypes,
reflecting a target epistasis disease model (see Table 2 and the next Section).

Step 4

Output files were reformatted for subsequent analyses. In particular, the datasets obtained
required appropriate reformatting in .PED and .MAP file formats, for visualization
purposes of LD patterns with Haploview [34] and analyses with PLINK [23, 24] and
MB-MDR [35].
Repetitive use of Steps 1-4 led to 400 (4 LD blocks × 100 replicates for a given effect

size) datasets with 1000 case and 1000 control subjects each. These synthetic datasets had
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Fig. 3 Trajectory of the minor allele frequencies. Simulated forward-time trajectory of allele frequency over
500 generations. The blue line is the trajectory for DSL 2 A moving from 0.42 to 0.40 in 500 generations. The
orange line is the trajectory for DSL 1 moving from 0.088 to 0.05

on average the same pre-specified disease predisposing allele frequencies in the expanded
population (0.05 for DSL 1 and 0.40 for DSL 2) and followed the same disease known
epistasis model as explained in the next Section.

Generating a genetic disease trait determined by two epistatic causal loci DSL 1 and DSL 2

In what follows, we describe in more details the epistasis disease models implemented in
this study. We considered four scenarios of DSL pairs: (DSL 1, DSL 2A), (DSL 1, DSL 2B),
(DSL 1, DSL 2C), (DSL 1, DSL 2D).
The allele frequencies of the four selected DSLs in the initial founder population of 91

unrelated individuals and at the final expanded population of 10,000 individuals are tabu-
lated in Table 1. We fixed the last generation allele frequencies, in line with observations
from real-life data onAnkylosing Spondylitis, and to obtain the desired disease prevalence
in the final population via the penetrance table (e.g., Table 2). This penetrance table rep-
resents one particular genetic epistasis model according to which case-control samples
were drawn in a later stage.

Table 1 Allele frequencies of DSLs in founder and expanded populations (first allele in each pair is
the minor allele)

Minor allele frequencies p

Founder population Expanded population

91 individuals 10000 individuals

Causal SNP Alleles

DSL 1 (rs17644404) A/T 0.09 0.05

DSL 2 A (rs10956767) C/A 0.42 0.40

DSL 2 B (rs2073640) T/C 0.33 0.40

DSL 2 C (rs1476427) T/C 0.35 0.40

DSL 2 D (rs112698197) T/C 0.19 0.40
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Table 2 Imposed genotype penetrance table and disease prevalence calculation in the general
population with allele frequencies under assumption of Hardy-Weinberg equilibrium

Genotype Penetrance of genotype Marginal

− − − − − − − − − − − − − − −− penetrance

AA Aa aa

(1 − p)2 2p(1 − p) p2

BB (1 − p)2 p(D|G1) p(D|G2) p(D|G3) Mx(x = 1)

Bb 2p(1 − p) p(D|G4) p(D|G5) p(D|G6) Mx(x = 2)

bb p2 p(D|G7) p(D|G8) p(D|G9) Mx(x = 3)

Marginal My(y = 1) My(y = 2) My(y = 3) p(D) = K

penetrance

DSL 1 AA=TT Aa=TA aa=AA

DSL 2 A 0.9025 0.095 0.0025

BB=AA 0.36 0.0067 0.0911 0.0911 0.015

Bb=CA 0.48 0.0067 0.0392 0.0392 0.010

bb=CC 0.16 0.0067 0.0163 0.0163 0.008

Marginal 0.0067 0.054 0.054 p(D) = 0.0113

penetrance

Odds ratio as compared to double

homozygous CC/TT as baseline

AA=TT Aa=TA aa=AA

BB=AA 1.00 14.88 14.88

Bb=CA 1.00 6.05 6.05

bb=CC 1.00 2.46 2.46

In all settings, the minor allele frequency for DSL 1 is p = 0.05 and for DSL 2 is p = 0.40. Upper part: probabilities of disease given
the genotype, values for simulated datasets in setting A (DSL 1 and DSL 2 A) with epistasis effect size β3 = 0.90 (see text). Lower
part : odds ratio with major homozygous (TT) as baseline in setting A with epistasis effect size β3 = 0.90. The prevalence in the
general population with this setting is around 1%

We considered four genomics configurations (A, B, C and D) of causal SNP pairs, fixing
one locus (DSL 1) and allowing the second locus (DSL 2) involved in the causal SNP ×
SNP interaction to take different positions in an LD block. In setting A, both loci belong
to a common LD block on chromosome 8 and are 56 kbp apart. In setting B, the second
locus (DSL 2 B) is in a different LD block and 90 kbp separated fromDSL 1, yet positioned
in the middle of the LD block. In setting C, the second locus (DSL 2 C) is still in another
LD block, 132 kbp further apart from DSL 1, this time residing at an edge of the LD block.
Finally, in setting D, both loci are on different chromosomes: DSL 1 on chromosome 8
and DSL 2 D on chromosome 7. The positions of the four settings in their LD patterns are
displayed on Figs. 1 and 2.
In Ankylosing Spondylitis, HLA-B*27 (playing the role of DSL 1 = rs17644404 in our

synthetic datasets) was shown to be epistatic recessive on ERAP1 (playing the role of DSL
2= rs10956767 in our synthetic datasets): the alleles of locus DSL 2 aremasked whenDSL
1 is homozygous (recessive) for themajor allele T, or the alleles of locus DSL 2 only express
themselves when epistatic locus DSL 1 has the dominant minor allele A [33, 36]. Both
DSLs are suspected to be bi-allelic causal for Ankylosing Spondylitis. It has been shown
that increased major allele dosage of DSL 2 is protective in HLA-B*27 positive subjects
(i.e. at least one A allele) [33, 36]. The odds ratio for being affected is 2.5−3 times lower for
homozygous major allele subjects on DSL 2 (ERAP1) than for homozygous minor allele
on DSL 2 but only for HLA-B*27 positive subjects. These real-life results were taken as



Joiret et al. BioDataMining           (2019) 12:11 Page 8 of 23

context to generate epistasis signals from a logistic regression model with varying effect
size degrees of epistasis between DSL 1 and DSL 2. In particular, let Y be the binary out-
come indicating the disease status (affected or unaffected) of an individual drawn from
the current generation of the expanded population. This outcome is a Bernoulli ran-
dom variable and if π denotes the probability for an individual to be affected, the model
writes as:

Y ∼ Bernoulli(π) (1)

π = Pr(Y = 1 | g1, g2) (2)

logit(π) = β0 + β1 · g1 + β2 · g2 + β3 · g1 · g2 (3)

Here, the β3 term accounts for departure from additive main effects and measures the
intensity of the interaction term, or of statistical epistasis beyond main effects (rep-
resented by g1 and g2). As we were not interested in joint two-locus effects but pure
epistasis, we set β1 = 0, β2 = 0. In our simulation study, the real-life causal SNP pair
reported in [33] was taken to be (DSL 1, DSL 2 A). Furthermore, in line with Evans and
colleagues, a multiplicative effect on the odds ratio of affection status for the minor allele
A of DSL 2 A, compared to the baseline was imposed (DSL 1/DSL 2 A = TT/CC). Each
increase in A allele dosage of DSL 2 A multiplies the odds of affection status by a fac-
tor exp(β3) = 1.65, 2.12, 2.46 in cases where β3 are 0.50, 0.75, 0.90 respectively, if and
only if, there is at least one copy of allele A on DSL 1 locus. To meet this condition, the
variables g1 and g2 of Eq. (3) were defined as follows:

g1 =

⎧
⎪⎨

⎪⎩

1 if DSL 2 A = (CC)

2 if DSL 2 A = (CA)

3 if DSL 2 A = (AA)

g2 =
{
0 if DSL 1 = (TT)

1 otherwise

Achieving a disease prevalence similar to the estimated prevalence for Ankylosing
Spondylitis of p(D) = K = 0.5% − 1.0%(= 0.005 − 0.010), the parameter value for
β0 was constrained to β0 = −5. This defines all models parameters in Eq. (3). From
these, penetrance values were obtained. For instance, for the epistatic pair (DSL 1, DSL
2 A) and β3 = 0.90, this resulted in Table 2. The corresponding odds ratios for each
2-locus genotype combination versus the reference CC/TT are depicted in Fig. 4. In
total, four penetrance tables (times three effect sizes β3 ∈[ 0.50, 0.75, 0.90]), similar to
Table 2, were built corresponding to the four LD position configurations described before
(Figs. 1 and 2).

Carrying out statistical epistasis analyses

Epistasis analyses on SNPs can be performed in an exhaustive fashion using all quality
controlled data or on a reduced set of genetic markers. Both strategies can be motivated
with several arguments but may lead to highly differing (even non-overlapping) results
[37]. Most commonly, the set of input SNPs is reduced to remove high levels of correlation
between markers that may lead to computational instabilities during epistasis modelling
or to redundant epistasis. As this work focuses on the impact of LD on final epistasis
results, we took the concept of LD as the basis for SNP-set reduction. The objective is to
keep enough SNPs to maximize the chances that the discovery SNP-pair tags, or is in high
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Fig. 4 Disease odds ratios conditioned on the genotype of 2 causal loci: Odds ratio effect sizes conditioned
on pure epistatic pairs of loci for disease status in the simulated case-control datasets. Causal effects for DSL 1
and DSL 2 A are conditioned on allele A for DSL 1. The risk allele A of DSL 2 A only increases risk for individuals
carrying at least one copy of the DSL 1 risk allele (DSL 1 is epistatic to DSL 2 A). The low risk CC/TT genotype is
set as the baseline (OR = 1). The other genotype combinations are coded according to g1, g2 and their
product g1 × g2. Odds ratio are obtained by exponentiating the β3 coefficient of the interaction term from
the logistic regression (see text). Error bars: 95% confidence intervals of possible odds ratio that are obtained
in different simulated case-control samples

correlation with, the actual causal SNP pair, but that unwanted between-SNP dependen-
cies are minimized. In particular, for our simulated data, we implemented an LD pruning
scheme that:

1) computed LD between SNPs within a sliding window of size 10 (i.e., 10 consecutive
SNPs),

2) arbitrarily removed one element of the pair if the corresponding r2 was above a
fixed threshold,

3) shifted the window with 2 SNPs forward and
4) repeated 1)-3) until all SNPs had been covered.

Practical applications to various datasets had pointed towards an informal r2 threshold
of 0.75 [20]. Here, we formally investigated the r2 = 0.20 (“low” correlation), r2 = 0.50,
r2 = 0.60, r2 = 0.75 as compared to no pruning at all as well.
As analytic tool we focused on Model-Based Multifactor Dimensionality Reduction

(MB-MDR), in particular MB-MDR 4.4.1, which is written in C++ and runs stand
alone from a command line or via scripting in UNIX/Linux environment [26, 38]. The
core idea of MB-MDR is to pool 2-locus genotypes together which exhibit substantial
statistical evidence towards increased or decreased disease risk, in which case, the mul-
tilocus genotype is labelled as “H” or “L”, respectively. No correction for main effects
was performed as the simulated data involved pure epistasis only. Furthermore, MB-
MDR’s final test statistic involved a case/control contrast test comparing “H” and “L”
labelled multiloci genotypes. The latter overrules the default testing strategy in MB-MDR
and omits individuals/multilocus genotypes for which no statistical evidence towards
increased/decreased disease could be derived (i.e., omitting individuals/genotypes with
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the MB-MDR label “0” – see for more details for instance in [37]). This choice was
motivated by three arguments:

1) the incorporation of “0” genotypes may blur the picture especially in synthetically
controlled data [37];

2) contrast tests may be more powerful when there is a good balance between
sufficient sample size and manageable multiple testing;

3) the comparative strategy MDR – to our knowledge the only multifactor
dimensionality reduction method that has investigated the impact of LD on
epistasis – forces all multiloci genotypes to be labelled as either “H” or “L” [39].

Finally, significance assessment was based on 999 permutations and the top 5000 SNP
pairs (lowest p-values) were retained for performance assessment.

Criteria to assess performance

The impact of LD pruning on binary classification as resulting from MB-MDR was
measured via estimating power (i.e. statistical sensitivity) or estimating the probability
of detecting the signals artificially introduced in the data. In particular, we used two
operational definitions of sensitivity:

Exact sensitivity: estimated as the number of times out of 100 (i.e., number of simu-
lated datasets out of 100) where the true causal pair of SNPs is detected significant
with MB-MDR’s multiple testing corrected p-value ≤0.05.
Signal sensitivity: estimated as the number of times out of 100 (i.e., number of sim-
ulated datasets out of 100) where any of the SNP pairs tagging the causal pair is
detected significant with MB-MDR’s multiple testing corrected p-value ≤0.05.

The second definition of sensitivity, i.e. signal sensitivity, requires knowledge about
blocks of tag-SNPs around the causal SNPs and thus a threshold of allelic association.
Here, we assumed two such thresholds: r2 = 0.20 and 0.45. To build the tag-SNPs list for
each of the two causal locus at each threshold, we subset SNPs in r2 ≥ 0.20 or ≥ 0.45
with each of the causal locus (no window size restriction) from the complete SNPs set.
The effect these thresholds has on the number of tag-SNPs of the causal SNP pairs (DSL
1, DSL 2 A), (DSL 1, DSL 2 B), (DSL 1, DSL 2 C) and (DSL 1, DSL 2 D) is tabulated in
Table 4. Exact sensitivity was then estimated as the number of times out of the 100 sim-
ulated datasets where the true causal pair of SNPs was detected MB-MDR significant at
a multiple testing adjusted p-value ≤0.05. Signal sensitivity was estimated as the number
of times out of the 100 simulated datasets where any pair of tag-SNPs to the functional
epistasis pair was detected MB-MDR significant at an adjusted p-value ≤0.05.

Type I errors assessment

To explore the type I errors we created null data for which a complete randomization
of the affection status was carried out across cases and controls i.e., no genetic associ-
ation - main nor interaction with the trait. In these null data, correlations between all
SNPs are kept fixed across replicates. Type I error was estimated as the proportion of
100 datasets for which at least one SNP pair (any SNP pair) was identified as significantly
associated to the trait (MB-MDR with default options; thresholds for LD pruning LD(r2)
< 0:75;LD(r2) < 0:60;LD(r2) < 0:50;LD(r2) < 0:20 and unpruned). Note that the
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occurrence of a significant SNP pair induces a significant block pair, and vice versa, irre-
spective of the block definition used. Variation is to be expected according the adopted
pruning scheme.

Results: LD impact on power
The simulation data consisted of 1200 synthetic datasets, corresponding to 4 LD blocks
× 3 effect sizes × 100 retrospective case-control datasets with 1000 subjects in each
cohort. The estimated heritabilities h2 are given in Table 3 and are all below h2 = 0.10.
These were computed according to the subsequent formula (4), in which Gi represents
the nine two-locus genotype combinations underlying g1 × g2, and results immediately
from the penetrance tables previously computed for each effect size (as Table 2 was an
instance for β3 = 0.90 effect size and results in h2 = 0.083):

h2 =
∑9

i [ p(Y = 1|Gi) · p(Gi) − p(Y = 1)]2

p(Y = 1) · (1 − p(Y = 1))
(4)

Furthermore, Table 4 shows that only 1 SNP is in moderate to strong LD with the causal
locus DSL 1 (r2 threshold of 0.75), while 60 SNPs are in very low LD with DSL 1 (r2

threshold of 0.20). Moderate to strong LD with DSL 2 A, B, C and D is observed for
98, 107, 78 and 24 SNPs (at r2 of 0.75), respectively. The number of tag SNPs (and thus
the signal capture probability) increase with decreasing r2 threshold. For instance, for a
threshold of 0.45, respectively 2, 114, 110, 80 and 48 tag-SNPs for DSL 1, DSL 2 A, B, C
and D are obtained.
The estimated signal sensitivities of MB-MDR to detect the simulated purely epistatic

interaction (DSL 1, DSL 2), for different scenarios of DLS 2 position (DSL 2 A, DSL 2 B,
DSL 2 C, DSL 2 D), three epistasis effect sizes and five LD pruning schemes before MB-
MDR analysis are presented in Fig. 5, for signal sensitivity defined via r2 ≥ 0.45-tagging
and in Fig. 6 for tagging determined by r2 ≥ 0.20. The estimated exact sensitivities are
displayed on the lower panels of the aforementioned Figures. Note that estimates of exact
sensitivity do not depend on block definitions. All estimates are tabulated in Table 5. The
following observations are made:

1) For all scenarios of epistasis effect size and location of DSL 2, as well as tag-SNP
block definition and pruning at different r2 values ranging from 0.20 to 0.75, the
signal sensitivity is always higher than the exact sensitivity.

2) Also when no pruning is performed (thus all SNP pairs are screened for epistasis,
regardless of between-SNPs correlations), the exact sensitivity is smaller than the
signal sensitivity.

3) Exact sensitivities dramatically decrease when pruning is applied. The worst results
are obtained for scenarios A and C, for which the corresponding DSL 2 can be
considered to reside at the boundary of an LD (sub-)block. The results are only
slightly better for scenario D. In case both DSLs are located on different

Table 3 Heritabilities associated to effect sizes for the epistatic interaction in all simulated datasets

Simulated Interaction Heritability

setting β3 h2

Effect size 1 β3 = 0.90 h2 = 0.083

Effect size 2 β3 = 0.75 h2 = 0.071

Effect size 3 β3 = 0.50 h2 = 0.059
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Table 4 Tag SNPs number associated to causal variants for different LD(r2) values

Causal Number of tag SNP at LD(r2) value:

SNP r2 = 0.20 r2 = 0.45 r2 = 0.55 r2 = 0.65 r2 = 0.75

DSL 1 60 2 2 1 1

DSL 2 A 115 114 114 111 98

DSL 2 B 110 110 109 107 107

DSL 2 C 81 80 80 78 78

DSL 2 D 76 48 31 31 24

chromosomes, exact sensitivity estimates range from 0.10-0.18 (setting D, see
Fig. 1). In contrast, exact sensitivity estimates in case DSL 2 is located in the middle
of an LD block range from 0.16-0.64, again depending on the epistatic effect size
and LD pruning threshold (setting B, see Fig. 2).

4) Signal sensitivity can be further improved by SNP-set reduction via pruning. In
general, the more LD-pruning is involved, the higher the signal sensitivity.
Whatever the SNP-tag block definition used, too heavy pruning at r2 of 0.20 gives

Fig. 5 Sensitivities of MB-MDR to detect two-loci pure epistatic interaction in 4 settings at three effect sizes
and with different LD pruning levels: Signal sensitivities (upper panel) and exact sensitivities (lower panel) are
displayed at different LD pruning thresholds (unpruned data or LD pruning at 0.75, 0.60, 0.50 and 0.20). Signal
sensitivities determined with tag-SNP subsets at LD r2 ≥ 0.45 with causal SNPs
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Fig. 6 Sensitivities of MB-MDR to detect two-loci pure epistatic interaction in 4 settings at three effect sizes
and with different LD pruning levels: Signal sensitivities (upper panel) and exact sensitivities (lower panel) are
displayed at different LD pruning thresholds (unpruned data or LD pruning at 0.75, 0.60, 0.50 and 0.20). Signal
sensitivities determined with tag-SNP subsets at LD r2 ≥ 0.20 with causal SNPs

by far the lowest signal sensitivity. For all considered DSL 2 locations, little power
(signal sensitivity) is lost by pruning further down from 0.75 to 0.60, retaining more
SNPs. For setting C, power balances around 0.50 when more extensive pruning is
done at r2 of 0.50 instead of 0.60, which is similar to flipping a coin and highly
unacceptable (see Fig. 5).

5) There are no clear patterns regarding increasing epistasis effect size leading to
increased exact or signal sensitivity.

Results: LD impact on type I error
LD between SNPs gave rise to conservative performance of MB-MDR. Type I error esti-
mates were below 1% for all LD block scenarios and every LD pruning thresholding (see
Table 6).
The type I error estimates from the null data suggest that a two-locus test between

two SNPs does not occur frequently by chance, whatever the LD blocks settings. The fact
that no signals were identified in the null data may be somewhat surprising. In Cattaert
et al. [37], type I error estimates were around 5% for all scenarios considered, in line with
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Table 5 Sensitivity results of MB-MDR to detect two locus model of pure epistatic interaction in 1200
simulated datasets with real human genome LD patterns, for 3 effect sizes and after 5 LD pruning
levels

LD block setting LD pruning Effect Size Exact Signal Sensitivity

Sensitivity − − − − − − − − − − − − − − − − −−
tag-SNP condition tag-SNP condition

LD r2 ≥ 0.45 LD r2 ≥ 0.20

A unpruned β3 = 0.90 0.61 0.67 0.73

Two SNPs β3 = 0.75 0.55 0.65 0.77

in same β3 = 0.50 0.70 0.85 0.89

LD block LD r2 ≤ 0.75 β3 = 0.90 0.01 0.90 0.91

β3 = 0.75 0.04 0.92 0.94

β3 = 0.50 0.03 0.93 0.93

LD r2 ≤ 0.60 β3 = 0.90 0.01 0.93 0.94

β3 = 0.75 0.00 0.94 0.94

β3 = 0.50 0.01 0.92 0.94

LD r2 ≤ 0.50 β3 = 0.90 0.00 0.91 0.92

β3 = 0.75 0.00 0.90 0.91

β3 = 0.50 0.01 0.91 0.95

LD r2 ≤ 0.20 β3 = 0.90 0.00 0.61 0.74

β3 = 0.75 0.00 0.69 0.80

β3 = 0.50 0.01 0.66 0.84

B unpruned β3 = 0.90 0.54 0.75 0.75

Two SNPs β3 = 0.75 0.46 0.70 0.71

in middle β3 = 0.50 0.41 0.75 0.76

of two LD r2 ≤ 0.75 β3 = 0.90 0.64 0.91 0.91

separate β3 = 0.75 0.58 0.91 0.91

LD blocks β3 = 0.50 0.44 0.93 0.94

LD r2 ≤ 0.60 β3 = 0.90 0.49 0.92 0.92

β3 = 0.75 0.41 0.93 0.93

β3 = 0.50 0.27 0.94 0.95

LD r2 ≤ 0.50 β3 = 0.90 0.39 0.92 0.92

β3 = 0.75 0.32 0.93 0.93

β3 = 0.50 0.23 0.94 0.95

LD r2 ≤ 0.20 β3 = 0.90 0.19 0.57 0.81

β3 = 0.75 0.16 0.69 0.91

β3 = 0.50 0.21 0.83 0.92

C unpruned β3 = 0.90 0.18 0.33 0.43

One SNP β3 = 0.75 0.23 0.36 0.49

in a block β3 = 0.50 0.18 0.36 0.51

and one LD r2 ≤ 0.75 β3 = 0.90 0.0 0.65 0.74

in the edge β3 = 0.75 0.0 0.72 0.83

of a separate β3 = 0.50 0.0 0.57 0.76

LD block LD r2 ≤ 0.60 β3 = 0.90 0.0 0.56 0.74

β3 = 0.75 0.0 0.59 0.81

β3 = 0.50 0.0 0.47 0.74

LD r2 ≤ 0.50 β3 = 0.90 0.0 0.48 0.71

β3 = 0.75 0.0 0.50 0.81

β3 = 0.50 0.0 0.36 0.70

LD r2 ≤ 0.20 β3 = 0.90 0.0 0.07 0.60

β3 = 0.75 0.0 0.05 0.62

β3 = 0.50 0.0 0.04 0.57
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Table 5 Sensitivity results of MB-MDR to detect two locus model of pure epistatic interaction in 1200
simulated datasets with real human genome LD patterns, for 3 effect sizes and after 5 LD pruning
levels (Continued)

LD block setting LD pruning Effect Size Exact Signal Sensitivity

Sensitivity − − − − − − − − − − − − − − − − −−
tag-SNP condition tag-SNP condition

LD r2 ≥ 0.45 LD r2 ≥ 0.20

D unpruned β3 = 0.90 0.39 0.68 0.82

Two SNPs β3 = 0.75 0.40 0.69 0.81

on LD blocks β3 = 0.50 0.58 0.76 0.84

of separate LD r2 ≤ 0.75 β3 = 0.90 0.18 0.86 0.94

chromosomes β3 = 0.75 0.18 0.93 0.99

β3 = 0.50 0.23 0.84 0.90

LD r2 ≤ 0.60 β3 = 0.90 0.14 0.87 0.94

β3 = 0.75 0.13 0.93 0.98

β3 = 0.50 0.17 0.85 0.90

LD r2 ≤ 0.50 β3 = 0.90 0.13 0.85 0.92

β3 = 0.75 0.13 0.93 0.97

β3 = 0.50 0.16 0.83 0.89

LD r2 ≤ 0.20 β3 = 0.90 NA NA NA

β3 = 0.75 0.10 0.67 0.86

β3 = 0.50 0.17 0.75 0.84

the property of step-down maxT p-value adjustments, in that at least weak control of
FWER is ensured. Notably, their simulated null data assumed no LD between markers.
Here, strong LD between markers may induce violations of the maxT’s subset pivotality
assumption [40]. It seems that for the genotype data we generated, based on real-life LD
patterns, the epistasis detection procedure is over conservative. Whether this holds in
general for null data with correlated SNPs, warrants further investigation. On the positive
side, these results do not downplay previously obtained power estimates.

Discussion
The detection of biological epistasis via SNPs remains one of the biggest challenges in
genetic epidemiology due the inherent computational, mathematical/statistical complex-
ities of the problem. Some of these complexities include the curse of dimensionality, the
winner’s curse, genetic heterogeneity, absence of main effects, redundancies or depen-
dencies (LD) between SNPs. The present study investigates the effect of real human
linkage disequilibrium patterns on gene-gene interaction detections. The LD patterns
were extracted from the Human 1000 Genomes Project public repository database ([30],

Table 6 False positive rates (type I error) estimation in % for different LD patterns and pruning levels

LD LD block settings:

pruning A B C D

unpruned < 1% < 1% < 1% < 1%

LD
(
r2

)
0:75 < 1% < 1% < 1% < 1%

LD
(
r2

)
0:60 < 1% < 1% < 1% < 1%

LD
(
r2

)
0:50 < 1% < 1% < 1% < 1%

LD
(
r2

)
0:20 < 1% < 1% < 1% < 1%

Null data with no disease association to the investigated pair of SNPs as disease susceptibility loci
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see also International HapMap Consortium [28, 29]). Different scenarios of pure epistatic
effect sizes in different LD block combinations for a non-fully penetrant genetic model
of a disease of interest were simulated. The minor allele frequencies of the causal
variants were set to 0.05 and 0.40 so as to mimick Ankylosing Spondylitis disease preva-
lence in a general population [33]. The broad sense heritabilities associated to the pure
epistatic interaction effect sizes in our simulated datasets were h2 = 0.059, 0.071, 0.083,
simulating a narrower range in effect sizes than in the Grady et.al. pioneering study
[39]. The genetic model implemented in our study along with the odds ratios effect
sizes for disease risk and the genotype penetrance table were inspired from the sus-
pected pure biological epistatic effect between ERAP1 and HLA-B*27 in Ankylosing
Spondylitis affecting the general population with British ancestry with a prevalence of
∼1% [33, 36].

Realistic simulations to investigate the impact of GPD on epistasis analyses

We are not the first ones who studied LD in the context of epistasis screening. In relation
to multifactor dimensionality reduction strategies, we are aware of the work of Grady and
co-authors [39]. Our study differs from theirs in several ways:

a) We considered LD patterns from real-life data, in particular from the HapMap3
and 1000 Genomes Project, rather than customized LD profiles. Indeed, in their
work, Grady et al. [39] did not use real LD patterns from HapMap projects; The
HapMap3 and 1000 Genomes Project data were not available in 2011. They
simulated their own LD patterns instead, using a software called genomeSIMLA

that is no longer supported and fails to compile with current versions of C++
compilers. Other software packages producing real LD pattern, such as Hapgen2
[41], cannot directly implement epistatic interactions between genetic loci;
appropriate R packages need to be used in complement to Hapgen2. Alternatively,
epiSIM [42] to simulate epistasis with Markov Chains can be employed, but again
independent from real-life LD patterns or pairwise SNP correlation structures. We
have developed our own scripts in Python, using the simuPOP libraries [31, 32], to
combine both real-life templated genomic data generation with epistasis models of
interest superimposed.

b) We took the LD patterns from a presumably homogeneous single subpopulation
(GBR ancestry). We checked that this subpopulation could be considered
unstructured using the genomic control algorithm approach [43] and the fixation
index approach (results not presented here). Our datasets did not show evidence
of stratification. The presence of individuals from different populations with
different genetic origins within a panel can produce LD between unlinked loci
because of differences of allele frequencies. Such stratification can lead to a bias
estimates of LD, which may increase the rate of false positive LD structure [44].
Notably, genotyped individuals in the sample that are not independent may also
lead to biased estimations of LD [45]. Causal SNP pairs were selected in such a way
that they covered different areas of an LD block (e.g., in the middle or at a
boundary).

c) We fully and explicitely defined pure epistasis for a causal SNP pair based on
epistasis findings in Ankylosing Spondylitis [33, 36], one of the rare evidences for
replicable epistasis with a biological underpinning in humans.
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d) We used relatively small epistasis effect sizes resulting in a narrow range of
heritabilities. Polderman et al. [46] observed that for most human complex traits,
out of nearly 18,000 traits, the trait variation can mainly be attributed to additive
genetic variation. Hence, we feel that our heritability range h2 < 10%may be more
realistic than the ones investigated by Grady et al. [39], in the range of 5% − 25%.

e) We assessed the impact of LD pruning, before, and exploitation of various tag-SNP
block definitions, after, the analysis with the (MB)-MDR algorithm on statistical
sensitivity, using r2 as a measure of LD. Grady and co-authors were one of the first
authors to consider signal sensitivity and the impact of LD in the context of
epistasis screening and dimensionality reduction. They defined signal sensitivity by
the number of times out of 100 synthetic data replicates for which MDR chose a
best model involving SNPs for which the measure of association between SNP and
functional locus was D′ ≥ 0.90. We used r2 as it can be used as both a measure of
LD and GPD, and it is commonly used in the context of genome-wide association
studies with a direct interpretation. Indeed, a GWAS sample size must be increased
by a factor of 1/r2 to detect an unmeasured genetic variant, compared to the
sample size for testing the variant itself. Analytically, a vast number of tools exist to
identify statistical epistasis using SNPs (see for overviews and references for
instance in [15, 21, 37, 47]). This number is likely to increase with investigators
from deep learning communities entering the field. We singled out one such tool,
namely Model-Based Multifactor Dimensionality Reduction (MB-MDR). At its
conception in 2007-2008 [48, 49], it was templated on principles of Multifactor
Dimensionality Reduction (MDR) [50]. It further developed into a framework
dealing with some of the shortcomings of MDR, which are described and discussed
in [37], dealing with different trait types (binary, continuous, time-to-survival,
censored) and study designs (independent or related individuals). Compared to
MDR and related multifactor dimensionality reduction methods [51], MB-MDR
breaks with cross-validation testing but dedicates computation time to appropriate
association (contrasts) tests for the data at hand and a resampling-based Westfall
and Young step-down maxT adjusted p-values implementation [40] to assess
statistical significance of SNP pairs [26]. The MB (Model-Based) part of MB-MDR
mainly refers to the ability to adjust for lower-order effects and to test for epistasis
conditional on main effects [52].

Flexible definitions of sensitivity and false positive rate

It is no surprise that also in our study signal sensitivity estimates exceed exact sensi-
tivity (results observations 1 and 2), as for the first, the signal is expanded over sets of
genetic markers comprised of at least 2 SNPs. It makes sense to define such sets based
on SNPs being in LD, but alternative definitions are possible (see later). The larger the
sets of proxy’s to the functional SNPs, the larger the capture probability of the disease sig-
nal. Over all considered simulation settings, the exact sensitivities were in the range of
18% − 70% for unpruned data (compared to 93% − 100%, in the absence of LD between
simulated markers, as in [37]. This suggests that the presence of LD may not be as a merit
in GWAIS as it is in main effects GWAS, even in relatively small datasets (i.e., number
of markers) for which the multiple testing burden is less pronounced. Notably, any def-
inition of power should be seen in the context of the test’s performance on type I error
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control. Depending on the method, type I error control may refer to different things. For
instance, let us take the example of MB-MDR and MDR, both belonging to the same
family of epistasis detection tools, namely those relying on an internal multifactor dimen-
sionality reduction step of multiloci genotypes. In a detailed study of MB-MDR for binary
traits [37], we have computed false positive rates for MB-MDR as the proportion of null
data sets that highlight at least one significant MB-MDR pair (corrected for multiple test-
ing). For MDR the equivalent is the proportion of null data sets for which the best model
is found significant. Hence, this false positive rate is a simple rate for MDR which only
proposes a single best model, but evaluates family-wise (FWER) for MB-MDR which
possibly reveals multiple (competing) significant epistasis models. Regardless of these dif-
ferent connotations, we showed before that MB-MDR adequately maintains FWER to 5%
in a variety of error-free scenarios, whereas MDR showed a tendency for slightly elevated
FWER estimates. The considered error-free scenarios assumed no dependencies between
genetic markers, though. It is to be expected that FWER increases with increasing degrees
of allelic association between SNPs. Studying this in depth, hereby comparing multiple
epistasis tools comprising representatives of the entire spectrum of machine learning,
mathematical and statistical methodologies was beyond the scope of this study, but would
be valuable, especially when extending the concept of FWER from exact to signal FWER
in a similar way as we have done for “power” (exact, signal sensitivity).
The type I error estimates from the null data suggest that a two-locus test between two

SNPs does not occur frequently by chance whatever the LD blocks settings.
The fact that no signals were identified in the null data may be somewhat surprising.

In Cattaert et al. [37], type I error estimates were around 5% for all scenarios considered,
in line with the property of step-down maxT p-value adjustments, in that at least weak
control of FWER is ensured. Notably, their simulated null data assumed no LD between
markers. Here, strong LD between markers may induce violations of the maxT’s subset
pivotality assumption [51]. It seems that for the genotype data we generated, based on
real-life LD patterns, the epistasis detection procedure is over conservative. Whether this
holds in general for null data with correlated SNPs, warrants further investigation. On the
positive side, these results do not downplay previously obtained power estimates.
A bit of a surprise was the absence of a clear relationship between epistasis effect

size and power (results observation 5), for both exact and signal sensitivity assessments.
On the other hand, the same observation was also made before by Grady et al. [39].
In addition, comparison of Fig. 5 with Fig. 6 suggests a complex interplay between tag-
SNP block definition and pruning scheme. Our block definitions based on r2 of 0.20
or 0.45 may not make much sense on real-life data, but they do show that it is abso-
lutely insensible to prune the data at lower thresholds than used to define tag-SNP
blocks.

Pre-analysis LD pruning thresholds

The drawback of LD-pruning SNPs to reduce the number of SNPs included in an epis-
tasis screening is that it may eliminate true causal variants from the search pool and
thus that technically, the only way to detect the epistasis signal is by using tag-SNP block
definitions. We have seen that exact sensitivity is highly dependent on the LD-patterns
in which the causal loci are hidden (results observation 3). In setting C (DSL 1 × DSL
2 C), DSL 2 C causal SNP is at the boundary of an LD block (see Fig. 2); this setting
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performed the worst in terms of exact sensitivity (notably, even in terms of signal sensi-
tivity). However, there is also a clear added value of performing LD-pruning prior to an
epistasis screening. LD pruning increases the signal sensitivity as compared to no prun-
ing at all (results observation 4). A possible explanation is that LD pruning results in
removal of multicollinear pairs of SNPs, which would otherwise lead to redundant epis-
tasis top findings and would hamper other pairs of SNPs to reach statistical significance
due to the multiple testing burden. Too liberal LD pruning (e.g. at r2 ≤ 0.20) will make
the difference between causal SNP and tag-SNP block around it too little and thus signal
sensitivity will converge to exact sensitivity. In our simulated data, for all settings (A, B, C
and D) and for the signal sensitivity calculated with the largest tag-SNP subset (retaining
SNPs with correlations r2 ≥ 0.20 to the causal SNPs), there was not much difference
in signal sensitivity achieved after pruning, whether the LD pruning was done at r2 =
0.75, 0.60 or 0.50. This is not surprising, given the data reported in Table 4: the num-
ber of tag-SNPs for DSL 2 A, B and C hardly varied when an r2 threshold of 0.20-0.75
was used. The situation is different for DSL 2 D, but also here the number of tag-SNPs
was fairly stable for r2 thresholds of 0.55-0.75. Hence, although seemingly harsher r2

pruning may give similar performance, it may not have resulted in larger reductions in
number of SNPs for MB-MDR testing. Therefore it is important to thoroughly under-
stand the LD/GPD structure in the data and to adequately estimate SNP correlations, in
unbiased ways.

Post-analysis LD block algorithms

Our results raise questions about how LD-pruning algorithms or LD-block estimation
algorithms actually work. For instance, what is the behaviour of these algorithms at
boundaries of LD blocks? Are SNPs at the boundary of such a block more likely to be
filtered out during LD-pruning? Is it sensible to work with asymmetric tag-SNP blocks,
such as those induced by LD-blocks around SNPs? Regarding pruning strategies, ear-
lier work of ours and unpublished work already showed their impact on final epistasis
results, across different analytic epistasis detection tools [53]. For instance, whereas
BOOST (logistic regression - [54]) generated over 2000 statistically significant inter-
action SNP pairs after pruning, a non-overlapping set of 200 significant SNP pairs
were obtained when no pruning was applied prior to epistasis modelling. On the same
unpruned SNP set of 500,000 SNPs MB-MDR (dimensionality reduction) generated
6500 statistically significant interaction SNP pairs, whereas a subset of approximately
half of the aforementioned 6500 significant SNP pairs after pruning. Whereas MB-MDR’s
maxT based significance assessment suffers from false positives, due to harmful multi-
collinearity between SNPs, more than BOOST’s Bonferroni correction, it is comforting
that MB-MDR’s strategy for the detection of interacting SNP pairs does not increase the
number of significant results when reducing the input SNP-set, in contrast to BOOST’s
most commonly used implementation. Hence, when interpreting epistasis findings one
cannot decouple the data preparation step (incl. reduction of SNPs, possibly based on
prior knowledge about biological interactions – see also Biofilter [55]) from the char-
acterizing components of the chosen analytic tool and the implemented significance
assessment algorithms (incl., multiple testing correction), as also argued in [21]. It would
be interesting to see new machine learning based epistasis detection tools with built-in
“minimum redundancy maximum relevance” feature selection procedures. In general, a
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feature selection (pruning) scheme is of interest that chooses (resp., results in) a subset
of SNPs that can predict others with small probability error. Notably in [53], prun-
ing was performed considering sliding windows of size 50 (i.e., 50 SNPs) with window
increments of 1 marker. For any pair of markers in such a window with r2 > 0.75
the first SNP in the pair was discarded, as implemented in SVS Version 7.5 (Golden
Helix, Inc.) [56]. PLINK 1.07/1.9 take a different approach than SVS: SNPs are recursively
being removed in sliding windows based on a Variance Inflation Factor (VIF) thresh-
old to detect multicollinearity between SNPs or on pairwise SNP correlations r2 with
a greedy SNP removal procedure and r2 based on genotypic correlations or via maxi-
mum likelihood phasing. These pruning strategies assume that redundancy is removed
within a window, which is different from an LD-block, defined as a set of consecutive
genetic markers with relatively little recombination within. Other methods explicitly
take into account reference genotypes to determine LD-blocks and to select tag-SNP
representatives in bins of highly correlated SNPs (e.g., see references in [57]). Sliding win-
dow based rather than LD-block based tag-SNP selection is not so much of a problem
when the aim is to remove multicollinearity between SNPs, but surely is when inter-
preting epistasis results towards causality and bridging the gap between statistical and
biological epistasis.
There are several ways to detect LD-blocks. One is the four gamete test of Hudson and

Kaplan (1985) [58]. These authors defined a segment of bi-allelic SNPs as a “block” if
between every pair of SNPs at most 3 out of 4 gametes were observed. Another is based on
rejecting the hypothesis that 95% of pairs of SNPs in the “block” are in linkage equilibrium.
Yet another is based on “haplotype blocks”, representing regions that are inherited with-
out substantial recombination in the ancestors of the current population [59]. Haplotype
blocks truly rely on the concept of LD – allelic association and linkage – commonly being
measured by Pearson correlation r2. In essence, the latter measure is only a measure of
allelic association and restricting to sliding windows ignores the fact that LD-blocks vary
in length depending on the occurrence of recombination sites. Several studies have been
built around understanding and estimating recombination rates in human genomes (e.g.,
[60]). Since the beginning of the 21st century, with the availability of HapMap data, sev-
eral empirical strategies have been proposed to detect the boundaries of haplotype blocks
with reference panels (see [61] and references therein). However, depending on study
design and analytic strategy for LD estimation, biased estimates may be obtained [62].
Several analyses using r2, such as in the PLINK software (1.07), hypothesize that the
extent of r2 around the causal polymorphism depends only on a drift-recombination
process in a randomly mating population without selection. In real life data, this assump-
tion may be violated [63]. Also, in highly related samples, r2 overestimates the true LD
value. This is of a concern when related samples are used for epistasis analysis, such
as in FAM-MDR [64], and appropriate corrections need to be made for kinship when
estimating LD-block structures (Mangin et al. [65]). The estimate proposed by Man-
gin and co-authors also corrects for population structure, which is useful in the context
of multi-center meta-epistasis analyses and interpreting results at the level of tag-SNP
blocks, in line with our simulation study. As the true functional SNP pairs are typi-
cally unknown in real-life data, more work is needed to define significant interaction at
the block-level, similar to developments in epistasis research that take genes as units of
analyses [66].
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Conclusions
There is a clear advantage of removing SNP redundancy prior to statistical epistasis
screening in the search for gene × gene interactions with SNP panels: pruning avoids
increases in false positives (redundant epistasis), due to multicollinear SNPs or due
to multiple testing strategies that inadequately take dependencies between tests into
account. Such dependencies may be highly complex and driven by complex LD patterns
between SNPs, which are population dependent. This advantage comes with a caveat,
namely that important actors may have been eliminated, hereby reducing exact sensi-
tivity (i.e., the power to detect the exact functional interacting pair of SNPs). Although
we have exemplified this for the first time in the context of Model-Based Multifactor
Dimensionality Reduction as analytic epistasis detection framework, we have argued that
similar conclusions are to be expected in other contexts as well, although with different
degrees of impact.
LD-pruning based on r2 at a threshold of 0.75, proposed by Gusareva et al. [20], remains

to be an overall good strategy in the synthetic scenarios considered. It optimises sig-
nal sensitivity compared to no pruning at all. Specific data contexts may allow lowering
this threshold; this is making the definition of redundancy between markers less strin-
gent. There is a complex interplay between the adopted pruning strategy prior to epistasis
screening and the adopted LD-block definition or assessment, that both determine the
impact on signal sensitivity. This is already the case when restricting attention to a single
pruning methodology (e.g., removal of SNPs via pairwise SNP correlations r2 exceeding a
threshold within sliding windows), only varying the threshold for redundancy. At this pre-
analysis stage, we are not concerned about the causes of multicollinearity, which could be
a mere artefact of the collected samples without any biological or population evolutionary
underpinning. We are concerned with such causes and unbiased estimation of LD-blocks
for the interpretation of epistasis results at the LD-block level, rather than at the SNP
level.

Code availability
The MB-MDR software can be downloaded from http://bio3.giga.ulg.ac.be/. The algo-
rithms to compute both exact sensitivity and signal sensitivity are implemented in a
customized Python program embedded in a job script to scan 100 MB-MDR output files
automatically, for all considered scenarios. Both programming code and simulated data
are available upon request (marc.joiret@uliege.be).

Acknowledgements
The authors would like to acknowledge all BIO3 members, in particular Myriam Nemry, Fentaw Abegaz and Sandra
Negro, who stimulated discussions and helped in improving the simulation set-up. KVS acknowledges WELBIO and
funding received for DESTinCT-Detecting Statistical Interaction in Complex Traits (ref: WELBIO-CR-2015S-03(R)).

Authors’ contributions
This work was carried out during an internship of MJ at the BIO3 group of KVS as a master thesis project in
Statistics-Bioinformatics at UHasselt University, Belgium. MJ designed the logistic regression model of the disease odds
ratio conditioned on a pair of pure epistatic genotypes for the synthetic datasets, incorporated existing real human LD
patterns from the 1000 Genomes project, generated the 1200 simulation datasets (4 LD blocks × 3 effect sizes × 100
retrospective case-control datasets with 1000 subjects in each cohort), conducted the MB-MDR performance analysis,
after 5 LD pruning levels and drafted the manuscript. JMH and EG performed the pilot work, including extensive
simulation studies and multiple real-life data analyses driving parameter settings employed in the current work. KVS
delineated the scope and outline of the study to address the impact of LD on large-scale DNA based gene-gene
interaction detections with MB-MDR and contributed to the writing. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

http://bio3.giga.ulg.ac.be/


Joiret et al. BioDataMining           (2019) 12:11 Page 22 of 23

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1BIO3, GIGA-R Medical Genomics, Avenue de l’Hôpital 1-B34-CHU, 4000 Liège, Belgium. 2Biomechanics Research Unit,
GIGA-R in-silico medicine, Liège, Avenue de l’Hôpital 1-B34-CHU, 4000 Liège, Belgium. 3WELBIO researcher, Avenue de
l’Hôpital 1-B34-CHU, 4000 Liège, Belgium.

Received: 17 January 2019 Accepted: 9 May 2019

References
1. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012;8(12):1–11.
2. Kirby DA, Muse SV, Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl

Acad Sci USA. 1995;92:9047–51.
3. Schmidt KJ, Törjèk O, Meyer R, Schmuths H, Hoffmann MH, Altmann T. Evidence for a large-scale population

structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor Appl Genet.
2006;112:1104–14.

4. Behrouzi P, Wit EC. Detecting epistatic selection with partially observed genotype data by using copula graphical
models. Appl Stat. 2019;68:141–60.

5. Sabeti, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:
832–7.

6. Koch E, Ristroph M. Long Range Linkage Disequilibrium across the Human Genome. PLoS ONE. 2013;8(12):e80754.
https://doi.org/10.1371/journal.pone.0080754.

7. Lewontin RC, Kojima K. The Evolutionary Dynamics of Complex Polymorphisms. Evolution. 1960;14(4):458–72.
8. Walsh B, Lynch M. Evolution and selection of quantitative traits. Oxford: Oxford University Press; 2018.
9. Kam-Thong, et al. EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing

units. Eur J Hum Genet. 2011;19(4):465–71.
10. Wang X, Elston RC, Zhu X. The Meaning of Interaction. Hum Hered. 2011;70(4):269–77.
11. Sham PC, Cherry SS. Chapter 1: Genetic Architecture of Complex Diseases. In: Zeggini E, Morris A, editors. Analysis

of Complex Disease Association Studies-A Practical Guide. London: AP Elsevier; 2011.
12. Evans DM. Chapter 12: Gene-Gene Interaction and Epistasis. In: Zeggini E, Morris A, editors. Analysis of Complex

Disease Association Studies-A Practical Guide. London: AP Elsevier; 2011.
13. Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265:2037–48.
14. Moore JH, Williams SM, Ritchie MD. Traversing the conceptual divide between biological and statistical epistasis:

systems biology and a more modern synthesis. BioEssays. 2005;27:637–46.
15. Van Steen K. Travelling the world of gene-gene interactions. Brief Bioinforma. 2012;13(1):1–19.
16. Bateson W. Mendel’s Principles of Heredity. Cambridge: Cambridge University Press; 1909.
17. Fisher RA. The Correlation between Relatives on the Supposition of Mendelian Inheritance. Trans R Soc Edimb.

1918;52:399–433.
18. Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet. 2009;10:392–404.
19. Moore JH. A global view of epistasis. Nat Genet. 2005;37(1):13–4.
20. Gusareva ES, Van Steen K. Practical aspects of genome-wide association interaction analysis. Hum Genet.

2014;133(11):1343–58.
21. Ritchie MD, Van Steen K. The search for gene-gene interactions in genome-wide association studies: challenges in

abundance of methods, practical considerations, and biological interpretation. Ann Transl Med. 2018;6(8):157.
22. Moore JH, Shestov M, Schmitt P, Olson RS. A heuristic method for simulating open-data of arbitrary complexity

that can be used to compare and evaluate machine learning methods. Pac Symp Biocomput. 2018;23:259–67.
23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ,

Sham PC. PLINK: A tool Set for Whole-Genome Association and Population-Based Linkage Analysis. Am J Hum
Genet. 2007;81:559–75.

24. PLINK 1.9. www.cog-genomics.org/plink/1.9/. Accessed 22 May 2019.
25. Calus MPL, Vandenplas J. SNPrune: an efficient algorithm to prune large SNP array and sequence datasets based on

high linkage disequilibrium. Genet Sel Evol. 2018;50(34):1–15.
26. Van Lishout F, Gadaleta F, Moore JH, Wehenkel L, Van Steen K. gammaMAXT: a fast multiple testing correction

algorithm. BioData Min. 2015;8(36):1–15.
27. International Hapmap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.
28. International Hapmap Consortium. A second generation of human haplotype map of over 3.1 million snps. Nature.

2007;449:851–61.
29. International Hapmap Consortium. Integrating common and rare genetic variation in diverse human populations.

Nature. 2010;467:52–8.
30. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature.

2012;491:56–65.
31. Peng B, Kimmel M. simuPOP: a forward-time population genetics simulation environment. Bioinformatics.

2005;21(18):3686–7.
32. Peng B, Kimmel M, Amos CI. Forward-time population genetics simulations-Methods, implementation, and

applications. Hoboken: Wiley-Blackwell; 2012.
33. Evans, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the

mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43(8):761–7.
34. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics.

2005;21(2):263–5.

https://doi.org/10.1371/journal.pone.0080754
www.cog-genomics.org/plink/1.9/


Joiret et al. BioDataMining           (2019) 12:11 Page 23 of 23

35. MB-MDR 4.4.1 or 4.4.2. http://bio3.giga.ulg.ac.be/index.php/software/MB-MDR. Accessed 22 May 2019.
36. Cortes A, et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve

further epistasis with ERAP1. Nat Commun. 2015;6:7146. https://doi.org/10.1038/ncomms8146.
37. Cattaert T, Luz Calle M, Dudek SM, Mahachie John JM, Van Lishout F, Urrea V, Ritchie MD, Van Steen K. Ann Hum

Genet. 2011;75(1):78–89.
38. Van Lishout F. An efficient and flexible software tool for genome wide association interactions studies. PhD thesis:

Liège University, Applied Sciences Faculty, Engineering Department; 2016. http://hdl.handle.net/2268/197972.
Accessed 22 May 2019.

39. Grady BJ, Torstenson ES, Ritchie MD. The effects of linkage disequilibrium in large scale datasets for MDR. BioData
Min. 2011;4(1):1–13.

40. Westfall P, Young S. Resampling-based Multiple Testing: Examples and Methods for P-value Adjustment. New York:
John Wiley & Sons; 1993.

41. Su Z, Marchini J, Donelly P. HAPGEN2: simulation of multiple disease SNPs. Bioinformatics. 2011;27(16):2304–5.
42. Shang J, Zhang J, Lei X, Zhao W, Dong Y. EpiSIM: simulation of multiple epistasis, linkage disequilibrium patterns

and haplotype blocks for genome-wide interaction analysis. Genes Genom. 2013;35:305–16.
43. Devlin B, Roeder K. Genomic Control for Association Studies. Biometrics. 1999;55:997–1004.
44. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. Variance component model to

account for sample structure in genome-wide association studies. Nat Genet. 2010;42(4):348–54.
45. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, et al. A unified mixed model method for association

mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.
46. Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visher M, Posthuma D. Meta-analysis of

the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.
47. Niel C, Sinoquet C, Dina C, Rocheleau G. A survey about methods dedicated to epistasis detection. Front Genet.

2015;6:285.
48. Calle ML, Urrea V, Mallats N, Van Steen K. MB-MDR: model-based multifactor dimensionality reduction for detecting

interactions in high-dimensional genomic data. Spain: Department of Systems Biology, Universitat de Vic, Vic; 2008.
49. Calle ML, Urrea V, Vellalta G, Malats N, Van Steen K. Improving strategies for detecting genetic patterns of disease

susceptibility in association studies. Stat Med. 2008;27:6532–46.
50. Ritchie MD, Hahn LW, Roodi N, Bailey R, Dupont WD, Parl FF, Moore JH. Multifactor dimensionality reduction

reveals high order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet.
2001;69(1):138–47.

51. Gola D, Mahachie John JM, Van Steen K, Konig I. A roadmap to multifactor dimensionality reduction methods. Brief
Bioinform. 2016;17(2):293–308.

52. Mahachie John JM, Cattaert T, Van Lishout F, Gusareva ES, Van Steen K. Lower-Order Effects Adjustment in
Quantitative Traits Model-Based Multifactor Dimensionality Reduction. PLoS ONE. 2012;7(1).

53. Bessonov K, Gusareva ES, Van Steen K. A cautionary note on the impact of protocol changes for genome-wide
association SNP x SNP interaction studies: an example on ankylosing spondylitis. Hum Gent. 2015;134:761–73.

54. Wan X, Yang C, Yang Q, Hue H, Fan X, Tang NL, Yu W. BOOST: A fast approach to detecting gene-gene
interactions in genome-wide case-control studies. Am J Hum Genet. 2010;87(3):325–40.

55. Bush WS, Dudek SM, Ritchie MD. Biofilter: A Knowledge-Integration System for the Multi-Locus Analysis of
Genome-Wide Association Studies. Pac Symp Biocomput. 2009;368–79.

56. Bozeman M. Golden Helix, Inc. SNP and Variation Suite, Version 7.x (software). 2015. SNP and variation Suite.
http://goldenhelix.com/products/SNP_Variation/. Accessed 22 May 2019.

57. Sicotte H, et al. SNPPicker: High quality tag SNP selection across multiple populations. BMC Bioinformatics.
2011;12:129. https://doi.org/10.1186/1471-2105-12-129.

58. Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in the history of a sample of
DNA sequences. Genetics. 1985;111(1):147–64.

59. Gabriel SB, Schaffner SF, et al. The structure of haplotype blocks in the human genome. Science. 2002;296:2225–9.
60. Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide

polymorphism data. Genetics. 2004;167(2):2213–33.
61. Berisa T, Pickrell JK. Approximately independent linkage disequilibrium blocks in human populations.

Bioinformatics. 2016;32(2):283–5.
62. Pe’er I, et al. Biases and reconciliation in estimates of linkage disequilibrium in the human genome. Am J Human

Genet. 2006;78(4):588–603.
63. Gazal S, et al. Linkage disequilibrium dependent architecture of human complex traits shows action of negative

selection. Nat Genet. 2017;49(10):1421–7.
64. Cattaert T, Urrea V, Naj AC, De Lobel L, De Wit V, et al. FAM-MDR: A Flexible Family-Based Multifactor

Dimensionality Reduction Technique to Detect Epistasis Using Related Individuals. PLoS ONE. 2010;5(4):e10304.
https://doi.org/10.1371/journal.pone.0010304.

65. Mangin B, et al. Novel measures of linkage disequilibrium that correct the bias due to population structure and
relatedness. Heredity. 2012;108(3):285–91.

66. Ma L, Clark AG, Keinan A. Gene-Based Testing of Interactions in Association Studies of Quantitative Traits. PLoS
Genet. 2013;9(2):e1003321. https://doi.org/10.1371/journal.pgen.1003321.

http://bio3.giga.ulg.ac.be/index.php/software/MB-MDR
https://doi.org/10.1038/ncomms8146
http://hdl.handle.net/2268/197972
http://goldenhelix.com/products/SNP_Variation/
https://doi.org/10.1186/1471-2105-12-129
https://doi.org/10.1371/journal.pone.0010304
https://doi.org/10.1371/journal.pgen.1003321

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Introduction
	Methods
	Forward time simulation models to generate realistic genetic profiles for individuals
	Step 1
	Step 2
	Step 3
	Step 4

	Generating a genetic disease trait determined by two epistatic causal loci DSL 1 and DSL 2
	Carrying out statistical epistasis analyses
	Criteria to assess performance
	Type I errors assessment

	Results: LD impact on power
	Results: LD impact on type I error
	Discussion
	Realistic simulations to investigate the impact of GPD on epistasis analyses
	Flexible definitions of sensitivity and false positive rate
	Pre-analysis LD pruning thresholds
	Post-analysis LD block algorithms

	Conclusions
	Code availability
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

