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Abstract
Motivation: Non-coding RNA (ncRNA) are small non-coding sequences involved in
gene expression regulation of many biological processes and diseases. The recent
discovery of a large set of different ncRNAs with biologically relevant roles has opened
the way to develop methods able to discriminate between the different ncRNA classes.
Moreover, the lack of knowledge about the complete mechanisms in regulative
processes, together with the development of high-throughput technologies, has
required the help of bioinformatics tools in addressing biologists and clinicians with a
deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a
new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based
on features extraction from the ncRNA secondary structure together with a supervised
classification algorithm implementing a deep learning architecture based on
convolutional neural networks.

Results: We tested our approach for the classification of 13 different ncRNA classes.
We obtained classification scores, using the most common statistical measures. In
particular, we reach an accuracy and sensitivity score of about 74%.

Conclusion: The proposed method outperforms other similar classification methods
based on secondary structure features and machine learning algorithms, including the
RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a
docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is
also available at https://github.com/IcarPA-TBlab/nrc.
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Background
During the last decade, research has shown a growing interest in non-coding RNA
(ncRNA). They are small non-coding sequences with the potential to have a functional
role in many biological processes and diseases [1] by acting through the regulation of gene
expression [2–5]. Different classes of ncRNA have been identified, differing from each
other by nucleotide sequence length, folding and function. The most well-known ncR-
NAs are structural RNA belonging to ribosomal RNA (rRNA) and transfer RNA (tRNA),
both involved in translation events [6]. Another interesting class of ncRNA are microR-
NAs (miRNAs), 18–24 nucleotide long regulative RNAmolecules [7–9]. They can behave
as tumour suppressors or oncogenes depending on which target they act upon by altering
the standard molecular mechanisms in which their targets are involved [10]. In particu-
lar, they interact with target genes through a direct binding to complementary sequences
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leading to either mRNA degradation or translational suppression [11]. The final result
is the inhibition of the protein product. A miRNA can be considered as an oncogene if
its amplification or overexpression down-regulates tumour suppressors or other genes
involved in cell differentiation, thereby contributing to cancer formation by stimulating
proliferation, angiogenesis, and invasion; whereas the ncRNAmolecule will be considered
as a tumor-suppressor if it will cause a decrease in oncogene expression [12].
Other ncRNA classes are small nuclear RNAs (snRNA), long non-coding RNAs

(lncRNA), silencing RNA (siRNA), riboswitches and internal ribosome entry sites (IRES)
[13]. The small nucleolar RNA (snoRNA) molecules, belonging to the snRNA class,
participate to post-transcriptional modifications of rRNA, together with small nucleo-
lar ribonucleoproteins (snoRNPs) with whom they are complexed. Dong and colleagues
[14] reported a disruption of these RNA molecules in different conditions and cancer
diseases [14, 15], they also identified snoRNA U50 as an important factor in the devel-
opment and/or progression of breast cancer. The lncRNAs are ncRNA longer than 200
nucleotides. Recent works evidence a dysregulated expression pattern of lncRNAs in can-
cer samples that may be used as independent predictors of patient outcomes [16, 17].
Riboswitches are another class of ncRNA. They are structured non-coding RNA domains
that selectively bind metabolites and control gene expression. They can act without the
support of proteins, which strengthens the hypothesis of their important role in the
regulatory machine [18].
Because of the large number and functions of different ncRNA, their proper identifica-

tion and classification are a new challenging bioinformatics scenario. Indeed, considering
the low percentage of the “discovered ncRNAome” and the lack of knowledge about these
non-coding molecules, their classification could help biologists and clinicians in under-
standing the molecular mechanisms of this regulatory machine. This also implies a need
to re-state the principles of basic therapeutic strategies.
The aim of the first works about ncRNA classification was to discriminate between

coding and non-coding sequences. To this purpose some bioinformatics tools employ
support vector machine (SVM) models [19]: CONC and CPC are prediction tools
based on SVM that classify transcripts according to features belonging to coding prod-
ucts [20, 21]. Another interesting classification method, proposed by Lertampaiporn
and colleagues [22], uses a hybrid Random Forest (RF) algorithm combined with a
logistic-regression model that realises a feature-based discrimination among various
ncRNAs. The recent discovery of a “Pandora box” full of a multitude of different
biologically functional ncRNA, opened the way to develop resources able to discrim-
inate the different classes of ncRNAs. Various approaches have been applied such as
RNA-CODE [23], based on the alignment of short reads, or others based on multi-
feature extraction and full-sequence analysis such as RNAcon [24] and GraPPLe [25].
These last methods, in particular, use graph properties (both local and global) of pre-
dicted secondary RNA structures together with machine learning algorithms. Their
main feature is to identify and extract graph properties that can reflect the func-
tional information of different classes of RNAs. To the best of our knowledge, the
RNAcon algorithm currently represents the state-of-the-art classifier of ncRNA classes
based on structural features and machine learning techniques. RNAcon considers 20
graph features obtained from the predicted RNA secondary structure and adopts an RF
classifier [26].
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In this paper, we present nRC (non-coding RNA Classifier), a novel method for the
classification of ncRNA sequences belonging to different classes. Our approach uses the
structural features extracted from ncRNA secondary structure, rather than the primary
structure since it has been demonstrated that the structure of ncRNAs can provide rel-
evant information about their biological functions and therefore their class type [27].
Moreover, we adopted a supervised classification algorithm implementing a deep learning
(DL) architecture based on convolutional neural networks (CNNs) [28]. DL represents a
successful paradigm for big data analysis, giving a relevant contribution to several fields
of medicine and bioinformatics [29]. For instance, the use of DL architectures for the pre-
diction of genomic sequences allows improving the performance of the other standard
machine learning methods [30, 31].
In particular, CNNs have been successfully adopted for image classification [32] because

they can extract significant features from images at different abstraction levels. Recently,
CNNs have also been applied to DNA sequence classification [33] with good results, due
to their capability to extract meaningful features even from sequences of symbols. The
combination of both structural features and a DL architecture allows us to reach classi-
fication scores that outperform other similar classification methods based on secondary
structure features and machine learning algorithms like the random forest (RF) [26] and
naive Bayes (NB) [34] classifiers.

Methods
Proposedmethod

In this section, we introduce the proposed approach for the classification of ncRNA
sequences. We classify ncRNA sequences by exploiting a set of discriminative substruc-
tures extracted from RNA secondary structures. Starting from a dataset composed of
ncRNA fasta sequences belonging to different non-coding classes, we first predict the
secondary structure of each sequence (Fig. 1). Then, we identify as features all the discrim-
inative frequent sub-structures extracted from predicted ncRNA secondary structures.
Finally, a supervised classification algorithm is trained using as input a ncRNA sequence
vs. sub-structures boolean matrix. Each step of the proposed approach, corresponding to
a box in Fig. 1, is detailed in the next subsections.

ncRNA training dataset

To create a consistent and statistically meaningful ncRNA dataset, we followed the
approach proposed by Panwar et al. [24], and by Childs et al. [25]. Similar to those
studies, we downloaded the ncRNA sequences from the latest version of the Rfam

Fig. 1 Pipeline of the proposed ncRNA sequence classification tool. Starting from a dataset of known ncRNA
sequences, we exploit IPknot, MoSS and CNN algorithms in order to (1) predict ncRNA secondary structure,
(2) select discriminative features and (3) accurately classify ncRNA classes. Texts over the arrows show the
type or data format produced by the processing steps (square blocks) or the data source (cylinder block)
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database, release 12 [35]. The Rfam repository represents one of the most complete
collections of manually curated RNA sequences, including sequence alignments, annota-
tion and consensus secondary structures. We selected the following 13 ncRNA classes:
miRNA, 5S rRNA, 5.8S rRNA, ribozymes, CD-box, HACA-box, scaRNA, tRNA, Intron
gpI, Intron gpII, IRES, leader, riboswitch. As will be further explained below, we chose
these classes to allow a comparison as fair as possible with RNAcon tool. Accord-
ing to Rfam hierarchical organisation among the selected ncRNA classes (Fig. 2), 5S
rRNA and 5.8S rRNA belong to rRNA class; CD-box, HACA-box and scaRNA belong
to snRNA/snoRNA class; Intron gpI and Intron gpII belong to Intron class. Gen-
erally speaking, the leaves of the hierarchical tree represent ncRNA classes used in
this study. According to Rfam database, there are three main functional categories for
non-coding RNA sequences, i.e. gene, intron or cis-regulatory element. Considering
those ncRNA classes, we built a dataset composed of 20% non-redundant sequences

Fig. 2 Hierarchical tree for ncRNA sequences dataset, according to the Rfam database. In this study, we
selected 13 ncRNA classes, represented as the leaves of a hierarchical tree
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obtained by using the CD-HIT tool [36], as done by Panwar et al. [24]. Finally, to cre-
ate a balanced dataset, we randomly selected 500 sequences for each ncRNA class,
except IRES for which there are only 320 available sequences, to obtain 6320 ncRNA
sequences.

ncRNA secondary structure prediction

Since the ncRNA dataset reports sequences in fasta format, it does not contain
information about the secondary structure of non-coding RNA sequences. As afore-
mentioned in the previous section, the secondary molecular structures can provide a
major key for elucidating the potential functions of RNAs and, consequently, could
help us to predict if a ncRNA sequence belongs to the same class. For this rea-
son, just as the RNAcon approach, we choose to exploit the IPknot tool [37] for
predicting the secondary structure of ncRNA. This tool takes into account all the
most important topologies in RNA secondary structures and can provide good pre-
dictions in terms of both speed and accuracy with respect to other RNA structure
prediction methods [37]. To the best of our knowledge, IPknot is one of the best
pseudoknot-free secondary structure prediction tools, since it uses less memory and
runs much faster than the other tools, without loss of accuracy [38]. In our study,
the most of ncRNA sequences, such as 5S rRNA, tRNA and miRNA, are pseudoknot-
free [39]. Figure 3 shows how IPknot can predict a complex secondary structure. As a
result, this tool produces a dot-parenthesis format file (representing a graph) for each
input sequence.

Fig. 3 ncRNA secondary structure prediction. At the top of the figure is an ncRNA sequence, whereas the
corresponding pseudoknot structure predicted by the IPknot tool is shown underneath
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Discriminative sub-structure selection

Each dot-parenthesis format file prepared in the previous step can be read as an undi-
rected labelled graph representing the RNA sequence, in which vertices are nucleotides
and edges are bonds between two nucleotides. As mentioned before, we have 6320 graphs
belonging to 13 ncRNA classes. Of course, we can reasonably suppose there is a sort of
similarity among the sequences (graphs) that belong to a particular class. Our hypoth-
esis is that frequent sub-structures (sub-graphs) can act as local features for describing
ncRNA sequences because they are probably correlated with the molecular function and,
thus, they can be used to identify classes of similar non-coding RNAs.
In this context, the selection of molecular sub-structures can be solved in terms of fre-

quent sub-graphs having a certain minimum “support” in a given set of graphs, where
the term support identifies the number of graphs containing a sub-graph. To find these
sub-graphs, we adopted the molecular substructure miner (MoSS) algorithm [40], which
implements a depth-first search strategy. The support expressed as a percentage value is
the MoSS parameter that specifies the minimum frequency which a sub-structure must
occur to be reported. In any case, since the search of frequent sub-graphs in a set of
graphs can produce a very large number of features, the advanced pruning techniques
implemented in the MoSS algorithm allows us only to obtain closed frequent sub-graphs.
A sub-graph is closed only if its support (i.e., the number of graphs that contain this
sub-graph) is higher than the support of all the search tree super-graphs containing this
sub-graph. Also, the MoSS algorithm lets the user set the m minimum and the n maxi-
mum size the sub-structures must have to be taken into account. In the field of molecular
compounds, a similar approach was applied to find potential candidates in drug discovery
processes [41, 42].
As an example, Fig. 4 shows a search tree (starting from an adenine nucleotide as a

seed) created by the MoSS algorithm, when the input is a list of graphs (such as those
reported in the top of the figure). In this figure, a sub-graph, i.e. a node of the search tree,
is highlighted with a green ’T’ shape area in both predicted secondary structure and the
search tree. That means that this sub-graph is a support for the ncRNA sequence at the
top of the figure; if it is also a support for a certain user-determined percentage of input
sequences and its super-graph has a lower support, it can be considered as a feature of a
ncRNA dataset.
Outcomes of the MoSS algorithm are both the list of closed frequent sub-graphs and,

for each graph, the list of its closed sub-graphs. Given g graphs (ncRNA sequences) and
s sub-graphs (frequent sub-structures), it is possible to define a Boolean matrix A(g, s)
where the element (i, j) is set to 1 when sub-structure j is contained in an ncRNA
sequence i.

Classification with deep learning architecture

A machine learning classifier requires a hand-crafted feature selection task to obtain the
best representation of the input patterns; this step is crucial for the performances of
the classifier. Automatic feature selection is one of the key results of the so-called deep
learning neural networks [28, 43, 44]. Le Cun and colleagues demonstrated that feature
selection could be obtained from neural network training [32]. The proposed model,
called convolutional neural network, was constituted by a set of layers based on convolu-
tional filters and average pooling layers, followed by a multi-layer perceptron. Nowadays
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Fig. 4 An example of discriminative sub-structures selection implemented by the MoSS algorithm. The
bottom of the figure shows a decision tree, where nodes are sub-structures into input sequences. The green
’T’ shape highlights a sub-structure contained in both predicted structure and decision tree. The feature
model proposed in nRC tool is given by the set of discriminative sub-structures

CNN networks are often used for image classification, in these applications the first layers
of the network are trained to recognise features constituted by edges or colour details that
are assembled to create more sophisticated features used as image descriptors [28]. These
image descriptors represent the input of the last, fully connected layers of the network,
that implement the classifier.
In the nRC system, each position of the vector obtained by the MoSS subsystem indi-

cates the presence or absence of a structural configuration (Fig. 4). Even if the input
vectors are binary and the vector components are not in a particular order, bit configura-
tions can still be used as useful features and assembled to build new, more sophisticated
patterns that a CNN can exploit. The neural network used in the nRC system is made
by two convolutional layers, C1 and C2, followed by two fully connected layers (Fig. 5).
The first convolutional layer C1 of the network learns to recognise features constituted
by n1 groups of these binary values. The dimension of the convolutional kernels or filters
in this first layer should be enough to capture interesting patterns but is upper limited by
the computational time. In this work kernels from 3 to 8 were tried and k = 5 was used
because represents a compromise between length and computational load. The kernels
are floating point vectors adjusted during training phase by the learning algorithm. Con-
sidering that the input vectors are binary, then an upper limit for the number of kernels
n1 is due to the total number of configurations that can be obtained with k bits. If k = 5,
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Fig. 5 A representation of the convolutional neural network used in our work. The lower part is a
representation of the network layers; the upper part is a representation of the operation in a convolutional
layer with kernels (dark purple) and output vectors (light purple)

then the kernels can be 31 at most (excluding the configuration with all zeros values). To
maintain a manageable training time we choose to use a n1 = 10 kernel for the first stage.
The second convolutional layer of the network has kernels of the same dimension (k = 4)
and n2 = 20.
A CNN, like the one used in this work, is usually considered “deep” if compared with

the commonly used multilayer perceptrons that usually have three layers (input, hidden,
and output). If the input pattern is a vector x ∈ �L and the layer C1 uses a set of n1 kernels
w of dimension k (w ∈ �k), the convolution output will be a set of n1 vectors fi ∈ �L−k+1.

fi = wi � x + bi i = 1, 2, . . . , n1 (1)

where � indicates the convolution operator and bi is an offset parameter. A logistic func-
tion is a non-linear function applied to the output in the proposed application. The output
vectors are reduced using themax-pooling operation with a pool of dimension two so that
the resulting output vectors will be (L−K + 1)/2. The max pooling layer compresses the
input representation from C1 layer and allows to obtain a more dense representation of
the input data. The C2 layer has the same structure but operates with a multi-dimensional
input, the output of the C2 layer is constituted by a set of n2 vectors fj j = 1, 2, . . . , n2
given by:

fj =
∑

l
wj,l � xl + bj j = 1, 2, . . . , n2. (2)

The fj vectors are rearranged in a single vector y, containing the features extracted from
the input pattern. This vector is the input to a fully connected multi-layer perceptron,
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with only one hidden layer. The whole network is trained using the stochastic gradient
descent algorithm and is implemented in Python using the Theano framework [45, 46].

Implementation details

According to the introduced pipeline, we integrated the following publicly available algo-
rithms: Ipknot (release 0.0.2), MoSS (release 2.13) and Theano (release 0.8.2). The docker
image is based on the operating system Linux Centos (release 7.2.1511). Java (release
1.8.0) and Python (release 2.7.5) were the languages used to implement the nRC tool.

Results
In this section, we presented the classification results obtained by our classification
pipeline. We performed two kinds of experiments: in the first one, we tested nRC tool
using a ten-fold cross-validation scheme to find the best configuration in terms of a
number of structural features and parameters of the CNN model. In the second one, we
validated the best models obtained during the testing phase by considering an indepen-
dent dataset, downloaded from Rfam database, and consisting of 2600 sequences, not
used in the training phase, belonging to the same 13 ncRNA classes as the training dataset.
That validation procedure assured us that there is not overfitting with regards to both
feature extraction and the learning of the CNN. We introduced both the number of local
features and the statistical measures used for testing procedures. Then, since we want
to demonstrate that in the proposed pipeline a deep learning architecture can outper-
form standard classification techniques, we compared the CNN algorithm with 4 of the
most knowns supervised classifiers. Moreover, to test our method against RNAcon tool,
the state-of-the-art technique for classification of ncRNA sequences, we introduced an
independent validation dataset. Finally, we discussed the obtained results.

Testing procedures

To evaluate our method for classification of ncRNA sequences, we developed a test-
ing procedure considering different values of the minimum and maximum size of the
frequent subgraph fragments extracted by the MoSS tool. Each configuration of those
parameters gave, in fact, a different number of structural features used by the classifi-
cation algorithms. We considered five different configurations, with sub-fragment sizes
ranging from two to six, because we are interested in considering local features. The cho-
sen size produced a different number of input features: in particular, we obtained only a
few features (about 250) up to many features (about 6000) with regards to the number of
sequences in our dataset, i.e. 6320. Themin andmax size of theMoSS sub-graphs are from
2/4 to 3/6 and the corresponding number of features range from 250 to 6483 (Table 1).
Classification performances have been computed using a ten-fold cross-validation pro-

cedure in terms of accuracy, precision, sensitivity, specificity, F-score and MCC. These
statistical measures are defined in Table 2.

Comparison among CNN and other machine learning algorithms

Our proposed classifier based on DL architecture has been compared with four state-
of-the-art feature-based algorithms: NB [34], RF [26], k nearest neighbour (kNN) [47]
and support vector machine (SVM) [19]. All these algorithms were run using the
Weka 3.6.13 platform [48]. As done for the CNN parameters, the one introduced in
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Table 1 Number of input features related to the min (m) and max (n) size of the frequent
sub-structures extracted by the MoSS algorithm

MoSS parameters Number of input features

m/n Dataset support (%)

2/4 10 250

4/5 10 1258

3/5 10 1298

4/6 10 6443

3/6 10 6483

“Classification with deep learning architecture” section, we made several trials with
different parameter values to establish, for each classification algorithm, the configura-
tion that gave the best performances in terms of evaluation criteria. In detail, on the
default algorithm configurations in the Weka platform, we set the following parame-
ters: NB with kernel estimator option, RF with 100 trees and seed = 10, kNN with
K = 3, SVM with gamma = 0.01 and cost = 10. As regards the CNN, the kernel size
is k = 5 for both first and second layer; the pool size is 2 for both layers; the num-
ber of kernels is n1 = 10 for the first layer and n2 = 20 for the second layer. In
the fully connected layer, the number of hidden units (columns of M1 and rows of
M2) was 500. We did the first comparison to consider how the accuracy scores change
according to the five different numbers of the input features (see Table 1). Our DL
approach reaches the highest score of about 74.7% when considering the 6443 features
(Fig. 6). The second best classifier is the SVM, with a max accuracy score of about
67.36% when considering 1258 features. The remaining three classifiers did not provide
satisfying results.
Considering the results obtained with all the classifier algorithms and all the per-

formances indexes, we found that the CNN network results have the lowest standard
deviation for all themeasures (Table 3). Moreover, the value of all the performance indices
increases with the number of input features (Table 4).
During the evaluation procedure, we also compared the execution time among the clas-

sification algorithms used in this study. As regards the training phase, the CNN algorithm
is significantly more time consuming with respect to the other algorithms, a it is based
on DL architecture. Fortunately, in the most case, the classification model is trained only
once, so that users can exploit it for classifying new sequences. Conversely, as regards
the testing phase, i.e. the classification of new sequences, the CNN is the second fastest

Table 2 Statistical measures and their formulas used for evaluating the classifiers

Statistical measure Formula

Accuracy TP+TN
TP+TN+FP+FN

Sensitivity TP
TP+FP

Specificity TN
TN+FP

Precision TP
TP+FP

F-score 2∗TP
2∗TP+FP+FN

MCC TP∗TN−FP∗FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

TP are true positives, TN are true negatives, FP are false positives, FN are false negatives
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Fig. 6 Accuracy scores. Scores at varying the number of input features, for our deep learning approach and
the other four considered classifiers. The results are averaged over cross-validation experiments

algorithms just behind the RF. We report the average execution time taken to test classi-
fication models in Table 5. All experiments were carried out on a Windows 10 PC, with
Intel i7 2.8 GHz CPU and 8 GB RAM.

Validation procedure

To further validate our proposedmethod we performed another classification experiment
using an independent dataset whose elements have never been seen by the classifier dur-
ing the learning phase. We downloaded the validation dataset from Rfam database and
is composed of 2600 sequences belonging to the same 13 ncRNA classes as in the origi-
nal dataset (200 sequences per class). To be more precise, we wanted to demonstrate that
both the feature space of size 6443 and the CNN model, learned with the whole training
dataset, can generalise the ncRNA class predictions, thus avoiding overfitting. To do that,
we first predicted the secondary structure of validation sequences through IPknot, then
we represented the sequences of the validation dataset in the same feature space created
during the training phase (Fig. 7); finally we evaluated the best CNN model (see Table 4,
fourth row) trained with the whole training dataset predicting the ncRNA classes of the

Table 3 Comparison among five classification algorithms (Alg.) in terms of percentage scores (%)
and standard deviations (σ ) of five statistical measures

Alg. Accuracy Sensitivity Specificity Precision F-score MCC

% σ % σ % σ % σ % σ % σ

CNN 74.69 0.013 74.13 0.010 97.89 0.001 74.09 0.010 74.11 0.010 72.59 0.10

RF 56.60 1.544 56.50 1.539 96.41 0.001 55.69 0.019 56.10 0.037 52.4 0,16

NB 47.31 1.837 48.98 1.844 95.61 0.001 46.80 0.019 47.87 0.037 43.4 0.16

kNN 54.70 1.609 59.17 1.783 96.28 0.001 54.26 0.018 56.61 0.035 51.2 0.15

SVM 67.36 1.991 67.47 1.855 97.11 0.001 73.92 0.673 67.76 0.019 63.1 0.16

For each algorithm, the number of input features providing the best scores has been considered. The results are averaged over
cross-validation experiments
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Table 4 Statistical measures for CNN algorithm classifications

Number of CNN statistical measures (%)

features Accuracy Sensitivity Specificity Precision F-score MCC

250 53.66 53.18 96.14 52.87 53.03 49.81

1258 67.55 68.58 97.44 68.30 68.44 64.85

1298 69.22 68.61 97.43 68.59 68.60 66.65

6443 74.69 74.13 97.89 74.09 74.11 72.59

6483 74.60 74.01 97.88 73.97 73.99 72.48

According to the MoSS parameter configurations, here we report five sets of features. The results are averaged over
cross-validation experiments

validation dataset. The classification results confirm the robustness of the nRC tool with
unknown data (Table 6).

Comparison between nRC and the RNAcon tool

As explained at the end of the “Background” section, the RNAcon tool is the reference
classifier of ncRNA sequences that consider structural features and machine learning
algorithms. In particular, RNAcon extracts 20 local and global graph properties from the
ncRNA predicted secondary structures, and it makes classification using the RF algo-
rithm. Because our proposed method also considers structural features, the frequent
sub-graphs, a machine learning classifier, i.e. the DL convolutional network, we made
a direct comparison of our results with the ones provided by RNAcon. We used the
RNAcon web service available at http://crdd.osdd.net/raghava/rnacon/, and we made
the comparison considering the validation dataset because it represents an independent
dataset for both tools. In particular, we removed from the validation dataset the sequences
belonging to the scaRNA class, obtaining this way a set of 2400 sequences, because they
are not present in the training dataset of RNACon. Our method outperforms RNAcon,
doubling its performances according to accuracy and sensitivity scores when 6443 input
features are considered (Fig. 8).

Discussion
Because it has been proved that structural properties of the secondary structure of RNA
molecules can provide specific information of the biological function of different ncRNA
classes [27], we presented a classifier that works on a feature set representing frequent
fragments of the RNA molecular structure. That representation, coupled with a classifier
based on a DL architecture, allowed us to obtain the best scores when compared to other
machine learning algorithms and the RNAcon tool. To analyse in detail the performances
of our method, we produced the confusion matrix (Fig. 9), so that it is possible to inspect

Table 5 Comparison among average execution times of classification models, during the ten-fold
cross-validation procedure

Algorithm Execution time (seconds)

CNN 17.33

NB 25.97

KNN 29.36

RF 2.93

SVM 21.46

http://crdd.osdd.net/raghava/rnacon/
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Fig. 7 Validation pipeline. Through the training process (on the top of the figure), we obtain both feature
space and classification model for a training dataset. Starting from an independent validation dataset, we can
validate (on the bottom of the figure) the proposed algorithm, by projecting discriminative substructures
belonging to ncRNA secondary structures into the feature space created during the training phase and then
predict ncRNA classes using previous learned classification model

which ncRNA classes our approach better predicted. That confusion matrix has been
obtained putting together the single confusion matrices produced at the end of each fold
during the testing procedure. For example, we noticed that Intron_gpI and Intron_gpII
classes are predicted with a sensitivity score of about 95%, whereas miRNA, IRES and
HACA-box classes reached sensitivity and precision score of about 50%. We highlighted
in red some situations that will need further investigation in the future. For example, the
most misclassified miRNAs (9%) are predicted as HACA-box, correspondingly, 8.4% of
HACA-box are predicted as miRNA. The same situation happened to the scaRNA class,
with 11.4% misclassified as HACA-box, which in turn is predicted as scaRNA in 13% of
cases.
As evidence, there is a misrepresentation of some ncRNA classes. As for the CD-box

andHACA-box, both classes belong to the samemain class group, i.e. they all are snoRNA
(see Fig. 2). Even though they have a different global secondary structure, they could
share local sub-structures, in fact, they are both involved in the chemical modification of
the RNA classes rRNA, tRNA and snRNA after transcription, hypothesising a common
link between their function and their structural sub-features. In particular, CD-box RNAs
guide methylation events and HACA-box RNAs guide pseudouridylation of the RNA tar-
get [49]. Another RNA class belonging to snoRNA class is scaRNAs. The scaRNAs are
involved in the modification of RNA polymerase II transcribed spliceosomal RNAs, and
they are also defined as composite HACA- and CD-box RNAs, because their conserved
domains are the typical motifs of both HACA-box and CD-box [50]. Moreover, similar
sub-structures could be found in both miRNAs and some snoRNA, since recent reports
have indicated that, despite the differences in size and secondary structure, a human
snoRNA and a protozoan snoRNA are associated with Argonautes, processed into small
RNAs, and can function as miRNAs [51, 52].

Table 6 Statistical measures for nRC classification during the validation procedure

Number of features CNN statistical measures

Accuracy Sensitivity Specificity Precision F-score MCC

6443 81.81% 81.81% 98.48% 81.50% 81.66% 80.29%

It has been used an independent dataset composed of 2600 sequences belonging to 13 ncRNA classes
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Fig. 8 Comparison between the classification scores obtained by our approach and the RNAcon tool. The
validation set is composed of 2400 sequences belonging to 12 classes

As mentioned before, to confirm there is not overfitting with regards to both feature
extraction and the learning of the CNN, another confusion matrix (Fig. 10), has also been
computed for the experiment with the independent validation dataset. Once again, we
noticed the same behaviour as in the previous case, with a similar trend with regards
to classification mistakes, such as the miRNA-snoRNA (CD-box and HACA-box) and
CD-box-HACA-box misclassifications.
All these evidence let us hypothesise that all these classes of ncRNAs have some shared

sub-features on the other analysed ncRNA classes. Because our approach considers these
sub-structures as local features, the misclassification among some of the ncRNA classes
could be explained by those shared features. Concluding, therefore, in spite of the over-
all good performances of our classification approach, we need to carry out some further
analysis for the ncRNA classes whose sensitivity and a precision score was about 50%. A
deeper investigation would allow us to increase the classification scores and to try under-
standing if and what are the relations between RNA sub-classes, considering, for example,
global features as well.

Conclusions
In this work, we introduce nRC (noncoding RNA Classifier), a new tool for the clas-
sification of non-coding RNA sequences. Three steps are the basis of the proposed
method: the prediction of ncRNAs secondary structures, the extraction of frequent sub-
structures as features and the classification of known ncRNA classes. To implement
these processes, we used the IPknot algorithm to predict RNA secondary structures
with pseudoknots, the MoSS decision tree pruning algorithm to obtain sub-structures,
and a deep learning network architecture, namely a convolutional neural network, as
a supervised classifier. Differently to other existing ncRNA classification approaches,
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Fig. 9 Confusion matrix related to the predictions of nRC tool over the training dataset (6320 sequences). It
has been obtained putting together the single confusion matrices produced at the end of each fold during
the testing procedure. Classification of Intron gpI and Intron gpII classes gave the best result; classification of
IRES, miRNA and HACA-box classes gave the worst results. In red we highlighted some situations, some of
which discussed in Discussion section, that will need further investigation

we (i) created a ncRNAs vs. local topological features Boolean matrix as input data
and (ii) adopted a DL architecture for classification. To demonstrate the effective-
ness of the proposed approach, we first compared the proposed classifier with four
of the most well-known classification algorithms, i.e. RF, NB, kNN and SVM, and
then we compared our method with the RNAcon tool, that is the literature refer-
ence classifier of ncRNA sequences. Experiments have also been carried out using
an independent validation dataset. In both tests, we demonstrated the advantages of
using our approach on other strategies, obtaining the highest scores in terms of five
different statistical measures, i.e. accuracy, sensitivity, specificity, precision, F-score
and MCC. In particular, results demonstrated the proposed method outperformed the
state-of-the-art RNAcon approach, doubling its performance in terms of accuracy and
sensitivity.
As future work, we are working to train a classification model with much more

ncRNA sequences, also belonging to some other well studied ncRNA classes, such
as piwi-interacting RNA (piRNA) [53] and circular RNA (circRNA) [54]. In addition,
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Fig. 10 Confusion matrix related to the predictions of nRC tool over the validation dataset (2600 sequences).
We noticed the same behaviour as in the confusion matrix shown in Fig. 9, with a similar trend with regards
to classification mistakes, highlighted in red

to improve classification performances, we are planning to test some new secondary
structure prediction tools, like those proposed in [55, 56]. Finally, we aim at creating
a publicly available web service for the classification of unlabelled non-coding RNA
sequences.

Abbreviations
CNN: Convolutional neural network; DL: Deep learning; IRES: Internal ribosome entry site; kNN: K nearest neighbour;
lncRNA: Long non-coding RNA; miRNA: MicroRNA; MoSS: Molecular sub-structure miner; NB: Naive Bayes; ncRNA:
Non-coding RNA; nRC: Non-coding RNA classifier; RF: Random forest; rRNA: Ribosomal RNA; tRNA: Transfer RNA; siRNA:
Silencing RNA; snoRNA: Small nucleolar RNA; snoRNP: Small nucleolar ribonucleoproteins; snRNA: Small nuclear RNA;
SVM: Support vector machine

Acknowledgments
Not applicable.

Funding
The publication costs for this article were funded by the CNR Interomics Flagship Project CUP B81J12000980001 “-
Development of an integrated platform for the application of “omic” sciences to biomarker definition and theranostic,
predictive and diagnostic profiles”.

Availability of data andmaterials
The source code of nRC tool is freely available at https://github.com/IcarPA-TBlab/nrc, moreover, since the proposed
tool requires several dependencies to be installed, a docker image has been released at https://hub.docker.com/r/tblab/
nrc/. The datasets generated and analysed during the current study are available in the TBLAB repository, http://tblab.pa.
icar.cnr.it/public/nRC/paper_dataset/.

https://github.com/IcarPA-TBlab/nrc
https://hub.docker.com/r/tblab/nrc/
https://hub.docker.com/r/tblab/nrc/
http://tblab.pa.icar.cnr.it/public/nRC/paper_dataset/
http://tblab.pa.icar.cnr.it/public/nRC/paper_dataset/


Fiannaca et al. BioDataMining  (2017) 10:27 Page 17 of 18

Authors’ contributions
AF: project conception, implementation, experimental tests, discussions, assessment, writing. MLR: project
conception,implementation, experimental tests, discussions, assessment, writing. LLP: project conception, writing,
assessment, discussions. RR: project conception, implementation, discussions, assessment, writing. AU: project
conception, discussions, assessment, writing, funding. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 April 2017 Accepted: 24 July 2017

References
1. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.
2. Veneziano D, Nigita G, Ferro A. Computational approaches for the analysis of ncRNA through deep sequencing

techniques. Front Bioeng Biotechnol. 2015;3:1–6.
3. Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet. 2009;5(4):1000459.
4. Cestarelli V, Fiscon G, Felici G, Bertolazzi P, Weitschek E. Camur: Knowledge extraction from rna-seq cancer data

through equivalent classification rules. Bioinformatics. 2016;32(5):697.
5. Weitschek E, Felici G, Bertolazzi P. Mala: A microarray clustering and classification software. In: 2012 23rd

International Workshop on Database and Expert Systems Applications. New York: IEEE; 2012. p. 201–5.
6. Sonenberg N, Hinnebusch AG. Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological

Targets. Cell. 2009;136(4):731–45.
7. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Dev (Cambridge, England). 2005;132(21):

4645–52.
8. O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res BCR. 2010;12(2):201.
9. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Others. OncomiR addiction in an in vivo model of

microRNA-21-induced pre-B-cell lymphoma. Nat Genet. 2011;43:371–8.
10. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.
11. Kulkarni V, Naqvi A, Uttamani J, Nares S. MiRNA-Target Interaction Reveals Cell-Specific Post-Transcriptional

Regulation in Mammalian Cell Lines. Int J Mol Sci. 2016;17(1):72.
12. Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev.

2009;28(3-4):369–78.
13. Sun X, Du P, Yuan W, Du Z, Yu M, Yu X, Hu T. Long non-coding RNA HOTAIR regulates cyclin J via inhibition of

microRNA-205 expression in bladder cancer. Cell Death Dis. 2015;6(10):1907.
14. Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou W, Dong JT. Implication of snoRNA U50 in human breast cancer. J Gen

Genomics. 2009;36(8):447–54.
15. Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, Liu Z, Jiang F. Small nucleolar RNA signatures as biomarkers for

non-small-cell lung cancer. Mol Cancer. 2010;9(1):1.
16. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Others. Long

non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.
17. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):

47–62.
18. Breaker RR. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol. 2012;4(2):003566.
19. Scholkopf B, Smola AJ. Learning with Kernels. Cambridge: MIT Press; 2002.
20. Liu J, Gough J, Rost B. Distinguishing protein-coding from non-coding RNAs through support vector machines.

PLoS Genet. 2006;2(4):29.
21. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G. CPC: assess the protein-coding potential of transcripts

using sequence features and support vector machine. Nucleic Acids Res. 2007;35(suppl 2):345–9.
22. Lertampaiporn S, Thammarongtham C, Nukoolkit C, Kaewkamnerdpong B, Ruengjitchatchawalya M. Identification

of non-coding RNAs with a new composite feature in the Hybrid Random Forest Ensemble algorithm. Nucleic Acids
Res. 2014;42(11):93–3.

23. Yuan C, Sun Y. RNA-code: a noncoding RNA classification tool for short reads in NGS data lacking reference
genomes. PloS one. 2013;8(10):77596.

24. Panwar B, Arora A, Raghava GP. Prediction and classification of ncRNAs using structural information. BMC
Genomics. 2014;15(1):127.

25. Childs L, Nikoloski Z, May P, Walther D. Identification and classification of ncRNA molecules using graph properties.
Nucleic Acids Res. 2009;37(9):66.

26. Breiman L. Random forests. Mach Learn. 2001;45:5–32. dx.doi.org/10.1023%2FA%3A1010933404324.
27. Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol.

2006;16(3):270–8.
28. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

http://dx.doi.org/10.1023%2FA%3A1010933404324


Fiannaca et al. BioDataMining  (2017) 10:27 Page 18 of 18

29. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2016;1–19.
30. Chicco D, Sadowski P, Baldi P. Deep autoencoder neural networks for gene ontology annotation predictions. In:

Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. BCB ’14.
New York: ACM; 2014. p. 533–40. http://doi.acm.org/10.1145/2649387.2649442.

31. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding
proteins by deep learning. Nat Biotechnol. 2015;33(8):831–8.

32. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. IEEE Proc.
1998;86(11):2278–324.

33. Rizzo R, Fiannaca A, La Rosa M, Urso A. A Deep Learning Approach to DNA Sequence Classification. In:
Computational Intelligence Methods for Bioinformatics and Biostatistics, Lecture Notes in Computer Science, vol.
9874. Cham (ZG): Springer International Publishing; 2016. p. 129–40.

34. John GHG, Langley P. Estimating Continuous Distributions in Bayesian Classifiers. In: Besnard P, Hanks S, editors.
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. Montreal, Quebec, Canada, vol. 1.
San Franisco: Morgan Kaufmann; 1995. p. 338–45. 1302.4964.

35. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J,
Finn RD. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(D1):130–7.

36. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data.
Bioinformatics. 2012;28(23):3150–2.

37. Sato K, Kato Y, Hamada M, Akutsu T, Asai K. IPknot: fast and accurate prediction of RNA secondary structures with
pseudoknots using integer programming. Bioinformatics. 2011;27(13):85–93.

38. Jabbari H, Condon A. A fast and robust iterative algorithm for prediction of rna pseudoknotted secondary
structures. BMC Bioinforma. 2014;15(1):147.

39. Sperschneider J, Datta A. Dotknot: pseudoknot prediction using the probability dot plot under a refined energy
model. Nucleic Acids Res. 2010;38(7):103.

40. Borgelt C, Meinl T, Berthold M. MoSS: a program for molecular substructure mining. In: Proceedings of the 1st
International Workshop on Open Source Data Mining Frequent Pattern Mining Implementations - OSDM ’05. New
York: ACM Press; 2005. p. 6–15.

41. Di Fatta G, Fiannaca A, Rizzo R, Urso A, Berthold M, Gaglio S. Context-Aware Visual Exploration of Molecular
Databases. In: Sixth IEEE International Conference on Data Mining - Workshops (ICDMW’06). New York: IEEE; 2006. p.
136–41.

42. Fiannaca A, La Rosa M, Di Fatta G, Gaglio S, Rizzo R, Urso A. The BioDICE Taverna plugin for clustering and
visualization of biological data: a workflow for molecular compounds exploration. J Cheminformatics. 2014;6(1):24.

43. Coates A, Ng AY, Lee H. An analysis of single-layer networks in unsupervised feature learning. In: International
Conference on Artificial Intelligence and Statistics. 2011. p. 215–23.

44. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):
504–7.

45. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow IJ, Bergeron A, Bouchard N, Bengio Y. Theano: new
features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop. 2012.

46. Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio Y. Theano:
a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference
(SciPy). 2010. Oral Presentation.

47. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.
48. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software. ACM SIGKDD

Explor Newsl. 2009;11(1):10–18.
49. Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat

Rev Mol cell Biol. 2007;8(3):209–20.
50. Darzacq X, Jády BE, Verheggen C, Kiss AM, Bertrand E, Kiss T. Cajal body-specific small nuclear RNAs: a novel class

of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21(11):2746–56.
51. Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G. A human

snoRNA with microRNA-like functions. Mol cell. 2008;32(4):519–28.
52. Saraiya AA, Wang CC. snoRNA, a Novel Precursor of microRNA in Giardia lamblia. PLoS Pathog. 2008;4(11):1000224.
53. Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KS, Saprunoff HL, LamWL, Martinez VD. Piwi-interacting rnas

in cancer: emerging functions and clinical utility. Mol Cancer. 2016;15(1):5.
54. Lasda E, Parker R. Circular rnas: diversity of form and function. Rna. 2014;20(12):1829–42.
55. Fiscon G, Paci P, Iannello G. Monster v1.1: a tool to extract and search for rna non-branching structures. BMC

Genomics. 2015;16(6):1.
56. Fiscon G, Iannello G, Paci P. A perspective on the algorithms predicting and evaluating the rna secondary structure.

J Genet Genome Res. 2016;3(1):1–7.

http://doi.acm.org/10.1145/2649387.2649442
1302.4964

	Abstract
	Motivation
	Results
	Conclusion
	Keywords

	Background
	Methods
	Proposed method
	ncRNA training dataset
	ncRNA secondary structure prediction
	Discriminative sub-structure selection
	Classification with deep learning architecture
	Implementation details

	Results
	Testing procedures
	Comparison among CNN and other machine learning algorithms
	Validation procedure
	Comparison between nRC and the RNAcon tool

	Discussion
	Conclusions
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

