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Abstract

Background: The redundancy of information is becoming a critical issue for
epidemiologists. High-dimensional datasets require new effective variable selection
methods to be developed. This study implements an advanced evolutionary variable
selection method which is applied for cardiovascular predictive modeling. The
epidemiological follow-up study KIHD (Kuopio Ischemic Heart Disease Risk Factor
Study) was used to compare the designed variable selection method based on an
evolutionary search with conventional stepwise selection. The sample contains in
total 433 predictor variables and a response variable indicating incidents of
cardiovascular diseases for 1465 study subjects.

Results: The effectiveness of variable selection methods was investigated in
combination with two models: Generalized Linear Logistic Regression and Support
Vector Machine. We managed to decrease the number of variables from 433 to 38
and save the predictive ability of the models used. Their performance was evaluated
with an F-score metric. At most, we gained 65.6% and 67.4% of the F-score before
and after variable selection respectively. All the results were averaged over 5-folds of
a cross-validation procedure.

Conclusions: The presented evolutionary variable selection method allows a
reduced set of variables to be chosen which are relevant to predicting cardiovascular
diseases. A reference list of the most meaningful variables is introduced to be used
as a basis for new epidemiological studies. In general, the multicollinearity of
variables enables different combinations of predictors to be used and the same
performance of models to be attained.

Keywords: Variable selection, Cardiovascular disease, Predictive modeling, Kuopio
ischemic heart disease risk factor study

Background
Epidemiological research aims to construct better understanding of the complexities in

health and disease etiology. Nowadays, this means increasingly large amounts of data,

especially in the predictive modeling of health risks and possible outcomes [1]. One of

the obvious ways to tackle this Big Data problem is based on the involvement of

powerful machines with high computational capacity. In theory, the technology would

allow a tremendously big number of variables (other terms such as features, predictors

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Brester et al. BioData Mining  (2018) 11:18 
https://doi.org/10.1186/s13040-018-0180-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-018-0180-x&domain=pdf
http://orcid.org/0000-0001-8196-2954
mailto:christina.brester@gmail.com
mailto:christina.brester@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


or attributes are also used elsewhere) to be engaged in the datasets under study. The

model performance, however, may not be improved by adding more and more vari-

ables. One reason for this is the redundancy of information [2, 3]. With respect to the

translational aspects of epidemiological research, such as developing evidence-based

diagnostic tools, it is impractical to consider study designs that require a multitude of

input variables and clinical tests to gather a high-dimensional vector of variables for all

of the patients to be checked. In this paper, we argue that epidemiologists have encoun-

tered a complex variable selection problem, which cannot be completely solved with

traditional computational methods, and we suggest an alternative solution to this

problem.

Conventional approaches for variable selection in epidemiological modeling include

two general classes of methods: prior knowledge-based and automated [4]. Prior

knowledge-based methods use a priori information about the variable relevance from

previous literature and utilize the results of earlier studies. However, it is not clear to

what extent we can apply the results of other particular cases to our purposes. Have

the other study samples been representative enough, or for that matter, how specific is

our own study?

One may decide to involve experts to choose variables, but in the case of complicated

high dimensional datasets, this human-operated approach becomes very difficult or im-

possible to apply.

The most frequently used methods, referred to as computer-driven or the automated

selection of variables to be used in the modeling, are backward elimination, forward se-

lection and stepwise selection of variables [5]. All these procedures work iteratively

adding or removing one variable at a time until the pre-specified stopping rule is satis-

fied. They do not estimate the accumulative contribution of several variables to the

model. Furthermore, it has been shown that these methods are sensitive to random

fluctuations in the dataset when using bootstrap samples [6]. This implies that the par-

ticular predictors selected with these automated methods for a given database might be

inappropriate for others.

In recent times, some research groups have become aware of these challenges in epi-

demiology. It has been shown, for example, that traditional approaches have not per-

formed well in the experiments with large-scale datasets [7]. As a result, there have

been a number of studies trying to apply some alternative methods such as shrinkage

or penalized regression [8]. These techniques were proposed two decades ago but,

according to Walter and Tiemeier’s study, in 2008 there were no publications in epi-

demiological journals using these methods [4]. Nevertheless, in some recent reports it

has been claimed that the Least Absolute Shrinkage and Selection Operator (LASSO) is

applicable and effective for high-dimensional datasets [9, 10]. Even though some prom-

ising results have been obtained, LASSO logistic regression is applied quite rarely in

current epidemiological studies [11]. Besides, some researchers highlight its bias towards

false positives [12]. All these examples distinctly underpin the necessity to develop novel

variable selection methods able to cope with large-scale data. In [3] the authors have made

an extensive survey on how to apply data-mining methods in epidemiological studies and

their reasoning points to the same directions as ours. However, their results are lacking

the evolutionary approach which we have found important in this study in finding the

most effective combinations of multicollinear variables.
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In this article, we introduce an advanced variable selection method which is based on

an evolutionary search. We apply a genetic algorithm (GA) to explore a high-dimen-

sional variable space in an effective way. A linear increase of the number of variables

leads to an exponential growth of possible variable combinations. However, compared

to many algorithms and methods, GAs are robust to ‘the curse of dimensionality’ and,

therefore, might be successfully used to select relevant variables [13].

We have investigated the performance of the proposed method on a population-

based epidemiological KIHD (Kuopio Ischemic Heart Disease Risk Factor Study) data-

set, containing the state vectors of 433 characteristics regarding the study subjects (N =

1465). Firstly, we have managed to reduce the dimensionality of the input vector from

433 to 38 variables without damage to the performance of predictive models. Then, we

have created a ranking system for all of the variables based on their relevance to cardio-

vascular diseases (CVDs). To be more precise, the aim of this article is to introduce the

evolutionary variable selection method and discuss the most relevant selected variables.

Finally, we have revealed that due to the multicollinearity of variables, the same per-

formance of models might be achieved with many different combinations of predictors.

We propose that this may carry significant implications for both the theoretical and

clinical use of epidemiological data.

Methods
Evaluated models

In this research, we investigate variable selection methods in combination with two

models: Generalized Linear Logistic Regression and Support Vector Machine.

Logistic Regression (Logit) is a type of linear model which is used to describe the rela-

tionship between a binary response (dependent) variable Y and several predictor (inde-

pendent) variables X1, X2, ..., Xn [14]. Essentially, a logistic regression expresses the

conditional probability P(Y = 1 | X = x) on the assumption that an outcome vari-

able is a stochastic event: in diagnostics, Y = 1 usually means the presence of a disease.

Formally, it is defined as follows:

log
P Y ¼ 1j X ¼ xð Þ
1−P Y ¼ 1jX ¼ xð Þ

� �
¼ β0 þ β1x1 þ…þ βnxn; ð1Þ

P Y ¼ 1jX ¼ xð Þ ¼ 1

1 þ e− β0 þ β1x1 þ…þ βnxn
� � : ð2Þ

To evaluate coefficients βi the maximum likelihood estimate is used: the parameters

should maximize the probability of the observed cases. The fitted model (2) allows pre-

dictions to be obtained based on the decision rule: Y = 1 if P(Y = 1|X = x) ≥ 0.5 and Y

= 0 if P(Y = 1|X = x)<0.5. A default cutoff value 0.5 might be varied to achieve a better

result for each particular problem.

Results obtained with a logistic regression model are easily interpreted. However, the

use of this model is not recommended when independent variables are highly

correlated and their number is quite large: in this case, parameter estimators become

unstable [15].

Support Vector Machine (SVM) is a more complex model which is based on design-

ing hyperplanes w ⋅ x + b = 0 that work as decision boundaries [16]. The main concept
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of the SVM algorithm is to construct the optimal hyperplane that maximizes the

margin between two different groups of objects (in our study an object means a patient

or subject). The term margin correspondingly means the distance to the closest train-

ing point.

The essential advantage of this model is the ability to cope with a non-linearly separ-

able dataset with the usage of loss and kernel functions. Loss functions penalize

misclassified cases, whereas kernel functions map data into a higher dimensional space

where linear separation is possible.

Generally, training SVM models is accomplished through minimizing the error

function:

1
2
wT � wþC � Σ

N

i ¼ 1
ξ i→ min; ð3Þ

which is subject to the constraints:

yi w
Tϕ xið Þ þ b

� �
≥1−ξ i and ξ i≥0; i ¼ 1;…;N ; ð4Þ

where C is an adjustable parameter, ξi expresses an error max(0, 1 ‐ yi ⋅ (w
Txi + b)) on

training examples xi, yi where yi ∈ ± 1, and ϕ(…) is a kernel function. In our study, we

use polynomial kernels and, to design a hyperplane separating sets of examples, Se-

quential Minimal Optimization (SMO) is applied for solving the large-scale quadratic

programming problem [17].

As an alternative variable selection method, we investigated a traditional stepwise

selection [18] to demonstrate the advances of our approach. Stepwise selection works

as a combination of backward elimination and forward selection. Starting with an

empty set of predictors, it adds to the model one variable at a time (as in forward selec-

tion). However, at each iteration an included variable might also be removed from the

model if it is not significant any more. A pre-specified criterion is used to stop the vari-

able selection process.

Stepwise selection is rather economical in the sense of computational costs but this

iterative strategy is likely to miss the optimal model. Moreover, as a result of deleting

insignificant predictors, the significance of the remaining variables is revalued and often

becomes exaggerated, which is misleading [5].

In our modeling, we also assign ranks to all variables based on the order in which

they were selected. Thus, assuming that N variables are selected, the first feature gets

the highest score equal to N, whereas the last variable gets the lowest score which is

equal to 1. Variables that are not selected receive a 0 score. If a variable is removed at

any iteration of stepwise selection, it also receives a 0 score. These ‘raw’ scores are

transformed to the interval [0,1] by using a linear normalization.

Evolutionary variable selection

We designed our variable selection method on the basis of a filter approach. As op-

posed to wrapper or embedded techniques, this method is beneficial for large-scale

datasets because it does not involve any model to evaluate combinations of variables

[19] and, therefore, requires fewer computational resources. In essence, filtering pre-

cedes modeling and corresponds to the preprocessing stage.
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There are some statistical criteria which might be optimized in the framework of the

filter approach: Attribute Class Correlation (AC), Inter- and Intra- Class Distances (IE

and IA), Laplasian Score (LS), and Representation Entropy (RE) [20]. Previously, we

tested various combinations of these criteria and found the most appropriate

two-objective model [21]:

IA ¼ 1
n

Σ
k

r ¼ 1
Σ
nr

j ¼ 1
dðprj; prÞ → min; ð5Þ

IE ¼ 1
n

Σ
k

r ¼ 1
nrd pr; pð Þ → min; ð6Þ

where prj is the jth example from the rth class, p is the central example of the data set,

d(...,...) denotes the Euclidian distance, pr and nr represent the central example and the

number of examples in the rth class. In our experiments, p and pr are assigned as

vectors of average values of variables calculated on the whole set and on the rth class,

respectively. Criteria 5 and 6 are optimized at once, using a Pareto-dominance idea.

We do not apply any convolution of criteria to reduce this two-objective problem to a

single-objective one. Therefore, there is no need to assign weights of criteria.

To define reduced vectors of variables satisfying the chosen criteria in an optimal

way, we suggest applying a multi-objective genetic algorithm (MOGA). Generally, GAs

are universal, flexible, and widely used [22]. Due to their unique abilities, GAs remain

the only applicable tool for many complex optimization problems. They can be effect-

ively employed for high-dimensional domains with different types of variables (continu-

ous, discrete, or any other non-numerical variables presented as a binary string). It is

even possible to use these algorithms in the dynamic environment when the optimum

is changing. In short, GAs imitate the alternation of generations based on the principles

of natural selection: a fitness function reflects optimization criteria, and genetic opera-

tors are applied to produce offspring (new candidate solutions) and direct a search to-

wards prospective regions.

In our approach, the population of candidate solutions contains reduced vectors of

variables. Each binary string (a so-called chromosome) codes a combination of selected

variables in the following way: one and zero correspond to a relevant variable and an ir-

relevant one respectively (Fig. 1). At every generation, all individuals from the popula-

tion are assessed with the criteria (5) and (6). During the algorithm execution, possible

combinations of variables are evaluated together. In other words, the GA ignores the

significance of an individual variable and this distinguishes it from conventional itera-

tive methods.

Fig. 1 The binary representation of a reduced variable set. One corresponds to a variable that is present in
the model input and zero corresponds to an ignored variable
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The binary representation of a reduced variable set. One corresponds to a variable

that is present in the model input and zero corresponds to an ignored variable.

To achieve a high level of effectiveness of an evolutionary search, we applied a modified

cooperative MOGA including three different methods [23]: Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [24], Preference-Inspired Co-Evolutionary Algorithm

with goal vectors (PICEA-g) [25], and Strength Pareto Evolutionary Algorithm 2 (SPEA2)

[26]. These algorithms are based on different heuristic strategies, which allows us to

preserve the diversity of candidate solutions. Moreover, they work in a parallel way, which

saves computational time.

It is well known that an outcome of a MOGA is a set of non-dominated points which

form a Pareto set approximation: for our problem, it is a set of alternative variable

combinations. To derive the final solution we took into account all non-comparable

variable vectors from the Pareto set. However, GAs apply heuristics and may lead to

different (appropriate but not always optimal) solutions in each run. Therefore, we

decided to launch the cooperative MOGA several times (specifically, 15) on the train-

ing set of every fold to get ‘representative’ variables. In each run, the final Pareto set ap-

proximation contained 30 candidate solutions. Thus, we collected 30∙15 = 450 binary

strings coding reduced variable sets. Then, for each variable we estimated the relative

number of cases when it was chosen and based on these scores we assigned ranks for

each variable. The final reduced vector of variables comprised of variables with absolute

ranks (i.e. 1). Additionally, we compared the model performance on a number of separ-

ate solutions obtained by the MOGA in different runs with its performance on the set

of variables having absolute ranks: the results were similar.

Database description

The epidemiological follow-up study, KIHD, was launched in 1984 and is still continu-

ing. It comprises of a population sample of 2682 middle-aged men recruited in 1984–

1989, and 920 ageing women recruited in 1998–2001 from the city of Kuopio and its

surrounding communities in Eastern Finland [27–29]. The sample is one of the most

thoroughly characterized epidemiological study populations in the world, with thou-

sands of biomedical, psychosocial, behavioral, clinical and other variables. Over the past

30 years, the KIHD study has proven to be a valuable source for epidemiological

research, and it has yielded over 500 original peer reviewed articles in international

scientific journals. Follow-up CVD diagnoses were collected with record linkage to the

national computerized Hospital Discharge Register and to the national computerized

Causes of Death Register. The focus in the KIHD study originally was on CVDs, and

especially on ischemic heart disease, but also a wide range of other health outcomes

have been examined.

A subset of 433 predictor variables was preselected from the baseline data (1984–

1989, it consists of only male study subjects) to represent different types of variables:

anthropometric, biochemical, behavioral and nutritional. In this research, we consider

only CVDs as a response variable. The dataset was preprocessed in the following way:

– Firstly, study subjects who had a history of any CVD problems (before or at the

baseline time point) were excluded so that we got vectors of variables for only
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those people who were free of obvious diseases at the beginning of the follow-up

period;

– Secondly, subjects who had been free of disease at the baseline but then died due to

any non-CVD reason, were also excluded.

After these two steps, we obtained a dataset with 1465 study subjects (602 sick and

863 healthy subjects). The final step of preprocessing resulted in two main groups of

subjects: people who had any new serious incident of CVDs during the follow-up until

2012–2013 were categorized as ‘unhealthy’ (i.e. the response variable is equal to 1), and

those who did not face CVDs during the same period were categorized as ‘healthy’ (i.e.

the response variable is equal to 0).

Hence, the general purpose of predictive modeling aims at distinguishing between

these two groups (‘healthy’ and ‘unhealthy’).

Results
To investigate the effectiveness of the considered variable selection methods and to es-

timate the performance of predictive models, we implemented a 5-fold cross-validation

procedure with stratification so that for each out of 5 runs we had training and test

samples. The results of predictive modeling were processed to get confusion matrixes

and, finally, we evaluated an F-score metric: 0% corresponds to the worst performance,

whereas 100% implies the best quality of prediction [30].

In the beginning, we applied a Linear Logistic Regression and SVM models for the

set of all 433 variables [31]. The main purpose of this experiment was to determine

whether non-linear models were more beneficial for the KIHD data on the full set of

variables. For the Logistic Regression model, we tested different cutoffs and found that

changing a default value 0.5 did not provide us with the better result. We trained three

SVM models, the degree of the polynomial kernel was equal to 1.0 (linear one), 1.5 and

2.0 (non-linear ones). We also tested SVM models with other degrees of the polynomial

kernel, but we obtained approximately the same or even worse result.

Based on the F-score values we discovered that for the current dataset the usage of

more complex SVM models (SVM, degree = 1.5 or 2.0) did not lead to better results:

the highest F-score value averaged over 5 folds was gained with linear models (SVM,

degree = 1.0 and Logit) and was about 64.5–65.6% (Fig. 2). The distribution of subjects

in the confusion matrixes obtained with these linear models was slightly different (con-

fusion matrixes are available in Additional file 1: Tables).

The performance of cardiovascular predictive modeling in combination with variable

selections. The figure shows boxplots that compare F-score values obtained with Logit

and SVM (the degree of the polynomial kernel is 1.0, 1.5 and 2.0) models without any

variable selection, with stepwise selection and with evolutionary variable selection.

Mean F-score values are marked with asterisks.

Next, we used a conventional stepwise selection method to find a set of relevant vari-

ables. For each run, we received a reduced vector of variables that were used as inputs

by the Logistic Regression. On average, the number of variables was reduced to 27.2

and on this set of selected variables, we could achieve 64.8% of the F-score metric with

the Logistic Regression (Fig. 2). A table containing all of the variables with non-zero

ranks is available in Additional file 2: Table S6.
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Then we applied the proposed evolutionary variable selection method. As a result, we

obtained a set with 37.8 relevant variables on average. The proposed method was devel-

oped in the framework of a filter approach so that we could use it in combination with

different models. In our experiments, we tested the predictive ability of the Logistic

Regression and SVM models on the obtained variable set (Fig. 2). For the Logistic Re-

gression, the average F-score value increased slightly to 66.2%. With SVM models, we

could achieve 67.3% of the F-score metric on average. We should note that on the re-

duced dataset, the highest F-score was achieved with the non-linear SVM (degree = 1.5).

To perform a deeper analysis, in addition to model predictions (‘healthy’ or ‘un-

healthy’), we registered the probabilities of CVDs and calculated a root mean square

error (RMSE) (Fig. 3). For test instances with CVDs, actual probabilities were equal to

1 and for healthy subjects they were equal to 0. In comparison with the F-score, which

operates only with the predictions ‘healthy’ and ‘unhealthy’, this metric allows us to take

into account the difference between an estimated probability and its actual value.

The performance of cardiovascular predictive modeling in combination with variable

selections. The figure portrays boxplots that reflect RMSE (root mean square error)

values obtained with Logit and SVM (the degree of the polynomial kernel is 1.0, 1.5

and 2.0) models without any variable selection, with stepwise selection and with evolu-

tionary variable selection. Mean RMSE values are marked with asterisks.

As is described in the Methods section, after applying stepwise selection we also ob-

tain ranks expressing the relevance of each variable in the dataset. In our experiment,

the final ranks were averaged over 5 runs (Fig. 4, the central plot). Additionally, we

computed Pearson correlation coefficients to show the basic association between the

response and predictor variables (Fig. 4, the right plot).

Furthermore, we composed an alternative ranking system based on scores evaluated

after the use of the MOGA (MOGA-ranks). In this system, many variables have a

rather high rank because the MOGA determines a set of alternative solutions with

different combinations of relevant variables. Figure 4 contains variables with

Fig. 2 The performance of cardiovascular predictive modeling in combination with variable selections. The
figure shows boxplots that compare F-score values obtained with Logit and SVM (the degree of the
polynomial kernel is 1.0, 1.5 and 2.0) models without any variable selection, with stepwise selection and
with evolutionary variable selection. Mean F-score values are marked with asterisks
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MOGA-ranks ≥ 0.95. The extended list of variables with MOGA-ranks ≥ 0.9 is

available in Additional file 3: Table S7.

The list of variables whose MOGA-ranks are higher than 0.95. The figure shows

ranks of the listed variables given by the MOGA, stepwise selection and Pearson correl-

ation coefficients.

In Fig. 4, we present all the ranks for ‘MOGA’, ‘Stepwise selection’, and ‘Pearson cor-

relation’ so that it is possible to analyze if they agree with each other. Nevertheless, one

should remember that a comparison of absolute values of different ranks is meaningless

because they belong to various ranking systems.

Discussion and conclusion
In this study, we have presented an advanced evolutionary variable selection method

which has been applied to a high-dimensional epidemiological KIHD database. Al-

though we have managed to reduce the number of variables significantly (from 433 to

38) without any damage to the predictive ability of the models used, the remaining con-

cern is related to quite moderate F-score values. We used a traditional Logistic Regres-

sion, and linear (degree = 1.0) and non-linear (degree = 1.5; 2.0) SVM models. On the

whole dataset (433 variables), Linear models (Logit and SVM, degree 1.0) provided us

with approximately the same performance (F-score ≈ 65%), whereas non-linear SVM

models demonstrated lower performance (F-score ≈ 59%). This shows that it is more

difficult for a learning algorithm to adjust the parameters of more complex models hav-

ing many input variables. Despite the similar values of the F-score metric for Logit and

SVM (degree = 1.0), we may note that the use of these models leads to confusion ma-

trixes which are different in the sense of false positive and false negative errors (see

Additional file 1: Tables S3 and Table S5a). In terms of the RMSE metric, the linear

models also outperformed the non-linear ones on the full dataset (Fig. 3).

The Logistic Regression with a conventional stepwise selection demonstrated an even

slightly worse result (F-score ≈ 64.8%) than it showed with no variable selection.

Fig. 3 The performance of cardiovascular predictive modeling in combination with variable selections. The
figure portrays boxplots that reflect RMSE (root mean square error) values obtained with Logit and SVM
(the degree of the polynomial kernel is 1.0, 1.5 and 2.0) models without any variable selection, with
stepwise selection and with evolutionary variable selection. Mean RMSE values are marked with asterisks
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Conversely, after applying the evolutionary variable selection, all the considered models

could achieve a higher F-score. Figure 3 also illustrates that in the sense of the RMSE

metric the predictive ability of all the models used is significantly higher after the evo-

lutionary variable selection. Moreover, on the reduced dataset we could gain the highest

F-score ≈ 67.3% with the non-linear SVM model (degree = 1.5).

At the moment, distinguishing between ‘healthy’ and ‘unhealthy’ subjects has been

performed at a general level by grouping different CVD diagnoses together. In future

studies, various subtypes of CVD need to be studied separately. We suggest that de-

signing ‘disease networks’ [32] may help us to reveal non-trivial connections among di-

verse CVD problems and, finally, to gain higher F-score values. Some advanced

machine-learning techniques based on Deep Learning should be tested as they can

Fig. 4 The list of variables whose MOGA-ranks are higher than 0.95. The figure shows ranks of the listed
variables given by the MOGA, stepwise selection and Pearson correlation coefficients
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successfully tackle high-dimensional problems [33], especially, if we want to test the

several thousands of variables in the KIHD database together with detailed genetic in-

formation that is also available for part of the study cohort.

We have shown that the number of variables in the KIHD dataset might be reduced

from hundreds to the order of tens of variables, which may have practical value. In pro-

spect, the presented variable selection method should be examined on larger datasets.

In addition, our method is based on a filter approach, making it possible to combine

it with two different models (a Logistic Regression and a SVM model) without

re-executing all computations.

In general, it is accepted that in the development of CVDs and related adverse events,

the subject characteristics such as age, gender, dyslipidemia, hypertension and obesity

are important, as well as health behavioral characteristics such as smoking, physical ac-

tivity and diet. When looking into the lists created by stepwise selection and MOGA

(Additional file 2: Table S6 and Additional file 3: Table S7, respectively), many notions

can be made. For instance, how the established CVD risk factors [34, 35] perform. In

the stepwise selection Cigarettes/day*years of smoking, Mean diastolic blood pressure,

Age (years), and LDL-cholesterol (mmol/l) can be found among the first ten, in this

order. In the MOGA, three of these can be found among those that have the score 1,

besides age that received a score of 0.999. Other top-ten stepwise selection variables

that received the score 1 in the MOGA were Maximal oxygen uptake (ml/kg/min),

which makes perfect sense, and Serum triglyceride concentration measurement year,

which is a rather obscure variable to be that influential. Looking at the MOGA first,

there are some other notions. Among those variables that have been selected by the

model into each and every combination set (i.e. with the score 1), there are three socio-

economical status–related variables: Income (Finnish markka), Adulthood socioecomic

status score, and Education (years). This demonstrates very clearly the robustness of

the model with regards to collinearity. Furthermore, all the three variables received a

score of 0.000 in stepwise selection. Hence, we would like to highlight one of the main

benefits of our proposal. Having hundreds or thousands variables which belong to

different categories, it is not necessary to apply some preliminary analysis (like

correlation-based or others), involve experts whose opinions are often biased, or inves-

tigate variables separately in each category. As a proper alternative, we offer just to

unify all available variables and run the algorithm which is able to cope with variable

selection effectively and quickly.

The confusion matrixes (Additional file 1: Table S1–Table S5) show that there are a

fairly large number of subjects that the models were not able to classify correctly. This

may represent a set of variables to choose from that is not optimal (i.e. important pre-

dictors missing from the dataset used), or a too heterogeneous, etiologically distinct

outcome so that the models are actually trying to identify a set of variables that can

classify several outcomes at the same time. However, there are some differences

between the models that may be worth consideration. The MOGA-SVM model

(Additional file 1: Table S5) gives the best specificity (with the degree of a polyno-

mial kernel equal to 1.5) – the proportion of true negatives classified right –, even

better than SVM with the full dataset (Additional file 1: Table S4).

It is necessary to emphasize that a MOGA finds a set of alternative variable combina-

tions. Besides, by running the global heuristic search multiple times, we have collected
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many reduced vectors of variables. Thus, the ranking system designed based on these

diverse solutions seems more thorough and advantageous, compared to the limited re-

sults of stepwise selection.

In this article, we introduce a reference list of the most meaningful variables of

the KIHD study (Fig. 4) which might be used as a basis of new epidemiological re-

search projects. This is a valuable contribution to the CVD predictive modeling

research.

Furthermore, the obtained list of relevant variables is rather flexible. Owing to the

multicollinearity of data, several variables contain similar information so that their dif-

ferent combinations may lead to the same performance of models. This fact gives an

opportunity to choose ‘top’ variables which are economical or convenient to measure.

This is important, when research has to be conducted with limited resources and fund-

ing constraints.

The presented evolutionary variable selection method and the achieved results may

benefit clinical practice as well. Those health care systems which can operate diagnostic

procedures with fewer inputs are not only cheaper but also faster and thus more

cost-effective. They also provide more opportunities to support online diagnostics.

Moreover, reducing the number of variables helps to simplify self-diagnostic tools and

make them more easily available for the general public for independent health

monitoring.

Additional files

Additional file 1: Table S1. Confusion matrix for the logistic regression on the full dataset. Table S2. Confusion
matrix for the logistic regression on the variables selected by the stepwise method. Table S3. Confusion matrix for
the logistic regression on the features selected by the MOGA. Table S4. Confusion matrix for the SVM model on
the full dataset. Table S5. Confusion matrix for the SVM model on the features selected by the MOGA. These files
contain confusion matrixes of our experiments. (PDF 94 kb)

Additional file 2: Table S6. The list of selected variables with non-zero ranks based on stepwise selection. The file in-
cludes the list of variables and their MOGA and stepwise selection ranks with Pearson correlation values. (PDF 236 kb)

Additional file 3: Table S7. The list of variables with MOGA-ranks ≥ 0.9. (PDF 245 kb)
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