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Abstract

Background: ReliefF is a nearest-neighbor based feature selection algorithm that
efficiently detects variants that are important due to statistical interactions or
epistasis. For categorical predictors, like genotypes, the standard metric used in
ReliefF has been a simple (binary) mismatch difference. In this study, we develop
new metrics of varying complexity that incorporate allele sharing, adjustment for
allele frequency heterogeneity via the genetic relationship matrix (GRM), and
physicochemical differences of variants via a new transition/transversion
encoding.

Methods: We introduce a new two-dimensional transition/transversion genotype
encoding for ReliefF, and we implement three ReliefF attribute metrics: 1.)
genotype mismatch (GM), which is the ReliefF standard, 2.) allele mismatch (AM),
which accounts for heterozygous differences and has not been used previously
in ReliefF, and 3.) the new transition/transversion metric. We incorporate these
attribute metrics into the ReliefF nearest neighbor calculation with a Manhattan
metric, and we introduce GRM as a new ReliefF nearest-neighbor metric to
adjust for allele frequency heterogeneity.

Results: We apply ReliefF with each metric to a GWAS of major depressive
disorder and compare the detection of genes in pathways implicated in
depression, including Axon Guidance, Neuronal System, and G Protein-Coupled
Receptor Signaling. We also compare with detection by Random Forest and
Lasso as well as random/null selection to assess pathway size bias.

Conclusions: Our results suggest that using more genetically motivated
encodings, such as transition/transversion, and metrics that adjust for allele
frequency heterogeneity, such as GRM, lead to ReliefF attribute scores with
improved pathway enrichment.

Keywords: Machine learning, Feature selection, Genome-wide association study
(GWAS), Genetic relationship matrix (GRM), Transition and transversion
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Background
ReliefF is a nearest-neighbors feature selection algorithm that is known for its ability to

identify statistical interactions in high dimensional data [1, 2]. Specifically, it has been

shown to identify gene-gene interaction effects in simulated and real genome-wide associ-

ation studies (GWAS) [2]. ReliefF uses what is called a “diff” function to determine nearest

neighbors in the space of single nucleotide polymorphisms (SNPs) and to compute the

importance of a SNP based on its ability to separate cases and controls in the SNP space.

While ReliefF analysis of GWAS data depends critically on its ability to measure the

degree of dissimilarity between genotype states, the diff function used up to this point

has been extremely simple. For example, the standard ReliefF genotype diff between

two subjects is binary: the diff is 0 when the genotypes of the two subjects at a SNP are

identical and 1 if their genotypes are not identical. The distance between a pair of subjects

is obtained by summing the diff values in a city-block (Manhattan) metric across all SNPs.

The binary nature of this standard diff is likely an oversimplification that misses informa-

tion because there are degrees of difference between genotypes. In addition to a metric

based on allele-sharing differences, we develop a transition/transversion (Ti/Tv) metric

that accounts for physicochemical differences of nucleotides and a Genetic Relationship

Matrix (GRM) [3] metric that accounts for allele frequency heterogeneity.

The main goal of the current study is to develop and compare combinations of met-

rics between SNPs and subjects in ReliefF feature selection. We also compare with stat-

istical learning feature selection methods Random Forest [4] and Lasso (least absolute

shrinkage and selection operator) [5]. Lasso has been used in GWAS [6, 7] but is para-

metric and generally uses a strong independence assumption among features. Random

Forest has also been applied to GWAS and has fewer constraints than regression,

which is an advantage when a multivariate genetic architecture may be involved in

disease susceptibility [8–10]. We previously used Random Forest and penalized logistic

regression as methods for comparing epistasis detection in simulated data [11]. When

genes interact and have no marginal effect, we found that Random Forest has limited

power to detect gene-gene interactions in high dimensional data, which was confirmed

in Ref. [12]. The diminished Random Forest importance scores for interacting variants

is attributable to the independence assumption in the tree node-splitting criterion.

In the current study, we use enrichment of pathways related to major depressive

disorder (MDD) to compare feature selection methods. Early GWAS studies of MDD

had limited success at finding significant variants due to the contribution of many loci

with small effect sizes as well as the heterogeneous characteristics of MDD and the

complex interaction between genetic variation and environmental factors [13]. In re-

cent studies, many small main effect loci have been identified through the accumulation of

extremely large samples [14, 15]. Identifying broad pools of regulating, modulating or inter-

acting SNPs that confer risk for a target disorder is an important goal. For example, bipolar

disorder (BD) may occur in a family in which there is a primary susceptibility gene, but the

majority of BD may involve the interactions of multiple genes [16]. Detecting these inter-

action effects with ReliefF may be improved by tailoring metrics to GWAS data.

The current study is organized as follows. We describe the overall strategy, briefly re-

view the relevant components of ReliefF, describe a new allele sharing ReliefF diff, develop

a new 2d transition/transversion genotype encoding and accompanying new ReliefF diff.

We also introduce the first use of GRM to compute nearest hits and misses in ReliefF.
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We apply ReliefF using combinations of diffs and metrics with other statistical

learning methods to 463 cases of MDD and 459 controls, and we test the top se-

lected SNPs and their corresponding genes for overlap with biological pathways

related to mental disorders. Our results suggest that using more genetically moti-

vated metrics (allele sharing and Ti/Tv) and metrics that adjust for allelic hetero-

geneity (standardization by allele frequency in GRM) lead to ReliefF scores that

improve enrichment of biologically relevant pathways.

Methods
The goal of this study is to develop new ReliefF metrics for GWAS and compare

them based on their ability to enrich for genes in pathways that have prior evidence

for relevance to a phenotype. Our overall strategy (Fig. 1) is to compare enrich-

ment of known relevant pathways. The analysis for each feature selection method

involves four steps (left side Fig. 1). First we filter with minor allele threshold 0.01

and linkage-disequilibrium (LD) threshold 0.5 (Step 1, Fig. 1), which results in

281,648 SNPs prior to the application of each method. We choose the top SNPs from

each feature selection method (Step 2) including ReliefF (Part A, Fig. 1), Lasso (Part B,

Fig. 1), Random Forest (Part C, Fig. 1) and Random Genes of size 500 (Part D, Fig. 1). The

purpose of Random Genes is to estimate the effect of pathway size on enrichment

due to chance. For each method, we choose the number of tops SNPs so that

when we map SNPs to gene symbols (Step 3) we obtain 500 unique genes. Finally,

we compare the number of genes detected for each of the biologically relevant

pathways (Step 4).

For ReliefF, we implement four methods for computing the nearest-neighbor

distance matrix in our inbix software with --snp-metric-nn flag (Fig. 2) and three

diff functions for computing the attribute importance score with --snp-metric-diff

(Fig. 2). The three attribute importance diffs incorporate increasing nucleotide

Fig. 1 Overall evaluation strategy. (1) Preprocess the GWAS data by minor allele frequency and linkage
disequilibrium filtering, (2) Apply feature selection algorithms (purple, right panel A-D), (3) Map top SNPs
from methods A-D to gene symbols, and (4) Map genes to the target pathways to compare enrichment.
The feature selection algorithms (right panel) are (A) ReliefF with combinations of nearest-neighbor and diff
metrics (additional details in Fig. 2), (B) Lasso penalized regression with principal component correction, (C)
Random Forest permutation importance, and (D) random sets of genes to assess pathway size bias
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information: binary genotype mismatch (GM), allele mismatch (AM), and transition/

transversion (Ti/Tv). Each of these diffs can be combined with a Manhattan metric to

create three nearest neighbor methods. The Euclidean metric is also an option in our soft-

ware. The last nearest-neighbor method is based on GRM. Each metric and diff function

is discussed in detail below. We focus on six combinations: each of the three diffs used in

the Manhattan metric for nearest neighbors and each of the three diffs used with GRM to

compute nearest neighbors.

Relief feature selection algorithm

The goal of the Relief algorithm [17] is to estimate the importance of attributes accord-

ing to how well their values distinguish between nearest neighbors from different clas-

ses (e.g., cases and controls). The Relief algorithm uses a base “diff” function for the

distance matrix to compute nearest neighbors, but the diff is also used for computing

attribute importance. Recently we reformulated the ReliefF weight in a compact math-

ematical form as a difference of means between nearest misses and hits [18]. A hit is

defined for a given instance or subject Ri (i=1…m) as another instance that has the

same class label (case or control) as that of Ri, and a miss is another instance with a

different class label from Ri. Once a distance matrix, D, is computed between all in-

stances (discussed more below), the reformulated ReliefF score for SNP gν (ν =1…N)

can be written as:

WR gν
� � ¼ Mgν−Hgν : ð1Þ

where the quantities

Fig. 2 ReliefF combinations of metrics and diffs. We use three methods (two new) for computing the
attribute diff value (Eqs. 4, 5, 8): GM, AM, and TiTv (genotype mismatch, allele mismatch, and transition/
transversion) with the flag --snp-metric-diff in our inbix software. These three diffs also can be combined
with the Manhattan metric (Eq. 9) to create three methods for computing the nearest neighbor distances in
the space of all SNPs with the --snp-metric-nn flag combined with --manhattan (Euclidean is also an option
but we focus on Manhattan). The fourth nearest neighbor method is the genetic relationship matrix, which
does not use the diffs and is called by the grm option with --snp-metric-nn flag. We focus on six
combinations of nearest neighbor and diff methods: each of the three diffs with Manhattan for nearest
neighbors and each of the three diffs used with GRM to compute nearest neighbors
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Mgν ¼
1
mk

Xm
i¼1

Xk
j¼1

diff gν;Ri;Mj Rið Þ� �
: ð2Þ

and

Hgν ¼
1
mk

Xm
i¼1

Xk
j¼1

diff gν;Ri;H j Rið Þ� �
: ð3Þ

are the mean diffs with respect to SNP gν of all subjects Ri (i=1…m) from their k-near-

est-neighbor misses [Mj(Ri) in Eq. (2)] and hits [Hj(Ri) in Eq. (3)]. The k nearest misses

for a subject Ri, are the k subjects nearest to Ri but in a different phenotype class than

Ri. Similarly, the set of hits of Ri is the set of k subjects that are nearest to Ri while be-

ing in the same phenotype class as subject Ri. An importance weight of SNP gν (WR[gν])

is higher if the average of the miss diffs for the instances is greater than the average hit

diffs. Thus, a SNP with a greater positive value of WR(i.e,. �Mgν >
�Hgν ) is a better pre-

dictor of the phenotype because the genotypes of the SNP tend to separate instances in

different classes more than instances in the same class. The diff function computes the

amount that two genotypes are different for SNP gν between two subjects Ri and Rj. In

the next subsection, we discuss in detail the new and old diff functions that will be

compared.

New ReliefF diffs and metrics

We introduce three diff functions for measuring the genetic dissimilarity between pairs of

individuals at a single locus. The first diff is the standard used in ReliefF for categorical

variables, which we refer to as genotype mismatch (GM). The second metric accounts for

allele sharing, which we refer to as allele mismatch (AM). The third diff further accounts

for mutation type through transition/transversion differences (Ti/Tv). These first three

diffs will be used to compute attribute importance and to compute city-block (Manhattan)

distances between subjects. We will discuss these nearest-neighbor metrics and the

genetic relationship matrix (GRM) in a later subsection.

Genotype mismatch

The standard metric used by ReliefF for categorical variables uses a binary mismatch

diff. For SNPs, the genotype mismatch (GM) is a 0 or 1 difference between two individ-

uals (R1, R2) for a SNP, gν, based on the individuals’ genotypes. The diff function is

diffGM gν;R1;R2
� � ¼ 0 ; genotype gν;R1

� � ¼¼ genotype gν;R2
� �

1 ; otherwise

� �
ð4Þ

where genotype(gν, R1) is the genotype for individual R1 for SNP gν. In other words, two

individuals have zero diff if they have identical genotypes and they have unit diff if they

have different genotypes.

Allele mismatch

A potential drawback of GM is that it is not sensitive to heterozygous genotype differ-

ences when computing the diff. The following allele mismatch (AM) diff accounts for the
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difference in the number of alleles for a SNP when computing the difference between two

individuals. The difference of two individuals can be calculated by the following formula

diffAM gν;R1;R2
� � ¼ 1

2
� j g1ν−g2ν j ð5Þ

where giν is the number of copies of the reference allele for the νth SNP of the ith indi-

vidual. In other words, the value of g1ν is the number of minor alleles in the genotype:

0, 1 or 2. Then the return value of diffAM (gν, R1, R2) is 0, 0.5 or 1 when the two individ-

ual have 2, 1 or 0 alleles in common, respectively.

Transition/transversion 2d encoding and associated diff

The AM diff increases the sensitivity over the GM diff because with AM a hetero-

zygous state is half the distance between either homozygous state. Next our goal is

to incorporate additional physicochemical information into the diff based on transi-

tion and transversion mutations. A transition is a point mutation (blue arrows in

Fig. 3) that changes a purine nucleotide to another purine (A ↔ G) (orange circles

in Fig. 3) or a pyrimidine nucleotide to another pyrimidine (C ↔ T) (green squares

in Fig. 3). Transversion refers to the substitution of a purine (A or G) for a pyr-

imidine (C or T) or vice versa (red arrows in Fig. 3) [19]. For the Ti/Tv diff func-

tion, we classify genotypes as transitions or transversions and hypothesize that an

allele mismatch at a transversion genotype is greater than the same mismatch for a

transition genotype.

Fig. 3 Definition of transitions and transversions. Nucleotides A and G (orange circles) are in the purine
family. Nucleotides C and T (green squares) are in the pyrimidine family. When alleles of a genotype are
both from the same family (both purine or both pyrimidine), the genotype is called a transition (blue
arrows). When alleles of a genotype are each from the opposite family (one purine and pyrimidine), the
genotype is called a transversion (red arrows)
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Before constructing the Ti/Tv diff, we first introduce a 2d Ti/Tv genotype encoding

(Fig. 4) in which a genotype is a point on a unit circle in the Cartesian plane with basis

vectors ex = (1, 0) and ey = (0, 1). Below we use Dirac bra-ket notation, where | x〉 repre-

sents a column vector and 〈x| represents a row vector. An example of this encoding that

is appropriate for transversion genotypes or an additive encoding (red arrows in Fig. 4)

has the two homozygous states orthogonal (θ = π/2) to each other: | aa〉Tv = ex on the

horizontal axis and |AA〉Tv = ey on the vertical axis. And then the heterozygous state is an

equal mixture (θ = π/4) of the homozygous states: jAa 〉 Tv ¼ ð 1ffiffi
2

p ; 1ffiffi
2

p Þ.
For transition mutations, we want our encoding to contract the distance (relative to

transversion encoding) between two homozygous states and between a homozygous

state and the heterozygous state (blue arrows, Fig. 4). Again we let the heterozygous

state be jAa 〉 Ti ¼ ð 1ffiffi
2

p ; 1ffiffi
2

p Þ, centered on the diagonal (θ = π/4) like transversions, but in-

stead of being orthogonal, the homozygous states are contracted toward the diagonal

with an angle of separation θ = π/6.

Fig. 4 Two-dimensional transition/transversion genotype encoding. Genotypes are represented as vectors
on a unit circle and their similarity is the cos2θ of their angular separation. Transversion genotype vectors
(red) are more expanded than transitions (by π/4) to account for the alleles (A and a) coming from different
nucleotide families (one purine and one pyrimidine). Transition genotype vectors (blue) are more
compressed together (by π/6) to account for the alleles (A and a) coming from the same nucleotide family
(both purine or both pyrimidine). For both transition and transversion SNPs, we center the heterozygous
genotype vector at π/4
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We use | ψi(gν)〉 to represent the six possible 2d Ti/Tv genotypes (Fig. 4) for individ-

ual Ri for SNP gν. The TiTv similarity between two individuals (R1 and R2) for SNP gν is

the squared dot product of the individuals’ Ti/Tv encoding (| ψ1(gν)〉 and | ψ2(gν)〉):

simTiTv gν;R1;R2
� � ¼ ψR1

gν
� �jψR2

gν
� �	 
�� ��2 ¼ cos2 θ12ð Þ ð6Þ

where hψR1
ðgνÞjψR2

ðgνÞi is Dirac notation for the dot product of the Ti/Tv genotype

vectors and 〈 ψR1
ðgνÞj is the transpose of the column vector jψR1

ðgνÞ 〉 . From Eq. (6),

the diff can be written as

diffTiTv gν;R1;R2
� � ¼ 1−simTiTv gν;R1;R2

� � ð7Þ

or

diffTiTv gν;R1;R2
� � ¼ 1− ψR1

gν
� �jψR2

gν
� �	 
�� ��2: ð8Þ

If gν is a transversion and individual R1 has homozygous genotype jψR1
ðgνÞ 〉

¼ jAA 〉 Tv and R2 has heterozygous genotype jψR2
ðgνÞ 〉 ¼ jAa 〉 Tv, then the diff value is

diffTiTv gν∈Tv;R1;R2
� � ¼ 1− AAjAah iTv

�� ��2 ¼ 1− 0; 1ð Þ∙
1ffiffiffi
2

p
1ffiffiffi
2

p

0
BB@

1
CCA

��������

��������

2

¼ 1−
1
2
¼ 1

2
:

For two individuals at a transversion SNP that are opposite homozygotes

(jψR1
ðgνÞ 〉 ¼ jAA 〉 Tv and jψR2

ðgνÞ 〉 ¼ jaa 〉 Tv):

diffTiTv gν∈Tv;R1;R2
� � ¼ 1− AAjaah iTv

�� ��2 ¼ 1− 0; 1ð Þ∙ 1
0

� 
����
����
2

¼ 1−0 ¼ 1:

Thus, the Ti/Tv diff for transversion SNPs is equivalent to AM because a heterozy-

gous state is half the distance between either homozygous state.

Repeating the above examples for the transition encoding, the diff between jψR1

ðgνÞ 〉 ¼ jAA 〉 Ti and jψR2
ðgνÞ 〉 ¼ jAa 〉 Ti is

diffTiTv gν∈Ti;R1;R2
� � ¼ 1− AAjAah iTi

�� ��2 ¼ 1− 1=2;
ffiffiffi
3

p
=2

� �
∙

ffiffiffi
3

p
=2

1=2

� 
����
����
2

¼ 1−
3
4
¼ 1

4
:

For individuals that are opposite homozygotes ( jψR1
ðgνÞ 〉 ¼ jAA 〉 Ti and jψR2

ðgνÞ 〉
¼ jaa 〉 Ti):

diffTiTv gν∈Ti;R1;R2
� � ¼ 1− AAjaah iTi

�� ��2 ¼ 1− 1=2;
ffiffiffi
3

p
=2

� �
∙

1
0

� 
����
����
2

¼ 1−
1
4
¼ 3

4
:

By design, this encoding causes the Ti homozygous diffs (3/4 difference) to be smaller

than diffs between Tv homozygous states (1 difference) because transition mutations

stay in the same biochemical family (purine to purine or pyrimidine to pyrimidine).

Similarly, the encoding causes diffs between heterozygous and homozygous Ti geno-

types (1/4 difference) to be smaller than the corresponding Tv diffs (1/2 difference).

We catalog the output of the GM, AM, and Ti/Tv diff functions for all combinations

of genotypes and for the cases when the SNP is a transition or transversion (Table 1).

The GM diff (green) treats homozygous differences (AA vs aa) the same as a heterozygous
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difference (AA vs Aa) or (aa vs Aa). The AM diff (orange) is sensitive to allele differences

between homozygotes (AA or aa) and heterozygotes (Aa), where the difference is 1/2 of

the homozygous difference. However, AM does not distinguish between transition and

transversion genotypes. The Ti/Tv diff (blue) is also sensitive to allele differences but

further distinguishes between transition and transversion allele changes, treating transi-

tion genotypes as more similar than the corresponding transversion genotypes. In this

study, we focus on biallelic SNPs. The cases of tri-allelic and copy number variation may

be interesting future modifications.

Nearest-neighbor distances based on Manhattan metric and the genetic relationship matrix

(GRM)

We compare the above diffs (GM, AM, Ti/Tv) (Eqs. 4, 5, 8) based on their influence in

the attribute importance score (Eqs. 1–3). However, the diff may also be used to

determine the distance between subjects by summing the absolute value of the diffs

between a pair of subjects Ri and Rj for all genetic variants gν (ν = 1…N) in a city-block

metric (Eq. 9 below). The standard ReliefF nearest-neighbor distance matrix for

categorical variables uses the diff=diffGM (Eq. 4) in the following metric:

Dcity
ij ¼

XN
ν¼1

diff gν;Ri;Rj
� ��� ��: ð9Þ

However, one may also replace diff=diffAM (Eq. 5) or diff=diffTiTv (Eq. 8) in Eq. (9).

Regardless of the diff, when an attribute’s importance score is calculated, it uses the k

Table 1. Comparison of the diff(gν, Ri, Rj) between individuals Ri and Rj for SNP gν for different
genotype combinations using GM (green, Eq. 4), AM (orange, Eq. 5), and Ti/Tv (blue, Eq. 8) for all
combinations of genotypes and for the cases when the SNP is a transition or transversion

The GM diff (green) treats homozygous differences (AA vs aa) the same as an allele difference (AA vs Aa) or (aa vs Aa).
The AM diff (orange) is sensitive to allele differences between homozygotes (AA or aa) and heterozygotes (Aa). The TiTv
diff (blue) is sensitive to allele differences but further distinguishes between transition and transversion allele changes,
treating transition genotypes as more similar than the corresponding transversion genotypes
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nearest neighbors as determined in the space of all other attributes, which allows

ReliefF to identify important attributes that may involve complex higher-order inter-

action architecture.

We also propose a more sophisticated metric for computing the nearest-neighbor dis-

tance matrix based on the Genetic Relationship Matrix (GRM) from GCTA. The GRM

is used to calculate the genetic relatedness between pairs of individuals in the space of

N SNPs [3, 20]. We define the following GRM distance matrix between individual i and

j,

DGRM
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N 1−Aij

� �q
; ð10Þ

where

Aij ¼ 1
N

XN
ν¼1

giν−2pν
� �

gjν−2pν
� �

2pν 1−pνð Þ ð11Þ

and giν is the number of copies of the reference allele for the νth SNP of the ith individ-

ual and pν is the frequency of the reference allele [3]. Each genotype in the summand is

standardized by pν to account for the differences in allele frequency between SNPs. In

addition to comparing diff functions (Eqs. 4, 5, 8) in the attribute importance score, we

also compare Manhattan (Eq. 9) and GRM (Eq. 10) methods for computing the pair-

wise distances to find nearest neighbors.

Non Relief-based comparison methods: Random Forest, lasso, and random gene

Random Forests (RF) is a widely used machine learning classifier and feature selector

that grows an ensemble of classification trees in bagged samples with random attribute

selection [21]. To measure the importance of a feature after training, the values of that

feature are permuted among the training data and the out-of-bag error is again com-

puted on this perturbed data set. The importance score for the feature is computed by

averaging the difference in out-of-bag error before and after the permutation over all trees

and the score is normalized by the standard deviation of these differences [4, 22–24]. We

used the “Ranger” implementation of Random Forest, which is included in our inbix

software to compute classification and variable importance.

We used the PLINK software to perform Lasso (--lasso). We adjusted for the first five

principal components, and the PCs were not subject to model selection. The top Lasso

variants were chosen by top regression coefficients. We used h2 = 0.5 as the estimate of

the heritability to calibrate the regression and we used λmin = 0.001 for the L1 penalty

parameter. Finally, we generated lists of random genes as a null comparison list that

shows the effect of pathway size on enrichment. A random set of 500 genes is randomly

sampled 100 times and the average overlap of the 500 genes is computed for each path-

way. Estimating the expected number of overlapping genes by chance helps to calibrate

the overlaps of each pathway for the non-random feature selection methods.

ReliefF software implementation

We performed all preprocessing and ReliefF analyses using our Interaction-Network

BIonformatics ToolboX (inbix) software for machine learning and epistasis network ana-

lysis for high-dimensional data. Inbix is a free, open-source, command-line bioinformatics

Arabnejad et al. BioData Mining           (2018) 11:23 Page 10 of 17



tool, written in C++ and designed to perform a range of large-scale analyses with compu-

tational efficiency. The source is publicly available from our website and github

(http://insilico.utulsa.edu/index.php/inbix/ and https://github.com/insilico/inbix) [18, 25,

26]. The inbix tool supports the PLINK format and includes PLINK algorithms and util-

ities [27] along with new machine learning and network analysis methods. In our inbix

software, we use the following command to execute ReliefF with a GWAS binary bed file

<bed-file>.bed and a file containing phenotype information <pheno-file>.pheno:

./inbix --bfile <bed-file> --relieff --pheno <pheno-file> --snp-metric-nn <nn-metric>

--snp-metric-diff <diff-metric> --out <results-file>

where <diff-metric> can take on values gm, am, or ti/tv and <nn-metric> can also take

on values gm, am, or titv with manhattan or Euclidean for combining the individual

SNP diffs. The user may alternatively select grm in <nn-metric>, which uses GRM as

the nearest-neighbor metric and does not use the diffs. Any combination of <diff-

metric> or <nn-metric> is allowed. For the MDD GWAS with 922 individuals and

281,648 SNPs (after filtering), the GRM metric takes approximately 8 hours and the

other metrics take approximately 12 hours of CPU time (additional details in the

Additional file 1).

We use the constant-k ReliefF algorithm in inbix with the diffs and metrics described

above.With inbix it is possible to optimize the number of neighbors for each attribute

[18]. However, for this study, we use the constant value, k = ⌊m/6⌋, for ReliefF nearest

neighbors, where m is the number of samples. The value k = ⌊m/6⌋ is the inbix default

and was chosen based on Ref. [28] where it was shown to approximate the adaptive

radius Relief method, MultiSURF [29], which balances power to detect epistatic effects

and main effects.

GWAS data, filtering and mapping

In this study we compare ReliefF metrics with each other and with other analysis

methods based on enrichment of selected features in functional pathways for MDD.

We used a recent GWAS of MDD [30] that includes 922 European individuals that

were recruited through a survey of 1259 individuals who filled out forms and telephone

interviewed for DSM-IV covering depressive, bipolar, psychotic, alcohol, substance and

anxiety disorders as well as family history of mood disorders. After exclusions, ex-

tracted DNA was genotyped with the Illumina Omni1-Quad microarray for 463 cases

of MDD and 459 controls. For all ReliefF analyses, we used constant k = ⌊m/6⌋ = 138

nearest neighbors.

Filtering and mapping of genes and pathways

Additional details of data processing and analysis, including command line scripts, is

provided in the Additional file 1. In the initial steps of analysis, dimensionality reduc-

tion is performed on SNPs by linkage disequilibrium (LD) with threshold 0.5 and minor

allele frequency threshold 0.01. The goal of this filtering is to remove highly redundant

and very low signal data as well as obtain a manageable number of variants for machine

learning analysis (we obtain 281,648 variants).
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A list of ranked SNPs for each method is obtained from the algorithms to be compared

(Fig. 1 method overview). We use Ensembl IDs to map the top SNPs to genes [31]. Given

the rs-number of a SNP, the algorithm finds the location of the variant relative to genes,

and the SNP is mapped to the gene symbol of the closest gene [32]. In the supplement,

we include a link to our webservice that accepts a list of SNP rs-numbers and returns

mapped genes to a table, and we include the R code for the mapping. Despite LD pruning,

many top SNPs will map to the same gene; thus, we begin the mapping with more than

500 top SNPs so that we end up with 500 top unique genes.

We then use Molecular Signatures Database (Msigdb) [33] to identify the number of

genes in our top 500 gene selection lists that overlap with target pathways. The over-

laps are based on HUGO gene symbols. Our goal is not to compute the statistical

significance of overlap for discovery, but to compare the number of genes found in

known pathways relative to other gene ranking methods. Thus, the size of the gene

background is not a concern. We also use random gene selection, mentioned above, to

show the expected amount of overlap with a pathway by chance.

Results
We evaluate feature selection methods based on the number of genes found in pathways

that have been implicated in mood disorders (Figs. 5, 6 and 7). We chose pathways related

to G protein-coupled receptors (GPCRs) because they are implicated in pathophysiology

of MDD as well as bipolar disorder [34]. For example, current pharmacological interven-

tions for MDD target neuromodulators (serotonin, norepinephrine, dopamine) that signal

via GPCR systems. The other two pathways, Axon Guidance and Neuronal System, have

been hypothesized to play an important role in mood disorder pathophysiology. In
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Fig. 5 Pathway detection comparison of standard ReliefF (GM-GM) and ReliefF with GRM nearest neighbors
(GRM-GM). Bars count the number of genes that overlap the given pathway – Axon Guidance (light blue),
Neuronal System (dark blue), and G protein-coupled receptor (GPCR) (green) – from the top 500 genes
from each feature selection method. The methods are GM-GM (standard ReliefF with GM-based nearest
neighbors (Eqs. 4 and 9) and GM attribute diff (Eq. 4)), GRM-GM (ReliefF with GRM-based nearest neighbors
(Eq. 10) and standard GM attribute diff (Eq. 4)), where GM is genotype mismatch and GRM is genetic
relationship metric. In addition to ReliefF methods, we compare with Lasso corrected for principal
components, Random Forest, and Random Genes (random sampling of 500 genes averaged over 100
replicates). GRM-GM detects more genes than other methods with the exception of GM-GM and Random
Forest finding more Axon genes
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Fig. 6 Pathway detection comparison of AM-AM ReliefF and GRM-AM ReliefF. Bars count the number of genes
that overlap the given pathway – Axon Guidance (light blue), Neuronal System (dark blue), and G protein-
coupled receptor (GPCR) (green) – from the top 500 genes from each feature selection method. The methods
are AM-AM (ReliefF with AM-based nearest neighbors (Eqs. 5 and 9) and AM attribute diff (Eq. 5)), GRM-AM
(ReliefF with GRM-based nearest neighbors (Eq. 10) and AM attribute diff (Eq. 5)), where AM is allele mismatch
and GRM is genetic relationship metric. In addition to ReliefF methods, we compare with Lasso with principal
component covariates, Random Forest, and Random Genes (random sampling of 500 genes averaged over 100
replicates). AM-AM and GRM-AM have a similar pattern to and better performance than Random Forest. GRM-
AM finds the most Axon and GPCR genes, and AM-AM finds the most Neuronal genes

0

5

10

15

20

TiTv−TiTv
ReliefF

GRM−TiTv
ReliefF

Random
Forest

Lasso Random
Genes

Ranking Methods

N
um

be
r 

of
 G

en
es

Axon Guidance Neuronal System Signaling By GPCR

Fig. 7 Pathway detection comparison of TiTv-TiTv ReliefF and GRM-TiTv ReliefF. Bars count the number of
genes that overlap the given pathway – Axon Guidance (light blue), Neuronal System (dark blue), and G
protein-coupled receptor (GPCR) (green) – from the top 500 genes from each feature selection method.
The methods are TiTv-TiTv (ReliefF with TiTv-based nearest neighbors (Eqs. 8 and 9) and TiTv attribute diff
(Eq. 8)), GRM-TiTv (ReliefF with GRM-based nearest neighbors (Eq. 10) and TITv attribute diff (Eq. 8)), where
TiTv is transition/transversion diff and GRM is genetic relationship metric. In addition to ReliefF methods, we
compare with Lasso with principal component covariates, Random Forest, and Random Genes (random
sampling of 500 genes averaged over 100 replicates). TiTv-TiTv has a similar pattern to but better
performance than Random Forest. GRM-TiTv finds the most GPCR genes, and TiTv-TiTv finds the most Axon
and Neuronal genes
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addition to ReliefF metrics, we compare with feature selection by Lasso, Random Forest,

and the average of random gene selection to assess the number of genes expected by

chance due to pathway size.

We compare combinations of ReliefF attribute diff functions for use in the average miss

and hit calculations (Eqs. 2 and 3) and metrics for computing nearest neighbors in the full

space of SNPs. The diff functions are GM, AM, and Ti/Tv (Eqs. 4, 5, and 8) and nearest

neighbor metrics are the Manhattan metric (Eq. 9) with the GM, AM and Ti/Tv diffs and

the GRM metric (Eq. 10). We compare the three combinations of <diff-metric> and two

possible <nn-metric> for a total of 3x2=6 combinations (Figs. 5, 6 and 7). We combine

the three diffs with the same diff in a Manhattan metric to form the first three “<nn-dif-

f>-<attribute-diff>” combinations: GM-GM, AM-AM, TiTv-TiTv. We also combine the

three diffs with GRM nearest-neighbor metric to form the other three “<GRM-nn>-<attri-

bute-diff>” combinations: GRM-GM, GRM-AM, GRM-TiTv.

We first note that for random gene selection (“Random Genes” on right-most side of

Figs. 5, 6 and 7), the pathway overlap is correlated with the size of each pathway. As

expected, choosing random genes will result in a certain amount of overlap with a

pathway by chance in proportion to the size of the pathway. All methods perform bet-

ter than chance (“Random Genes”) for detecting all pathways. For the Axon Guidance

pathway, TiTv-TiTv (Eq. 8 for the Manhattan metric and attribute diff ) detected the

most genes (light blue, Fig. 7). For Signaling by GPCR pathway, GRM-TiTv (GRM near-

est neighbor metric and TiTv attribute diff ) detected the most genes (green, Fig. 7). For

Neuronal System, GRM-GM performed best (dark blue, Fig. 5).

Increasing in complexity of the diff (GM, AM, TiTv in Figs. 5, 6 and 7, respect-

ively), shows pathway enrichment increasing when the attribute diff is used in the

Manhattan metric (GM-GM < AM-AM < TiTv-TiTv). This suggests a benefit to

including transition/transversion information in the attribute diff calculation for at-

tribute importance. When the diffs are combined with GRM, the GPCR pathway

enrichment increases significantly. The GRM metric adjusts for heterogeneity of

allele frequencies, and detecting genes that contain SNPs with such heterogeneity

likely benefits from GRM.

Discussion and conclusions
Machine learning feature selection is a powerful tool for discovery in large data like

GWAS with complex population and interaction structure. ReliefF is particularly

efficient and powerful at selecting genes that are enriched for gene-gene interactions.

However, in past studies, the diff function used to compute nearest neighbors and for

updating attribute importance has treated information about SNPs simplistically. Thus,

we introduced more complex and genetically relevant mathematical functions for com-

puting diffs, including the development of a new 2d transition/transversion genotype

encoding and associated diff. To find nearest neighbors, ReliefF implementations typic-

ally use a Manhattan metric of the attribute diffs. Euclidean can also be used to com-

bine diffs, but past results have indicated little difference with Manhattan. A

Mahalanobis distance function has also been developed, which allows for non-spherical

neighborhoods [35]. In addition to Manhattan with the new diff functions, we used the

genetic relationship matrix (GRM) to compute nearest-neighbor distances, which has

not been used previously in ReliefF.
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When testing for pairwise epistatic effects in a linear model, one may decompose the

epistatic effects into additive and dominant encodings [36]. ReliefF has less flexibility to

mix encodings than a pairwise-SNP linear model; however, ReliefF ranks SNPs within

the context of all other SNPs in the dataset, which may include pairwise and

higher-order interactions. In our approach, we are able to mix encodings in a given

ReliefF analysis by using different diff functions for attribute importance (Eqs. 1–3) and

for finding nearest neighbors (Eqs. 9 or 10). The GM diff is based on a dominant

single-locus encoding and the AM diff is based on an additive encoding. The Ti/Tv diff

is based on a new 2d Ti/Tv encoding where a genotype is mapped onto a unit sphere

and contracts transition genotypes closer together than corresponding transversion

genotypes (Fig. 4).

For each method, the top 500 SNPs were mapped to genes and overlap with the

relevant biological pathways for major depressive disorder (MDD) was calculated. Our

results provide evidence that using either AM (Eq. 5) or Ti/Tv (Eq. 8) diffs in the attri-

bute importance score calculation (Eqs. 1–3) has an advantage over the simple GM diff

(Eq. 4). The detection of genes in certain pathways also can be improved by combining

the attribute diffs with the GRM metric (Eq. 10) for computing nearest neighbors.

The GRM method for finding nearest neighbors has the useful property of adjusting for

alleleic heterogeneity. Using GRM to compute nearest neighbors results in the best enrich-

ment for two of the three pathways: GPCR Signaling with GRM-TiTv (green, Fig. 7, GRM

nearest neighbor metric and TiTv attribute diff) and Neuronal System with GRM-GM (dark

blue, Fig. 5). The 2d TiTv encoding is the same as the AM diff for transversion SNPs but re-

sults in genotype differences that are contracted closer together for transition SNPs. Using

TiTv results in the best enrichment for the third pathway: Axon Guidance with TiTv-TiTv

(light blue, Fig. 7, TiTv used for the nearest neighbor metric diff and attribute diff).

We focused on the analysis of real data as a proof of principle. Additional insight

may be obtained by using a simulation strategy that incorporates transition and trans-

version differences that affect the phenotype. The challenge is to make such a simula-

tion biologically realistic and not artificially biased toward one method. We used

ReliefF’s simple nearest neighbor-finding method with k = ⌊m/6⌋ because it balances the

ability to find main effect and interaction effects [28]. However, there are other

Relief-based methods that may be used to optimize genetic findings. For example, one

may use an adaptive attribute-specific number of neighbors to improve power to detect

main effects and interaction effects [18]. One may also increase power through adaptive

radius versions of Relief, like SURF [37], MultiSURF [29], and STIR [28], or through

backwards elimination versions of Relief, like iterative ReliefF.

The ReliefF methods generally perform better than the non-ReliefF methods (Random

Forest and Lasso). However, we note that no single analysis method can extract all infor-

mation from a whole-genome association study (i.e., no free lunch) and each method finds

unique gene signatures that can contribute to the overall picture of the pathway or pheno-

type. Thus, combining metrics and feature selection methods may be a good strategy for

maximizing the detection of relevant genes. There are opportunities to improve these

methods by incorporating additional information about the biological properties of the

data, similar to phylogenetic substitution matrices or using coding/non-coding informa-

tion. One may also assess the false discovery rate of different metrics using the STIR

approach for determining the statistical significance of Relief scores [28].
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