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Abstract

Motivation: Detecting differentially expressed (DE) genes between disease and
normal control group is one of the most common analyses in genome-wide
transcriptomic data. Since most studies don’t have a lot of samples, researchers
have used meta-analysis to group different datasets for the same disease. Even
then, in many cases the statistical power is still not enough. Taking into account
the fact that many diseases share the same disease genes, it is desirable to
design a statistical framework that can identify diseases’ common and specific
DE genes simultaneously to improve the identification power.

Results: We developed a novel empirical Bayes based mixture model to identify DE
genes in specific study by leveraging the shared information across multiple different
disease expression data sets. The effectiveness of joint analysis was demonstrated
through comprehensive simulation studies and two real data applications. The
simulation results showed that our method consistently outperformed single
data set analysis and two other meta-analysis methods in identification power. In
real data analysis, overall our method demonstrated better identification power
in detecting DE genes and prioritized more disease related genes and disease
related pathways than single data set analysis. Over 150% more disease related
genes are identified by our method in application to Huntington’s disease. We
expect that our method would provide researchers a new way of utilizing
available data sets from different diseases when sample size of the focused
disease is limited.

Keywords: Public data integration, Cross disease transcriptome, Gene expression,
Differentially expressed

Introduction
High-throughput technology like microarray and next-generation sequencing (NGS)

allows researchers measure thousands of gene or microRNA expression in one sample

simultaneously. Detecting differentially expressed (DE) genes between disease and nor-

mal control group is one of the most common analyses in genome-wide transcriptomic

data. Differentially expressed genes are potential disease-related genes and could be

used for generating biological hypothesis of disease mechanism, developing potential
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clinical diagnosis tools and investigating potential drug targets. This approach has been

successfully applied in many complex diseases like cancers [10, 13] and diabetes [5, 33].

With the cost of microarray and next generation sequencing technique decreas-

ing and stabilization of the experiment protocol, there are now over 1,000,000+

samples deposited in public databases such as Gene Expression Ominus (GEO) [6].

With this huge amount of public data available, it is now possible for researchers

to perform cross disease transcriptomics comparison analysis. For example,

Borjabad [1] compared the transcriptomes of postmortem brain tissues among

HIV-associated neurocognitive disorders, Alzheimer’s disease and multiple sclerosis

and found a large number of overlapped DE genes, indicating the shared mechan-

ism among these three diseases which might lead to a common therapeutic

approach. Swindell [27] identified common and specific gene signature in psoriasis

by comparing the DE genes in psoriasis transcriptome with other DE genes of

similar skin diseases. The cross disease transcriptomic analysis has provided

researchers with new opportunities of understanding of mechanisms of complex

disease and discovery of new biomarkers.

Numerous cross-disease analyses have shown that similar diseases might share similar

disease related genes. However, in these cross-disease comparison studies, they took a simple

“disease-by-disease” approach: each disease was analyzed with traditional DE detection

method like two-sample t-test or limma [25] separately, then the overlap of DE genes

between diseases was examined. This approach falls short in its ability to jointly analyze data

on all diseases to improve the identification power while simultaneously considering for

difference among DE genes present in each disease. Because of the incomplete power, this

simple approach might lead to difficulties in interpreting the result of whether a gene is

commonly shared by all disease or specific to one disease. On the other hand, joint analysis

methods developed in other fields of omics data analysis and have been proven a useful

method to increase the identification power by borrowing information from other similar

diseases [2, 3, 16, 30].

Meta-analysis approach is a popular data integrating statistical methods used to

analyze multiple public datasets of same biological conditions [20]. They improve the

identification power by detecting the weak yet consistent signals through all studies of

the same purpose. However, they are not suitable for cross-disease transcriptomic

analysis because they assume that a gene is either differentially expressed in all studies

or non-differential in all studies [9, 21, 22] while ignoring the context-specific signals

within each disease study.

Motivated by this, we propose an empirical Bayesian based mixture model which

jointly analyzed multiple similar diseases to increase the identification power of

common and disease-specific DE genes. The rest of paper is organized as follows. First,

through a comprehensive simulation study, we compare our method with single data

set analysis as well as two popular meta-analysis approaches with different underlying

null hypothesis: minP, maxP [31, 32] and demonstrate that our method outperforms

these methods in terms of identification power. Then we apply our method to two real

cases by jointly analyzing six microarray studies of different cancers as well as

Alzherimer’s disease (AD) and Huntington’s disease (HD) show that joint analysis iden-

tifies more DE genes than single data set analysis and these DE genes are enriched with

disease-related genes and pathways.
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Methods
Joint analysis framework formulation

Assume that there are N data sets. Each data set contains both disease and normal samples.

Same G genes’ expressions are measured in each data set. In the proposed joint analysis

framework, a differential test is first performed for each gene g (g = 1,…G) to obtain a

differential test score within each data set i (i = 1,…,N). In this study, we choose to use two

sample t-statistic: tgi as the differential test score. We then transform tgi into a Z-score: Zgi

according to McLachlan’s normal transformation [17] so that the Z-score distribution of

non-DE genes will be approximately normal. These Z-scores will serve as the basis of infer-

ence of DE in the joint analysis framework. We assume a two-component mixture model

for all genes’ Z scores within each data set i where each gene’s hidden DE status variable Di

is either DE (Di =1) or non-DE (Di =0). Then we assume two different conditional density

distributions of Z-scores depending on a gene’s hidden status Di in data set i: f(Z|Di) where

Di =1 or 0. By doing so, we model the study-specific variation of Z-scores observed within

each data set i.

Given observed expression difference Zg
�! ¼ fZg1;Zg2…;ZgNg between normal and

disease groups across N disease datasets, we want to compute the posterior probability

to infer the DE status of gene g in disease data set i which could be written as:

Pr Di ¼ 1jZg1;Zg2…;ZgN
� � ð1Þ

According to Bayes’ Theorem, we could expand (1) into:

Pr Di ¼ 1jZg1;Zg2…;ZgN
� �

¼
P

Di¼1 f Z1;Z2…;ZN jD1;D2;…Di ¼ 1;…DNð Þ Pr D1;D2;…Di ¼ 1;…DNð Þ
f Z1;Z2…;ZNð Þ

ð2Þ

We further assume independence of conditional joint Z score distribution across data

sets if the hidden status variable Di is determined, written as:

f Zg1;…;ZgN jD1;…Di ¼ 1;…DN
� � ¼ f Zg1jD1

� �
f Zg2jD2
� �

… f ZgijDi ¼ 1
� �

… f ZgN jDN
� �

f(Z|Di) distribution is different from data set to data set, so it needs to be estimated

separately for each data set. Here we apply the method of local false discovery rate

(local FDR) developed by Efron [7] to estimate this conditional distribution. We refer

interested readers to Efron’s paper for the details of the method. Here we just briefly

describe the estimation procedure. The local FDR is written as:

localFDR Zgi
� � ¼ Pr Di ¼ 0jZgi

� � ¼ f ZgijDi ¼ 0
� �

Pr Di ¼ 0ð Þ
f Zgi
� � ð3Þ

where f(Zgi) = f(Zgi|Di= 0) Pr(Di= 0) + f(Zgi|Di= 1) Pr(Di= 1) and Pr(Di= 1) =1− Pr(Di= 0).

In the localFDR approach, the marginal density f(Zgi) is estimated through fitting z-scores

of all genes to a cubic spline. The conditional density f(Zgi|Di = 0) is assumed to be a

normal distribution. Its mean and variance as well as the quantity Pr(Di = 0) are estimated

through fitting the Z-scores in the central peak (around 0) by maximum likelihood estima-

tion approach. This is a reasonable assumption because most Z-scores around the 0 should

come from the non-DE distribution. Then through Eq. (3), we could also obtain the
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estimate of f(Zgi|Di = 1). All the estimation procedures described above are done through

the locfdr package in R [8]. In this study, we also use Pr(Di = 1|Zgi) = 1− localFDR(Zgi)

computed by local FDR method as the inference result of single data set analysis for method

comparison purpose.

Finally, we need to estimate the only unknown parameter in Eq. (2), the prior probability

of a gene’s DE status in different diseases: Pr(D1,D2,…Di,…DN). The shared information

between similar diseases is also modeled by this quantity. For example, we would expect

that if one gene is DE in one disease, it is highly likely to be DE in another similar disease.

In mathematics, we write this relation as Pr(D1 = 1,D2 = 1) = Pr(D2 = 1|D1 = 1) Pr(D1 = 1)

and Pr(D1 = 1,D2 = 1) ≠ Pr(D1 = 1) Pr(D2 = 1). This prior probability could be estimated by

using Expectation Maximization (EM) algorithm [4] to maximize the marginal log likeli-

hood of all genes’ expression Z-scores in all data sets. EM algorithm steps could be summa-

rized as follows:

(1)Initialize the prior probability: Prð0ÞðD1;D2;…Di;…DNÞ ¼ 1
2N
.

(2)At iteration s, compute the joint posterior probability of gene g given Zg
�!

:

Pr sð Þ D1;…;DN jZg1;…;ZgN
� � ¼ f Zg1;…;ZgN jD1;…;DN

� �
Pr sð Þ D1;…;DNð Þ

f Zg1;…;ZgN
� �

where f Zg1;…;ZgN jD1;…;DN
� � ¼

YN

i¼1

f ZgijDi
� �

f Zg1;…;ZgN
� � ¼

X

Pr sð Þ D1;…;DNð Þ
f Zg1;…;ZgN jD1;…;DN
� �

Pr sð Þ D1;…;DNð Þ

(3)Estimate the new prior probability at iteration s + 1 by averaging the joint

probability calculated in step (2) over all genes:

Prðsþ1ÞðD1;…;DNÞ ¼ 1
G

PG
g¼1 PrðsÞðD1;…;DN jZg1;…;ZgNÞ

(4)Repeat step (2) and (3) until convergence.

The proposed joint analysis framework is implemented under R statistical program-

ming language.

Simulation studies

In real world, researchers often have limited samples for a specific disease and do not

have other public data sets of the same disease while public data set of other similar

diseases exists. We design a simulation study which mimics the real situation to test

and compare the performance of our method with others. Our simulation study models

this situation by generating different number of studies with similar but slightly differ-

ent DE gene configuration in each disease.

To be more specific, the simulation is set to have N studies with 15 disease and 15 control

samples within each study. Each study here could be considered as a similar disease. There
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is a total of 10,000 genes expression value measured in each sample. We first need to

determine the hidden DE status variable value for each gene in each study. We define

shared percentage between study i and study j as the conditional probability of being DE in

study j if the hidden DE status variable in study i is true, i.e. Pr(Dj = 1 ∣Di =1). We further

define “similarity” as the average shared percentage of DE genes between two studies,

i.e. 1
2 ð PrðD j ¼ 1jDi ¼ 1Þ þ PrðDi ¼ 1jD j ¼ 1ÞÞ ¼ 1

2 ð
PrðDi¼1;D j¼1Þ

PrðDi¼1Þ þ PrðDi¼1;D j¼1Þ
PrðD j¼1Þ Þ . We

also assume there is around 10% of DE genes in each study i.e. Pr(Di =1) = 0.1. We

finally define two diseases are “similar” if the similarity value between two diseases is

higher than the expected similarity (i.e. Pr(Di = 1,Dj = 1) = Pr(Di = 1) Pr(Dj = 1)).

Therefore, once the DE status variable value of a gene in the reference study is

known, we could generate DE status variables of this gene for all other studies. In this

simulation, we assume study 1 is the reference study, the hidden DE status configur-

ation of other studies is then generated for each gene based on the DE status variable

in study. After the hidden DE status variable is determined, we generate the normally

distributed expression value based on the DE status of each gene. The variance σ2gd of

each gene g is assumed to be the same in each study d and is sampled from an inverse

chi-square distribution with degrees of freedom 4 and scale parameter 0.02. We then

generate gene ’s expression for every sample from N(0, σ2gd). If Di =1, we sample a μgd
from N(0, wgd ∗ σ

2
gd) where wgd = 4 here and add it to the expression value of disease

samples. By using this simulation setup, we mimic the real case when the sample size

of target disease is small but studies of similar diseases exist in public database.

We also design another simulation study by fixing the hidden DE status of each gene

before generating the expression value. In this simulation study, we assume that there

are N = 2 data sets, with same number of genes and samples setup described above. In

the first data set, the first 1000 genes are assumed to be DE. In the second data set, we

assume that first X genes are DE and for the rest of 1000-X genes, we ensure that they

will not overlap with any DE genes in data set 1. Once the DE status of all genes are

set in two data sets, gene expression values are generated with the same procedure

described above. By setting so, the true prior probability is a fixed value. For example, if

X = 600, then the prior probability will be Pr(D1 = 1, D2 =1) =0.06, Pr(D1 = 0, D2 =1)

=0.04, Pr(D1 = 1, D2 =0) =0.04 and Pr(D1 = 0, D2 =0) = 0.86 respectively. By using this

simulation setup, we are able to compare the estimated prior probability generated

from joint analysis with the true value.

Meta-analysis methods

Two popular meta-analysis approaches are compared with our joint analysis method:

minP and maxP [28]. These two methods represent two different underlying hypothesis

used in meta-analysis methods: the first hypothesis tests if one gene is DE in at least

one or more data sets or not; the second hypothesis detects if one gene is DE in all

studies or not [28]. Briefly speaking, The maxP method takes maximum of p-value

from each study as test statistics: Sg
maxP = argmax(pgk). Sg

maxP follows a beta distribution

with degrees of freedom α = N and β = 1 under null hypothesis. The maxP method tar-

gets the DE genes with small p-values in all studies. The minP method takes the mini-

mum p-value among the K studies as the test statistic: Sg
minP = argmin(pgk). It follows a

beta distribution with degrees of freedom α = 1 and β =N under the null hypothesis.
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This method detects a DE gene whenever a small p-value exists in any one of all

studies. All meta-analysis methods used in this paper are implemented through using

metaRawdata() function in metaDE R package [31, 32]. Two sample t-test is used as

summary statistic for each individual study and parametric assumption is used to

obtain the p-value of the statistic.

Real data application

Cancer data sets

Six normalized microarray expression data sets representing different types of cancers

are downloaded from GEO [6]. Each data set contains at least 25 control samples of

normal tissues. The GEO accession number and details of each data set are summa-

rized in Table 1. The joint analysis and single data set analysis are applied to the real

data set and evaluated based on the number of identified genes with a pre-defined

cutoff and the number of cancer related genes by using a 743 cancer-related gene lists

compiled by Nagaraj [18]. The probe list in each microarray platform is first converted

to gene symbol and same genes are extracted from each platform. Twelve thousand

four hundred sixty-six genes are found common to all microarray platforms and will be

used in this study.

Alzheimer’s disease and Huntington’s disease data sets

Narayanan et al. conducted a co-expression network analysis between Alzheimer’s

disease (AD) and Huntington’s disease (HD) using the prefrontal cortex region of

postmortem brain samples consisting of 310 AD patients, 157 HD patients and 157

controls [19]. The microarray expression data is deposited at GEO (GEO Accession no:

GSE33000) and downloaded. A linear model is then fit to each gene with gender, age

and hidden batch variables estimated with sva R package [15] as covariates to correct

for confounding factors. The t-statistic of disease effect of each gene is then extracted.

Single data set analysis and joint analysis are then applied to the t statistics and DE

results are obtained for each disease. A total of 39,280 probes (some probes will repre-

sent the same gene) are measured and will be used in this study.

Results
Formulation of proposed joint analysis framework

The workflow of the joint analysis framework is shown in Fig. 1. The framework could

be broken down into the following steps: The first step is to compute a differential test

Table 1 Summaries of six different cancer data sets used in this study

Dataset
ID

Disease Name Microarray
Platforms

# of disease
samples

# of control
samples

Reference

GSE13507 Bladder cancer GPL6102 165 68 [13]

GSE41258 Colorectal cancer GPL96 181 58 [24]

GSE19188 NSCLC GPL570 91 65 [10]

GSE9476 AML GPL96 26 38 [26]

GSE32863 Lung
adenocarcinoma

GPL6884 58 58 [23]

GSE1542 Pancreatic Cancer GPL96 24 25 [12]

Abbreviations: NSCLC Non-Small Cell Lung Carcinoma, AML Acute Myelocytic Leukemia
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statistic for each gene g in each data set i, then the differential test statistics is trans-

formed into a Z-score: Zgi. Then within each data set, estimate f(Z|Di) distribution with

localFDR approach. After the conditional density value is obtained for each Zgi, the

prior probability Pr(D1,D2,…Di,…DN) is estimated through EM algorithm. Finally

compute posterior probability defined in Eq. (2) in Methods section for each gene in

each data set and genes are ranked based on this quantity. A gene would be called DE

if the posterior probability is higher than some pre-defined threshold.

Simulation studies

Comparison between joint analysis and single data set analysis

We begin by comparing the identification power between single data set analysis and joint

analysis using simulation studies. Different simulated disease data sets are generated by

varying the number of data sets and shared percentage among diseases as described in

“Methods” section. The number of data sets is set for N = 1, 2, 4, 6 and the shared

percentage between study 1 and other studies is set to Pr(Dj = 1 ∣D1 =1) = 0,0.1, 0.6, 0.7,

0.8, 0.9, 1. Every parameter combination is repeated for 100 times. In each run, we set a

specified posterior probability cutoff in data set 1 which is considered as the disease data

set of interest and report the average sensitivity as well as average false discovery rate

(FDR) in study 1 as the result. The cutoff is set to 0.95.

Figure 2 shows the results of average sensitivity and average FDR comparison

between joint analysis and single data set analysis. By setting N = 1, we are comparing

Fig. 1 Workflow of proposed joint analysis framework
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the identification power of joint analysis with single data set analysis and improved

identification power is expected to be observed when two diseases shared a larger pro-

portion of DE genes; by setting shared percentage to 0 and 0.1, this could be regarded

as integrations of two diseases with no overlapping DE genes and two random diseases

and we would expect that no power improvement and the result of joint analysis

should be similar to single data set analysis. From Fig. 2a, we observe that when the

value of shared percentage increases, which suggests that the similarity between

diseases increases, the sensitivity increases, more true DE genes could be prioritized

than separately analyzing one disease data set. Also, if the number of similar disease

data sets increases, the joint analysis could borrow more shared information from other

disease data sets and thus have a higher average sensitivity than those with less number

of data sets. We tested different posterior probability cutoffs (0.9, 0.8 and 0.5) and the

results are very similar to what are observed here (Additional file 1: Table S1). We

further examined the average FDR in single data set analysis and joint analysis respect-

ively. The results shown in Fig. 2b indicate that joint analysis with increased shared

percentage and increased number of data sets do not come at the cost of increasing the

number of false positives. The results shown here demonstrated the improved identifica-

tion power of joint analysis over single data set analysis by borrowing shared information

from other similar diseases and the identification power would increase when more simi-

lar disease data sets are available while the false discovery rate is under control.

Comparison with other meta-analysis approaches

We then compared the proposed joint analysis framework with other two popular

meta-analysis approaches: minP and maxP and use single data set analysis as a baseline

of comparison. We evaluated the performance of different methods by plotting the top

ranked genes against the average number of true DE genes identified in study 1 out of

100 runs with varying values of shared percentage and number of data sets. The

number of data sets is set for N = 2, 4, 6 and the shared percentage between study 1

and other studies is set to Pr (Dj=1|D1 = 1) = 0.6, 0.8, 1. The results are shown in Fig. 3.

Fig. 2 Average sensitivity and False Discovery Rate (FDR) comparison between single data set analysis
and joint analysis under different simulation parameter setup. The results are summarized from 100 runs.
a Average sensitivity comparison. b Average FDR comparison
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When the shared percentage is set to 0.6, the joint analysis consistently outperforms all

other methods by identifying more true DE genes in top 1000 genes except in the rank

range of 900 to 1000 when N = 2 minP and joint analysis have similar performance.

When the shared percentage value increases to 0.8, joint analysis outforms other

methods in top ranking below 800, minP method performs better in the rank range of

top 800–1000 genes. When the shared percentage is 1, which means all measurement

are based on same disease, minP has better performance. Overall, when the data sets

are based on similar but different diseases, especially when more diseases are included,

our joint analysis outperformed other methods.

Evaluation of estimated prior probability

The estimated prior probability from joint analysis is evaluated because prior probabil-

ity plays an important role in empirical Bayes framework. We first compared the esti-

mated prior probability with true value in a two-dataset simulation study in which

hidden DE status of genes were fixed. The details of the simulation was described in

“Methods” section. X value was set to 600, 700, 800, 900 and 1000. Each parameter

Fig. 3 Number of true genes against top ranked genes evaluated by different methods under different
simulation parameter setup: shared percentage = 0.6, 0.8, 1; number of data sets = 2, 4, 6

Table 2 Comparison of estimated prior probability with true ratio in the simulation study

DE
status

X

600 700 800 900 1000

Estimate Truth Estimate Truth Estimate Truth Estimate Truth Estimate Truth

(0,0) 0.8857
(0.006)a

0.86 0.8914
(0.006)

0.87 0.8982
(0.006)

0.88 0.9054
(0.005)

0.89 0.9068
(0.003)

0.9

(0,1) 0.041 (0.005) 0.04 0.0356
(0.005)

0.03 0.0284
(0.004)

0.02 0.0218
(0.003)

0.01 0.018
(0.003)

0

(1,0) 0.042 (0.008) 0.04 0.0365
(0.008)

0.03 0.0316
(0.006)

0.02 0.0258
(0.003)

0.01 0.02 (0.004) 0

(1,1) 0.031 (0.003) 0.06 0.0364
(0.002)

0.07 0.0417
(0.004)

0.08 0.0469
(0.005)

0.09 0.0546
(0.004)

0.1

a The values in the parentheses represent the standard deviation summarized from 10 repeated runs
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setup was repeated 10 times and the results were summarized in Table 2. By comparing

the estimated value with true value, we observed that the joint analysis framework will

underestimate the shared percentage of genes but had an increasing trend when the

shared number of genes increases. Further, when the number of data sets increased to

4 and 6, we compared the similarity estimate obtained from joint analysis with true

similarity value as defined in the “Methods” section between data set 1 and data set 2.

The simulation setup was the same as that in the sensitivity and FDR comparison and

the results of comparison were similar (Additional file 2: Table S2). The main reason

for the observed conservative estimate of shared gene pairs might be that the local false

discovery method implemented in the joint analysis framework tends to be conservative

by classifying most genes at the boundary between the null distribution and alternative

distribution to the null distribution so that the shared gene pairs at the boundary might

be difficult to be correctly classified. This problem could be alleviated by employing

parametric distribution setup for the joint analysis framework but the current non-

parametric framework is more general and could be used in more situations. Neverthe-

less, the accurate estimation of increasing trend of shared gene pairs could help the

joint analysis to put correct priors among diseases to infer DE status of a gene.

Influence of sample size of a similar disease

Finally, the influence of sample size of a similar disease to be borrowed from is evalu-

ated. To achieve this purpose, we first fix the target data set with 15 disease and 15

control samples. Then, we generate second similar (60% similarity) disease data sets

with different sample sizes, each of which contains 5, 10 and 15 disease and control

samples respectively. The mean and variance for each gene in each data set is fixed in

this simulation. This simulation procedure is then repeated 100 times for each sample

size parameter. After that, we apply both single and joint analysis on the simulated data

sets and record the average sensitivity and FDR at specified cutoff = 0.95 for each

sample size parameter. The result is shown in Fig. 4. As expected, the average sensitiv-

ity increases as the sample size increases. The average FDR is well controlled and only

shows very small fluctuation due to sampling error in generating expression values for

Fig. 4 Influence of sample size of a similar disease to be borrowed from. The results are averaged from 100
runs for each sample size parameter setup. a Average sensitivity comparison. b Average FDR comparison
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each gene. In conclusion, the simulation results demonstrate that the proposed joint

analysis framework could borrow more information from a similar disease of a larger

sample size.

Real data application: six different cancers

We considered cancer as a sample study because many genes were observed commonly

dysregulated in different cancers suggesting certain shared mechanisms regardless of

the source of tissue type [21, 29]. We applied the joint analysis on six public data sets

of different cancers and compare the DE gene identification results with those obtained

by single data set analysis using the same predefined posterior probability cutoff of

0.95. The results are summarized in Fig. 5. In Fig. 5a, we saw a significant identification

power gain in NSCLC and lung adenocarcinoma. A moderate gain of power was

observed in bladder cancer, colorectal cancer and AML. Little gain of power was

observed in pancreatic cancer. The DE gene results obtained by single data set analysis

and joint analysis in AML and lung adenocarcinoma data sets were then compared.

We observed that all genes identified by the single data set analysis could also be iden-

tified by the joint analysis. The complete DE gene lists of the joint analysis could be

viewed in Additional file 3: Table S3. We further examined the overlapped percentage

of identified genes between single data set and joint analysis in our previous simulation

study with N = 6 and increased shared percentage parameter setup with cutoff = 0.95.

The simulation study suggested that the joint analysis could identify most of genes

which are identified by single data set analysis (Additional file 4: Table S4). The

comparison results of cancer data sets were thus consistent with those in simulation

studies and demonstrated that our proposed joint analysis framework could identify

most of genes that are also identified by single data set analysis with improved identifi-

cation power.

To further validate the biological relatedness of identified DE genes, we also checked

if the DE gene lists are enriched with cancer-related genes by comparing the DE gene

lists with a 743 known cancer-related gene lists compiled by Nagaraj [18]. The results

in Fig. 5b showed that the joint analysis identifies more cancer-related genes than single

data set analysis and hypergeometric test shows that the newly identified DE genes are

Fig. 5 DE gene identification results comparison between joint analysis and single data set analysis on six
cancer data sets. a The total number of identified DE genes in each cancer. b The number of cancer-related
DE genes identified in each cancer. The enrichment level is evaluated by the p-value of hypergeometric
test. ***: < 0.001; **: < 0.01; *: < 0.05
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enriched with cancer-related genes in bladder, colorectal, lung and NSCLC data sets

respectively while there is no enrichment seen in the results of single data set analysis

using the same cutoff.

We then examined the correlations relationship of same genes between cancers to

understand how information is shared across cancers. We plotted the pair of Z-scores

obtained from colorectal and pancreatic cancer data sets as well as colorectal and

bladder cancer data sets as a reference (Figure 6). Pearson’s correlation coefficient is

also computed for each pair of cancers. A weak correlation is observed in Z-score pairs

between pancreatic cancer and colorectal cancer while there is a strong correlation be-

tween bladder cancer and colorectal cancer. The result might explain part of the reason

why there is little gain of power in pancreatic cancer data set through joint analysis.

Finally, we computed the pair-wise similarity between each cancer with estimated

prior probability and the result is shown in Table 3. As expected, the pancreatic cancer

shared the fewest DE genes with other cancers so that few information could be bor-

rowed. The lung adenocarcinoma and NSCLC shared largest percentage of DE genes as

their origins are the same. The bladder cancer, colorectal cancer and lung adenocarcin-

oma shared a large percentage of DE genes mainly because these cancers all belong to

the category of adenocarcinoma and might share a common underlying dysregulated

pathway. AML showed moderate sharing percentage with other cancers probably

because the origin of the cancer is different from others. Thus, the joint analysis frame-

work could provide a reasonable inference on DE gene similarity between cancers.

Fig. 6 Scatterplot of Z-scores between two cancers. a Scatterplot of Z-score pairs between colorectal cancer
and pancreatic cancer. b Scatterplot of Z-score pairs between colorectal cancer and bladder cancer

Table 3 Pair-wise similarity estimated among cancers

Bladder Colorectal NSCLC AML Lung Pancreatic

Bladder 1 0.521 0.525 0.219 0.435 0.132

Colorectal 0.521 1 0.511 0.168 0.486 0.117

NSCLC 0.525 0.511 1 0.251 0.906 0.148

AML 0.219 0.168 0.251 1 0.197 0.085

Lung 0.435 0.486 0.906 0.197 1 0.124

Pancreatic 0.132 0.117 0.148 0.085 0.124 1
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Real data application: Alzheimer’s disease and Huntington’s disease

We take Alzheimer’s disease and Huntington’s disease as another sample study because

these two neurodegenerative diseases are found to share very similar pathology and

phenotypes [19]. We applied a linear model for each gene as described in Methods

section to correct for the influence of covariate and hidden batch effect. The t-statistic

of disease effect is then extracted and fed into both single data set and joint analysis

frameworks. We obtained the ranked DE gene lists and compare them against genes

along AD and HD pathways defined in KEGG data base respectively. The results are

shown in Table 4. In the case of AD, the joint analysis approach showed a moderate

borrowing of information from Huntington’s disease by consistently prioritizing more

genes along AD pathways among top ranked DE genes. In HD, we observed a much

larger gain of power. Among top 250, 500 and 1000 range, we obtained 160, 171 and

168% more HD-related genes in joint analysis framework than analyzing the data set

alone. The improvement is mainly due to a high percentage of shared DE genes be-

tween AD and HD (around 9% of total genes) and the examination of prior probability

estimate confirmed that there might be only a very small percentage of HD-specific DE

genes (data not shown). We also checked the overlapping genes between single data

analysis and joint analysis, there is a total of 17 genes commonly identified by both

methods. For the 15 HD related genes exclusively identified by joint analysis, we exam-

ined their posterior probability value and ranks in both single data set analysis and joint

analysis and the results are shown in Table 5. We observed that the statistical evidence

and the ranks of these genes are significantly improved by joint analysis. The average

posterior probability gain is 0.214 and the average rank improvement is 692.2. These

results clearly demonstrate that our proposed joint analysis framework has improved

identification power over single data set analysis and could also recover most of genes

that are identified by single data set analysis. We further examined the KEGG pathway

enrichment of top ranked genes in HD to examine the possible biological roles of these

top ranked DE genes. Top 1000 genes obtained by single data analysis and joint analysis

are submitted to DAVID [11] server to perform the pathway enrichment analysis

respectively. The top 10 KEGG pathway enrichment results are ordered by their raw

enrichment p-values. The number of DE genes identified along the pathway, the raw

enrichment p-value of the pathway and Bonferroni’s corrected p-value are reported in

Table 6. Table 6 showed that the enriched KEGG pathways obtained by single analysis

and joint analysis have a large overlap. The joint analysis prioritized three similar

neurodegenerative disease related pathways and their corresponding biological process:

oxidative phosphorylation over single data set analysis by identifying more DE genes

Table 4 Number of genes in KEGG pathway of AD and HD among top ranked genes in each
neurodegenerative disorder

Alzheimer’s Disease Huntington’s disease

Top Rank Single Joint Single Joint

< 250 2 4 5 6

< 500 9 12 10 16

< 750 19 21 14 24

< 1000 29 30 19 32
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along those pathways shared by these diseases. Metabolic pathways are found to be

differentially expressed in several neurodegenerative disorders such as in schizophrenia

[20] and identified as more enriched in joint analysis. It is worth noting that synaptic

vesicle cycle pathway, which is closely related to neurotransmitter release and neurode-

generative disorders [34], is exclusively identified by joint analysis.

Conclusion and discussion
In this paper, we present a novel statistical framework which aims at addressing a

problem often met by biological researchers: when only a limited number of sam-

ple for a specific disease is available, the identification power could be improved

by jointly analyzing multiple similar disease data sets because DE genes might be

shared among similar diseases. By implementing a two-component mixture model,

we demonstrate the framework could improve the identification power through

comprehensive simulation studies and two real data applications. The joint analysis

outperforms single data set analysis in both identification power and biological

interpretation.

The prior probability is the most essential quantity in the proposed joint analysis

framework and has a large impact on the performance of the method because similarity

between diseases are directly determined by this quantity. This has been demonstrated

through both simulation study and real data application. In simulation studies, we

observed that when jointly analyzed with diseases with higher similarity, which was

realized by adjusting prior probability value among diseases, the target data set gained

more statistical power than less similar diseases. In real data application, more DE

genes were identified among similar cancers than dissimilar ones where similarity

Table 5 Posterior probability and rank comparison of 15 HD-related genes exclusively identified by
joint analysis among top 1000 genes

Gene Symbol Single Pa Joint Pb Single Rank Joint Rank

ATP5B 0.722686833 0.938701726 1475 652

ATP5F1 0.712111394 0.933163998 1690 954

ATP5G1 0.724132275 0.939691574 1443 594

ATP5J 0.71465263 0.935545911 1639 827

CLTA 0.704691436 0.933779808 1833 918

COX4I1 0.732382138 0.938415838 1208 673

NDUFA7 0.718914525 0.938173615 1553 683

NDUFA9 0.738565931 0.942103957 1037 460

NDUFB5 0.731956544 0.940700886 1218 546

NDUFB6 0.709427659 0.932649277 1741 972

POLR2K 0.705645646 0.935145538 1806 850

SLC25A5 0.737126871 0.934489089 1089 884

UQCRC1 0.727082935 0.932648306 1373 973

UQCRH 0.723833736 0.934133476 1448 902

VDAC2 0.738319827 0.944168188 1045 327
a Posterior probability of true DE status in single data set analysis
b Posterior probability of true DE status in joint analysis
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among cancers were computed through estimated prior probability. In short, prior

probabilities among different diseases could determine if the proposed joint analysis

framework would be effective or not.

There would be several improvements for the proposed joint framework in the

future. The first issue to be addressed is how to jointly analyze more disease data sets.

As mentioned by one reviewer, the estimation of the prior probability in the proposed

framework here is computationally intensive when the number of diseases to be

jointly analyzed is large (~2N, where N is the total number of diseases). The estima-

tion of prior probability would become infeasible when the number reaches 20 or

more. Some potential solution to this problem has been proposed in a recent paper

[14]. The basic idea is to assume special structures about the prior probability such

that the number of prior probability to be estimated could be significantly reduced,

thus incorporating more disease data sets becomes available. Another improvement

would be to design a disease similarity test so that researchers could determine if two

diseases are similar enough to be jointly analyzed. A similar idea has been proposed

by Chung et al. [3] where a likelihood test was designed to evaluate if two diseases

contain similar SNPs. Finally, next generation sequencing support is expected to be

added to current framework such that microarray and sequencing data could be ana-

lyzed simultaneously.

Table 6 Top 10 KEGG pathway enrichment results comparison between (A) single data set analysis
and (B) joint analysis in Huntington’s disease

Term Count Enrichment Pvalue Bonferroni corrected P

(A) Single

hsa03050:Proteasome 12 5.14E-07 1.21E-04

hsa05010:Alzheimer’s disease 20 1.95E-05 0.004579209

hsa05012:Parkinson’s disease 18 2.58E-05 0.006034046

hsa05016:Huntington’s disease 19 3.66E-04 0.08242395

hsa05033:Nicotine addiction 7 0.003777846 0.589128604

hsa00190:Oxidative phosphorylation 13 0.004721495 0.671158323

hsa04932:Non-alcoholic fatty liver disease (NAFLD) 14 0.00497103 0.689975889

hsa05169:Epstein-Barr virus infection 15 0.013743654 0.9613094

hsa04723:Retrograde endocannabinoid signaling 10 0.01471692 0.969321024

hsa04728:Dopaminergic synapse 11 0.02422846 0.996860832

(B) Joint

hsa05012:Parkinson’s disease 29 3.18E-13 7.59E-11

hsa00190:Oxidative phosphorylation 27 2.90E-12 6.92E-10

hsa05016:Huntington’s disease 32 4.34E-12 1.04E-09

hsa05010:Alzheimer’s disease 29 2.33E-11 5.57E-09

hsa04932:Non-alcoholic fatty liver disease (NAFLD) 22 2.14E-07 5.12E-05

hsa03050:Proteasome 10 3.21E-05 0.007653523

hsa01100:Metabolic pathways 73 5.47E-05 0.012999463

hsa05169:Epstein-Barr virus infection 20 1.02E-04 0.024158392

hsa04721:Synaptic vesicle cycle 10 5.70E-04 0.127417187

hsa01200:Carbon metabolism 13 0.001156092 0.241540496
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