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Abstract

Background: Biclustering algorithms search for groups of genes that share the same
behavior under a subset of samples in gene expression data. Nowadays, the biological
knowledge available in public repositories can be used to drive these algorithms to
find biclusters composed of groups of genes functionally coherent. On the other hand,
a distance among genes can be defined according to their information stored in Gene
Ontology (GO). Gene pairwise GO semantic similarity measures report a value for each
pair of genes which establishes their functional similarity. A scatter search-based
algorithm that optimizes a merit function that integrates GO information is studied in
this paper. This merit function uses a term that addresses the information through a GO
measure.

Results: The effect of two possible different gene pairwise GO measures on the
performance of the algorithm is analyzed. Firstly, three well known yeast datasets with
approximately one thousand of genes are studied. Secondly, a group of human
datasets related to clinical data of cancer is also explored by the algorithm. Most of
these data are high-dimensional datasets composed of a huge number of genes. The
resultant biclusters reveal groups of genes linked by a same functionality when the
search procedure is driven by one of the proposed GO measures. Furthermore, a
qualitative biological study of a group of biclusters show their relevance from a cancer
disease perspective.

Conclusions: It can be concluded that the integration of biological information
improves the performance of the biclustering process. The two different GO measures
studied show an improvement in the results obtained for the yeast dataset. However, if
datasets are composed of a huge number of genes, only one of them really improves
the algorithm performance. This second case constitutes a clear option to explore
interesting datasets from a clinical point of view.

Keywords: Biclustering of gene expression data, Gene pairwise GO measures,
Scatter search metaheuristic

Introduction
Gene expression datasets show the expression profiles of thousand of genes under dozens
of samples or experimental conditions. The nature of data motivates a new perspective
of clustering where the goal is to discover groups of genes that share the same behavior
under a subset of samples and not all of them. These groups of genes with similar profiles
under a subset of conditions are called biclusters. Biclustering is a type of clustering where
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instances (genes) and features (conditions) are simultaneously clustered. Although biclus-
tering algorithms were firstly studied in a general framework with names such as subspace
clustering or co-clustering, most of them have been developed in the context of gene
expression data [1].
Gene Ontology (GO) is a public repository that stores biological information through

a vocabulary of terms [2]. GO has a tree structure composed of three domains or roots:
Biological Process (BP), Molecular Functions (MF) and Cellular Components (CC). Each
term in this ontology has a set of annotated genes. Terms in higher levels in the tree are
more general, while terms in lower levels are more specific and descriptives. Therefore,
each gene is related to a set of GO terms with different levels of specificity. Functional
annotation files relate a gene to a set of GO terms. GO is usually used in the biclustering
field to provide a biological meaning to the results achieved by any biclustering technique
[3]. Additionally, the standard framework of comparison among biclustering algorithms
is also based on the information stored in GO [4]. All this biological information is used
for validation tasks but not for introducing new search criteria in biclustering algorithms.
However, nowadays the integration of biological information is one of the challenges and
research directions [5]. Knowledge-driven search criteria can be defined by combining
co-expression and functional similarity among genes.
Functional similarity measures based on GO establish distances among GO terms.

Basically there are two groups of GO measures: graph-based measures and information
content (IC)-based measures [6]. The first group is based on the frequency of a term in
the GO graph. The second group of measures assumes that the specificity of a term can be
directly inferred from its depth in the GO graph. Due to each gene is associated with a set
of GO terms, a distance between two genes can be defined according to their information
stored in GO. Similarity measures that simultaneously compare sets of terms rather than
single terms are more efficient to be used as a measure among genes. These measures are
usually called gene pairwise GO measures.
Gene pairwise GO measures are used in this paper in a scatter search-based biclus-

tering algorithm as part of its search criteria. Thus, GO information adds a bias during
the search process that improves the algorithm performance. Hence, those biclusters
composed of functionally coherent genes are emphasized. The proposed algorithm fol-
lows the same search procedure that the algorithm presented in [7]. Each bicluster is
sequentially found through a scatter search procedure. This procedure optimizes a fitness
function, which involves the gene expression data along with the GO annotation infor-
mation by means of a gene pairwise GOmeasure. Therefore, several fitness functions can
be defined according to the gene pairwise GO measures to be used. The scatter search is
a population-based evolutionary optimization method that emphasizes systematic pro-
cesses against random procedures. The optimization process is based on the evolution of
a small set of solutions that is built with a group of solutions selected by considering inten-
sification and diversity strategies for each iteration. Scatter search carries out a number
of fitness function evaluations during the search less than other evolutionary metaheuris-
tics [8]. This paper follows the preliminary ideas presented in [9] and it extends the work
previously published in [10], where a particular gene parwise GOmeasure was studied in
the context of biclustering. The impact of biological information integration in the con-
text of high-dimensional datasets is analyzed for the first time in this paper to the best of
our knowledge.
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The rest of the paper is organized as follows. A short survey of biclustering and some
related works are presented in “Related work” section. “Method” section presents the
proposed algorithm. Firstly the fitness function and two different options to integrate
the biological information by means of two gene pairwise GO measures are provided
(“Fitness function” and “Gene pairwise GO measures” subsections). Secondly, the main
ideas of a scatter search along with the pseudocode of the algorithm are explained
(“Scatter search based-scheme” section). Experimental results and discussion are shown
in “Experiments” section. This section also includes a biological study of several biclus-
ters in order to show their relevance in “Biological study” subsection. Finally, conclusions
and future works are presented in “Conclusions” section.

Related work
The main idea of biclustering is to discover local patterns rather than global patterns in
datasets. In the last years, many biclustering algorithms have been proposed in the con-
text of gene expression data [11, 12]. These algorithms differ depending on their search
criteria and their heuristic strategies [1]. They can be classified according to whether
they are based or not on a particular evaluation measure [13]. It is important to note
that the comparison among this kind of techniques is a hard task because the best algo-
rithm generally depends on the type of patterns to discover and the nature of the studied
dataset [14].
Several algorithms that are usually referenced can be highlighted. They can be consid-

ered as classic biclustering algorithms [15]. Cheng and Church [16] and FLOC algorithms
[17] find biclusters with a score under a threshold called Mean Square Residue (MSR).
The first one was the foundational algorithm and the FLOC improved it. Although
the MSR measure has been used in many measure-based algorithms, it can not cap-
ture some relevant patterns [18]. xMotifs algorithm [19] iteratively searches conserved
gene expression subsets of genes that are simultaneously conserved across a subset of
conditions. Binary inclusion-maximal biclustering algorithm (BIMAX) was presented in
[20] where it was used as a reference method for comparison with other algorithms.
The Plaid Model [21] is an additive biclustering algorithm based on additive layers to
capture biclusters. Spectral Biclustering [22] uses a checkboard structure to find biclus-
ters and it applies a singular value decomposition (SVD) of the matrix representing the
dataset. Factor analysis for bicluster acquisition (FABIA) [23] is based on a statistical
method, which studies the variability among variables (genes) according to a potentially
lower number of unobserved variables called factors. Order-preserving submatrix algo-
rithm (OPSM) [24] sequentially searches for biclusters based on a linear ordering among
rows. Iterative signature algorithm (ISA) [20] finds up-regulated and down-regulated
patterns using a nondeterministic greedy search as heuristic. Blocks of coherent val-
ues with respect to rows and columns are found by reordering the input matrix. Finally,
it can be also highlighted a family of measure-based algorithms that use evolutionary
computation techniques such as [25–28]. Moreover, it can be noted that several algo-
rithms of this group use correlations among genes as a measure for purposes of bicluster
evaluation [7, 29–35].
In the last years, the use of biological information as a mechanism of knowledge-driven

search has been studied. Concretely, some algorithms recently used GO functional files to
improve their performance in traditional clustering of gene expression data [36]. GO was
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also used in an unsupervised scenario based on a Principal Component Analysis (PCA)
method in order to explore gene expression datasets [37].
In the field of biclustering, the AID-ISA algorithm [38] is a modified version of the

ISA algorithm that uses a procedure to incorporate additional sources of information.
GenMiner [39] is an algorithm based on association rules that also handles biological
annotation files. It integrates gene expression and annotation data in a single framework
in order to select relevant rules during the search process. The algorithm presented in [40]
works with self-organizing maps and combines an ontology-based clustering using GO
and an expression-based clustering. Moreover, in this field but specialized in microRNA
and target genes data, the algorithm presented in [41] used GO in order to establish a
ranking from its results.
Due to the NP-hard nature of biclustering [42], most of algorithms have difficulties to

find relevant information with high-dimensional datasets. Recently, some authors have
included some constrains during the search process in order to deal with the size of
the dataset. Thus, only the most relevant part of the dataset is explored [43, 44]. The
BiC2PAM algorithm [45] uses pattern mining-based ideas to prune the search process. It
also considers the biological context through the fulfilment of several constraints related
to interesting properties from a biological point of view and to annotations from domain
knowledge. This paper also establishes a classification of the new biclustering algorithms
based on knowledge integration: constraints with nice properties, parametric constraints
and biclustering with annotations.
The authors of this paper presented a preliminary biclustering algorithm that integrates

biological knowledge in [9]. Namely, a scatter search metaheuristic algorithm [46] was
adapted to optimize a merit function that handled gene expression and gene annotation
data. As a consequence of this first study of biological information integration in bicluster-
ing, a gene pairwise GO-measure was also studied in [10]. The current work constitutes
an extension of this last work in order to analyze how to improve the algorithm per-
formance using these ideas in the context of high-dimensional gene expression datasets.
This work can be classified as a constraint-based biclustering algorithm with knowledge
integration through the use of annotations from knowledge-based repositories [45].

Method
The proposed algorithm integrates biological information to search biclusters in gene
expression data. A fitness function that characterizes biclusters is defined and it is
optimized by means of a scatter search metaheuristic. Basically, two ideas can be dif-
ferentiated. Firstly, the fitness function definition where a term deals with a functional
annotation file to integrate the biological information. Secondly, a search procedure based
on a scatter search metaheuristic that minimizes this function. Therefore, the search
scheme and the search criterion are independent.
The input data of the algorithm are the gene expression data matrix, the gene func-

tional annotation information and the number of biclusters to find. Each row in the gene
expression data matrix is the expression profile of a gene and each column is a sample
or experimental condition. Hence, each numerical value of the matrix is the expression
value of a gene under a specific condition. Gene functional annotation files relate genes to
a set of terms where they are annotated. In this work, GO annotation files are used, being
related each gene to a set of GO terms.
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Fitness function

Theminimization of the fitness function provides the resultant biclusters. Three different
criteria are considered: the volume, the patterns to find in the gene expression matrix and
the biological information of the set of genes from GO. Given a bicluster composed of N
genes and Q conditions, the fitness function is defined as follows:

f (B) = M1 · 1
N · Q + M2 · fcorr(B) + M3 · fGO(B) (1)

where the first term measures the volume, the second term uses the average correlation
to find shifting and scaling patterns and the third one the GO information. M1, M2 and
M3 are parameters to weight the relevance of these three terms, respectively.
The average correlation to find particular patterns such as shifting and scaling patterns

has been previously used [7]. This term is based on the correlation by pairs of genes and
it is defined as:

fcorr(B) = 1 − 1
(N
2
)
N−1∑

i=1

N∑

j=i+1
|ρij| (2)

where ρij is the pearson correlation coefficient between the genes gi and gj. Note that this
correlation is calculated using the rows and the columns of the submatrix that contain
the bicluster information from the gene expression matrix. Due to the best value for the
correlation is equal to 1, and the goal is to minimize the fitness function, fcorr is modified
to achieve its optimal value when the average correlation is set to 0. The absolute value is
considered to capture positive and negative correlations.
The third term in the fitness function handles the GO information of the set of genes

in bicluster. The idea is to measure the functional similarities among genes using a gene
pairwise GO measure. This term is defined as follows:

fGO(B) = 1 − 1
(N
2
)
N−1∑

i=1

N∑

j=i+1
GOmeasure(gi, gj) (3)

where GOmeasure(gi, gj) represents the value of a determined GO measure for the genes
gi and gj. As it is the case for the previous termmentioned, this term is modified to achieve
the optimal value when the average of the GOmeasure is set to 0. Note that this term can
be configured depending on the GO measure to be selected.
Thus, the first and the second terms in the fitness function use the gene expression

matrix while the third term uses the gene functional annotation file. The parametersM1,
M2 andM3 control the relevance of each term.

Gene pairwise GOmeasures

Gene pairwise GO measures provide a distance between two genes according to their
correspondingGO terms. TheseGO-basedmeasures are based on the comparison of a set
of terms simultaneously in spite of studying separately single terms. This information is
extracted from the gene functional annotation file used as input. These files are built such
that for each gene the extended set of its annotations, which includes a direct annotation
and their ancestral terms up to the root node, are considered. Two gene pairwise GO
measures deeply studied in [6] have been selected to use as the third term of the fitness
function (Eq. 1).
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SimUImeasure

This measure is based on counting terms in the graph of GO [6]. It also uses an extra file
with the GO structure along with the gene annotation file. Given two genes g1 and g2, the
simUI measure is defined as follows:

SimUI(g1, g2) = COUNTt∈GO(g1)∩GO(g2)

COUNTt∈GO(g1)∪GO(g2)
(4)

where COUNT is a function to count the number of GO terms.

SimGICmeasure

This measure is an IC measure that calculates the probability of each term in GO. In
addition to the gene annotation file, this measure uses as input an extra file with the GO
structure to compute the IC. It shows the best performance when compared to other
measures in the experimental study presented in [6]. Given two genes g1 and g2, the
simGIC measure is defined as follows:

SimGIC(g1, g2) =
∑

t∈GO(g1)∩GO(g2) IC(t)
∑

t∈GO(g1)∪GO(g2) IC(t)
(5)

where IC(ti) = −log(p(ti)) is the information content of the term i and p(ti) the prob-
ability of a term occurring in the corpus. This probability p(ti) can be calculated as:

p(ti) = frec(ti)
frec(root)

(6)

where:

• frec(root) is the number of times that a gene is annotated with any term within the
ontology.

• frec(ti) = |annot(i)| + ∑
c∈children(ti) |annot(i)|, where children(ti) is the set of all

children terms for the term ti and |annot(i)| is the number of times being the term
annotated.

Note that the graph structure of GO is necessary to compute children(ti).

Scatter search based-scheme

The proposed algorithm is based on a scatter search metaheuristic that optimizes the fit-
ness function (Eq. 1). It follows the same ideas that the algorithm proposed in [9], which
uses the search engine of the algorithm published in [46]. Each bicluster is found sequen-
tially through the scatter search procedure that is repeated until the number of biclusters
to discover is achieved. Therefore, every search is independent of the previous one. Scat-
ter search is a population-based metaheuristic that generates solutions, which represent
biclusters, and the resultant bicluster is the best solution found by the search process.
Biclusters are encoded as two binary strings where the bits indicate their corresponding

gene or condition in the gene expression matrix. The main concepts are the intensifica-
tion of solutions in order to find the optimum and the diversification in order to avoid
local minima. As it can be seen in the the scatter search procedure (Algorithm 1), both
intensification and diversification strategies are reached through the evolution of a small
set of solution called reference set.



Nepomuceno et al. BioDataMining  (2018) 11:4 Page 7 of 19

An initial population is generated by the diversification generation method with solu-
tions as scatter as possible. These solutions are built from a seed solution following a
diversity rule for binary strings [46]. The Hamming distance is used to measure the dis-
tance among them. Then, the solutions in the initial population are improved by the
improvement method (lines 1 and 2 in Algorithm 1). This improvement method is a local
search that intensifies the process because each solution is swapped by another solution
with a lower value for the fitness function. New solutions are generated using bits permu-
tation in order to be close of the original solution. If none of them improves the original,
it remains in the search process [9]. It is important to note that this improvement method
is a blind search, and therefore, it is independent of the semantic of the fitness function.
The reference set is built with the most representative solutions from the initial pop-

ulation according to quality and diversity criteria. The five best solutions from fitness
function point of view and the five most scattered solutions to these ones are chosen
(line 3 in Algorithm 1). The initial population is updated by removing these ten solutions
(line 4 in Algorithm 1).
The reference set evolves until it is stable, namely, until every new solution is worst

than the solutions stored in the reference set (line 7 to 12 in Algorithm 1). The subset
generation method generates new binary strings giving rise to new solutions when
applying the solution combination method. This method is based on traditional crossover
operators normally used with binary strings. The reference set update method consists in
choosing the 10 best solutions from the new generated solutions and the solutions that
form the reference set. The reference set is rebuilt and the previous process is repeated
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a number of times (line 13 and 14 in Algorithm 1). The output is the best bicluster in the
last reference set.
Some inner parameter values are required by the algorithm such as the number of solu-

tions of the initial population, the size of the reference set and the maximum number of
iterations of the scatter search. They are 200, 10 and 20, respectively and they have been
chosen according to the scatter search literature [8]. It must be noted that the algorithm
does not need to control the size of other inner generated subsets of solutions.

Experiments
The experiments have been designed to study the effect of using biological information
by means of gene pairwise GO measures on biclustering. The goal is to determine which
is the best measure and its best parameter configuration to use in the context of high-
dimensional gene expression datasets. Therefore, the purpose is to compare the effect
of each measure on the biclustering process more than to study the search procedure
itself. The biclusters obtained by different fitness functions based on the two GO mea-
sures detailed in “Gene pairwise GO measures” section have been analyzed. In addition,
three possibilities for the parameter configuration have been considered for each fitness
function. Finally, the biclusters provided when no considering the biological information
integration through a particular fitness function configuration are also analyzed.
The input data of the algorithm are the gene expression matrix along with a gene

annotation file. These annotation files link each gene with a set of GO terms. The gene
functional annotation file is a gene association file with the extension .goa downloaded
from Gene Ontology (GO). An extra file with the extension .obo in order to provide
extra information for each GO term has also been downloaded. The genes nomenclature
must be the same in the annotation file and in the expression matrix file. Genes must
share the same identifiers in both files in order to be able to connect them. Hence, it is
recommended to use standard gene names in the expression matrix.
The sets of biclusters obtained by the scatter search for each run have been studied in

accordance with their percentage of enriched biclusters. This criterion is commonly used
to establish a comparison among biclustering algorithms and their performance for bio-
logical data [3, 4]. Thus, a ranking of different sets of biclusters can bemade depending on
the percentages of enrichment. The detection of statistically overrepresented GO terms
has been done with the hypergeometric test [47], multiple-testing adjustments with the
Benjamini and Hochberg false discovery rate [48] with a significance level of α = 0.05.
The results reported here have been carried out using the Biological Process (BP) domain
of GO.
These experiments have been firstly focused on three yeast datasets previously used in

[10] and in [49]. These first cases constitute an example of standard size datasets in biclus-
tering literature. Secondly, a group of human datasets related to clinical data of cancer
have been used in the experimental study. These data are composed of a huge num-
ber of genes and several of them can be considered examples of high-dimensional gene
expression datasets [15].

Data sets description

Three Saccharomyces cerevisiae datasets and several Homo sapiens datasets from NCBI
Gene Expression Omnibus repository [50] have been used in these experiments. The first



Nepomuceno et al. BioDataMining  (2018) 11:4 Page 9 of 19

dataset is composed of 882 genes and 131 samples after being preprocessed. The identifier
of this yeast dataset is GDS1116 in the repository. The other two yeast datasets have
been downloaded from the supplementary information provided in [49]. They have been
labeled as 15mM_diamide and 25mM_DTT and their size is (996 × 8) and (1025 × 8),
respectively. The raw data of the human datasets were generated in the context of clinical
experiments with patients that suffer different cancer diseases. Table 1 shows information
for each human dataset and the clinical study where they were generated in addition to
the accession numbers or identifiers in the repository and sizes after being preprocessed.
It is important to emphasize the huge number of genes for most of them. For this reason,
most of them can been considered high-dimensional gene expression datasets from a
biclustering perspective.
Raw data have been preprocessed using Babelomics web tool [51]. Missing values have

been replaced by the mean of the values for each row (gene). The rows with a percentage
of missing values greater than 30% have been removed. If a gene appears several times
in the raw data these rows (genes) have been summed up by means of the median of the
values. The 15mM_diamide and 25mM_DTT yeast datasets were previously processed
but their gene nomenclature was different from the .goa yeast annotation file. Therefore,
their gene names have been translated from ORFF format to standard gene names using
the YEASTRACT [52].

Results

Two different definitions for the fitness function are possible depending on the gene pair-
wise GO measure to be used to integrate biological information in the bicluster search
process. The third term (Eq. 3) in the fitness function can be based on the simUI or the
simGIC measures. On the other hand, this term is null if there is not any kind of biologi-
cal integration. For each gene pairwise GO measure, three parameter configurations are
studied, (211), (212) and (221), where these numbers are the values for M1, M2 and M3
in Eq. 1, respectively. The first configuration for the fitness function, (211), provides the
same relevance to the average correlation (Eq. 2) as to the GOmeasure (Eq. 3). The second
configuration, (212), emphasizes the GO measure over the average correlation. Finally,
the average correlation is more relevant when using the (221) configuration. The param-
eter M3 is set to 0 when the biological information integration is not taken into account,
and hence, there is only two possible configurations, (210) and (220), in this case. It is
important to highlight that the three terms in the fitness function vary between 0 to 1.
On the other hand, the parameter M1 is set to 2 for all configurations due to the previ-
ous experience shows that the volume must be equal or more relevant that the average

Table 1 Human datasets related to cancer clinical data used in the experimental study

Dataset Size Information about the experimental context of data

GDS3289 (971 ×104) A prostate cancer study of the disease progression from beginning epithelium
to metastatic stage.

GDS2415 (1690 ×59) A breast carcinoma tumor study in patients with breast-conserving therapy.

GDS2918 (4587 ×20) A study of blood plasma from patients with colorectal cancer.

GDS3966 (10296 ×83) An analysis of melanoma samples in different stages of the disease.

GDS3139 (12270 ×29) A histological analysis of normal breast epithelia in patients with breast cancer.

GDS4794 (16925 ×65) A lung cancer study of small cells in initial stages of the disease.
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correlation in order to avoid trivial biclusters [9]. Therefore, a total of eight possibilities
are studied in order to run the scatter search algorithm for each dataset, that is, two GO
measures with three possible parameters configurations and two possible configurations
without considering biological information. Note that M1 and M2 can not be equal to
zero in order to avoid trivial biclusters and to control the number of conditions during
the search, respectively.
Figures 1, 2 and 3 report the percentage of enriched biclusters obtained by the

scatter search algorithm for all configurations and for GDS1116, 15mM_diamide and
25mM_DTT yeast datasets, respectively. Namely, biclusters provided for the (211), (212)
and (221) configurations for the simGIC and the simUI measures and for the (210) and
(220) configurations where no biological information integration is present are compared.
A number of 100 biclusters have been obtained for all runs in order to have a wide range
of results to handle the random nature of the algorithm. It should be noted that although
the complete information of GO is used during the search, it is only used the Biological
Process (BP) sub-ontology in order to do this enrichment study.
Likewise, Table 2 presents the information about biclusters obtained from the appli-

cation of the scatter search to human datasets such as GDS3289, GDS2415, GDS2918,
GDS3966, GDS3139 and GDS4794. The second and the third column show the different
fitness function definitions and possible parameter configurations, respectively. Con-
cretely, the simUI and the simGIC measures with (211), (212) and (221) configurations
or no measure for biological integration corresponding to (210) and (220) configurations.
The fourth column reports the average size of the set of biclusters for each run, namely,
the average number of genes and conditions. Finally, the percentage of enriched biclusters
is shown in the fifth column.
The Figs. 4 and 5 show the overlapping among 100 biclusters obtained by the fitness

function based on simGIC measure with the (212) setting for GDS5794. Each element in
the matrix of the heatmap is the percentage of overlapping between two biclusters. It can
be observed a low overlapping among the obtained biclusters. The reason is that each

Fig. 1 Biclusters obtained by the biclustering algorithm for each fitness function for the GDS1116 yeast
dataset
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Fig. 2 Biclusters obtained by the biclustering algorithm for each fitness function for the 15mM_diamide yeast
dataset

bicluster is found by independent scatter search processes that uses a different initial pop-
ulation [53]. Therefore, it is not necessary to introduce a control of overlapping in the
algorithm in special in the context of high-dimensional datasets. Note that all biclusters
are overlapped with a percentage below 10%. Additionally, Fig. 6 show the overlapping
but considering only the set of genes in each bicluster. It can also be observed a low
overlapping.

Discussion of the results

Figure 1 studies a case composed of 882 genes and 131 conditions. The best parameter set-
ting is provided when theM2 parameter is equal to 1. From the Fig. 1, it can be observed

Fig. 3 Biclusters obtained by the biclustering algorithm for each fitness function for the 25mM_DTT yeast
dataset
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Table 2 Biclusters obtained by the biclustering algorithm for each fitness functions for GDS3289,
GDS2415, GDS2918, GDS3966, GDS3139,GDS4794 datasets

Fitness function Enriched

Dataset Parameters Size biclusters (%)

GOmeasure (M1,M2,M3) BP

(2, 1, 1) (15.3 ×14.0) 38

simUI (2, 1, 2) (9.4 ×14.0) 57

(2, 2, 1) (20.0 ×3.0) 39

(2, 1, 1) (17.1 ×13.5) 28

GDS3289 simGIC (2, 1, 2) (10.6 ×14.0) 92

(2, 2, 1) (28.4 ×3.0) 18

(2, 1, 0) (21.6 ×14.3) 1

0 (2, 2, 0) (40.6 ×3.4) 5

(2, 1, 1) (18.1 ×13.9) 4

simUI (2, 1, 2) (9.1 ×13.4) 36

(2, 2, 1) (21.9 ×3.1) 8

(2, 1, 1) (22.9 ×3.1) 0

GDS2415 simGIC (2, 1, 2) (13.4 ×12.5) 44

(2, 2, 1) (35.3 ×3.0) 8

(2, 1, 0) (23.2 ×13.4) 0

0 (2, 2, 0) (41.7 ×3.2) 0

(2, 1, 1) (40.3 ×6.8) 1

simUI (2, 1, 2) (40.0 ×6.8) 0

(2, 2, 1) (53.3 ×3.4) 2

(2, 1, 1) (31.0 ×6.7) 10

GDS2918 simGIC (2, 1, 2) (13.3 ×7.3) 42

(2, 2, 1) (34.4 ×3.4) 23

(2, 1, 0) (36.5 ×7.2) 1

0 (2, 2, 0) (54.0 ×3.3) 1

(2, 1, 1) (26.2 ×17.8) 4

simUI (2, 1, 2) (26.5 ×18.3) 6

(2, 2, 1) (41.8 ×3.4) 1

(2, 1, 1) (23.2 ×17.8) 11

GDS3966 simGIC (2, 1, 2) (13.9 ×19.1) 45

(2, 2, 1) (35.7 ×3.3) 6

(2, 1, 0) (26.5 ×18.3) 3

0 (2, 2, 0) (42.3 ×3.4) 0

(2, 1, 1) (35.6 ×13.0) 2

simUI (2, 1, 2) (35.2 ×13.2) 3

(2, 2, 1) (28.9 ×9.7) 1

(2, 1, 1) (31.6 ×13.4) 7

GDS3139 simGIC (2, 1, 2) (18.4 ×13.1) 23

(2, 2, 1) (26.9 ×9.9) 4

(2, 1, 0) (35.1 ×13.4) 2

0 (2, 2, 0) (27.7 ×9.8) 3

(2, 1, 1) (26.0 ×17.1) 5

simUI (2, 1, 2) (25.7 ×17.2) 3

(2, 2, 1) (46.3 ×3.8) 0

(2, 1, 1) (23.7 ×16.7) 13

GDS4794 simGIC (2, 1, 2) (17.0 ×16.43) 28

(2, 2, 1) (36.6 ×3.7) 10

(2, 1, 0) (25.7 ×17.1) 4

0 (2, 2, 0) (46.8 ×3.8) 1
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Fig. 4 Overlapping among biclusters obtained by (212)-simGIC fitness function configuration for GDS4794
dataset

that a less percentage of enriched biclusters is obtained when using the (221) configura-
tion than that of (211) or (212) configurations for the two fitness functions. Furthermore,
it can also be observed that without biological information integration the (210) config-
uration obtains better biclusters regarding the enrichement than the (220) configuration.
Therefore, configurations where the GO measure has more relevance or the same as the
average correlation improve the algorithm performance. Moreover, the integration of bio-
logical information clearly improves the quality of the biclusters. It can be appreciated
that the biclusters for simGIC and simUI measures are better than that obtained without
any biological information. Finally, it can be observed that both gene pairwise GO mea-
sures show similar results, highlighting the biclusters provided when applying simGIC
and simUI measures for (211) and (212) configurations with more than a 90% of enriched
biclusters.
Figures 2 and 3 study datasets with sizes (996 × 8) and (1025 × 8) respectively. Note

that although they have approximately a similar number of genes to the previous dataset,

Fig. 5 Histogram of percentage of overlapping among biclusters obtained by (212)-simGIC fitness function
configuration for GDS4794 dataset
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Fig. 6 Overlapping among biclusters obtained by (212)-simGIC fitness function configuration for GDS4794
dataset studying only their genes

GDS116, they only have 8 conditions. It can also be observed a similar behavior in Fig. 1.
The integration of biological information improves the performance of the algorithm spe-
cially in Fig. 3. Moreover, both measures show a similar behavior although simUI presents
slightly better results than simGIC.
Table 2 presents a group of experiments for datasets with a very large number of genes,

concretely, 971, 1690, 4587, 10296, 12270 and 16925, respectively (see Table 1). Note that
from this table, the datasets are in ascending order regarding the number of genes. For
these high-dimensional datasets, it can be firstly observed that the simGICmeasure intro-
duces a bias during the search process, and as a consequence, the scatter search algorithm
improves giving rise to better biclusters. In this context, the biclustering algorithm has
problems to find enriched biclusters but the simGIC measure clearly makes the search
process more effective. From this table, it can also be observed that the (212) configura-
tion shows higher enriched bicluster percentages than the rest of configurations for the
simGIC measure. In particular, values marked in bold reveal a 92%, 44%, 42%, 45%, 23%
and 28% of enriched biclusters for GDS3289, GDS2415, GDS2918, GDS3966, GDS3139
and GDS4794 datasets, respectively. On the other hand, the simUI measure improves the
performance of the biclustering algorithm forGDS3289 andGDS2415 datasets when used
the 212 configuration finding a 57 and 36% of enriched biclusters. However, this behav-
ior changes when the number of genes in the dataset increases considerably. It should
be appreciated that all datasets are formed by a number of genes much greater than the
number of genes in GDS3289 and GDS2415 datasets. As it was expected, the higher the
number of genes, the lower percentage of enriched biclusters is.
In summary, these experiments show that the integration of biological information by

means of the two GO measures proposed here improves the scatter search algorithm
performance when using datasets of small o moderate size, showing similar results for
both measures. However, if the dataset is composed of a huge number of genes, the bio-
logical integration must be defined using the simGIC measure and the (212) parameter
configuration.
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Biological study

The resultant biclusters obtained by the (212)-simGIC fitness function definition for
the GDS4794 dataset have been biologically studied. This dataset is a high-dimensional
dataset related to lung cancer. Due to its huge number of genes, this dataset is supposed
to be the most difficult to explore by the biclustering algorithm. This biological study has
been focused on the subset of the 28 enriched biclusters (see Table 2). Table 3 shows that
24 biclusters out of 28 contain genes associated with cancer diseases. This table has been
built matching the list of oncogenes, candidate cancer genes provided by the Network of
Cancer Genes (NCG) [54] and the genes in each bicluster jointly.
The hypothesis is that the algorithm can detect biclusters functionally coherent. There-

fore, these biclusters that contain cancer genes should be functionally related with some
biological processes of cancer. In order to determine the potential biomedical relevance
of these biclusters, they have been analyzed using FuncAssociate [47] and their reported
GO terms have been studied from a cancer perspective using the Integrated human lung
cancer-related factors database (IHLDB) [55]. Besides, Reactome [56] has also used as a
resource for mapping genes in signalling pathways.
Firstly, the study has been focused on the bicluster labeled as bi_2 in Table 3. This

bicluster contains the BRIP1 gene which is a recessive cancer gene mutated in multiple
primary sites. The analysis with FuncAssociate of its six genes reports several GO terms. It

Table 3 Group of enriched biclusters related to cancer obtained with the (212)-simGIC fitness
function for the GDS4794 dataset

id. Oncogenes Candidate cancer genes Number of
biclusters genes in

each bicluster

bi_2 BRIP1 6

bi_13 CRTC1, KLF6 ERF 8

bi_19 PIK3R1 12

bi_21 FANCD2 11

bi_22 SMARCE1 13

bi_32 ATP2B3 AMPH, ANK2 18

bi_41 RPL22 12

bi_53 BLM, MSH2, REL, MYC SMAD2 18

bi_63 EZH2, TFE3, ACSL6 28

bi_65 ELF4 GNA13 11

bi_82 PALB2, TPR, NUP98, NUP214 CHD4, DBR1 16

bi_4 ZHX2 7

bi_11 CLCN4 9

bi_15 SNRPA, DBR1 13

bi_25 NR3C2, CHD2 18

bi_26 TTK, PHIP, GLI3 16

bi_29 GRM3 10

bi_34 PRKCG, RASGEF1A 17

bi_35 CACNA2D1 16

bi_39 PTPRT, NGEF, GRIA3, CHST1, DUSP7 17

bi_70 AMPH, BRINP3, SPTBN4, RBMX 22

bi_72 NCOR1, NCOR2, RBMX, TCEB1 19

bi_89 PPM1D, TDG, RNF103, CTIF 17

bi_100 SLC25A48, TAF1, RASSF6 46
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must be highlighted the term GO:0019219 where the six genes are simultaneously anno-
tated. This GO term is not only related to the BRIP1 according to the NCG but also it’s
a GO term related to lung cancer according to the information provided by IHLDB. This
term is linked with the nucleotide and nucleic acid metabolism and it is in the level 6
of GO. Figure 7 shows GO:0019219 inside the Biological Process domain of GO using
QuickGO [57].
Secondly, bi_53, bi_63 and bi_82 biclusters, with 4, 4 and 3 oncogenes respectively, have

also been analyzed using Reactome. These three biclusters have in common the pathway
named Cell cycle andmitotic. This process, which is responsible of the cell progresses and
its division, is the key of cancer diseases [58]. Note that this pathway has a high number
of entities, namely, 568. For example, the bi_53 is composed of 18 genes and it has 7
genes identified in the pathway. Table 4 shows pathways that have the word cancer in
their names reported by Reactome for the bi_53 bicluster. It can be highlighted the first
two with a very low FDR and with 2 of a total of 3 genes matched in the pathway. The
complete information about the 133 pathways reported for this bicluster is included as an
excel file in the link of Availability of data and materials.

Conclusions
A biclustering algorithm based on a scatter search scheme that integrates biological infor-
mation has been studied in this paper. Each bicluster is sequentially found by the scatter
search algorithm through the optimization of a merit function. This function is consti-
tuted by three different terms dealing with the information provided by inputs files: the
gene expression matrix, and additionally, a gene functional annotation file extracted from
GO. The third therm in the fitness function is computed by using a gene pairwise GO

Fig. 7 Biological study of biclusters obtained by the (212)-simGIC configuration for the GDS4794 dataset:
highlighted GO term observed in the results for GDS4794 dataset
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Table 4Mapping analysis provided by Reactome for the bi53 bicluster obtained with the
(212)-simGIC fitness function

Pathway identifier Pathway name FDR Entities Entities
found total

R-HSA-3304347 Loss of Function of SMAD4 in Cancer 5.27E-11 2 3

R-HSA-3311021 SMAD4 MH2 Domain Mutants in Cancer 5.27E-11 2 3

R-HSA-3304356 SMAD2/3 Phosphorylation Motif Mutants in Cancer 0.002 2 7

R-HSA-3304349 Loss of Function of SMAD2/3 in Cancer 0.002 2 9

R-HSA-3315487 SMAD2/3 MH2 Domain Mutants in Cancer 0.002 2 9

R-HSA-3656532 TGFBR1 KD Mutants in Cancer 0.002 2 9

R-HSA-3656534 Loss of Function of TGFBR1 in Cancer 0.002 2 9

R-HSA-3304351 Signaling by TGF-beta Receptor Complex in Cancer 0.002 2 10

R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 0.017 2 68

R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 0.017 2 68

R-HSA-2644603 Signaling by NOTCH1 in Cancer 0.017 2 68

Those pathways that includes the word cancer in their names are presented in this table. The complete information about the
133 found pathways can be downloaded as an excel file in the link of Availability of data and materials

measure. Two different GO measures giving rise to several different fitness functions
configurations have been analyzed in this work.
Parameter settings have been studied analyzing the most representative situations for

each fitness function. Experimental results have shown that the algorithm performance
is improved when the biological information is integrated. It can be concluded that the
use of GO measures drives the search of the algorithm to biclusters composed of groups
of genes functionally coherent. The two possibilities of GO information integration have
shown a similar behavior for three yeast datasets with approximately one thousand of
genes. However, the simGC measure with the (212) parameter configuration is the only
measure that improves the algorithm performance for high-dimensional datasets. More-
over, a biological study of the results obtained by the simGIC measure for the cancer
dataset, themost difficult dataset to explore due to its number of genes, reveals interesting
biclusters from a disease perspective.
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