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Abstract

Background: Large-scale genetic studies of common human diseases have focused
almost exclusively on the independent main effects of single-nucleotide polymorphisms
(SNPs) on disease susceptibility. These studies have had some success, but much of the
genetic architecture of common disease remains unexplained. Attention is now turning
to detecting SNPs that impact disease susceptibility in the context of other genetic
factors and environmental exposures. These context-dependent genetic effects can
manifest themselves as non-additive interactions, which are more challenging to model
using parametric statistical approaches. The dimensionality that results from a
multitude of genotype combinations, which results from considering many SNPs
simultaneously, renders these approaches underpowered. We previously
developed the multifactor dimensionality reduction (MDR) approach as a
nonparametric and genetic model-free machine learning alternative. Approaches
such as MDR can improve the power to detect gene-gene interactions but are
limited in their ability to exhaustively consider SNP combinations in genome-wide
association studies (GWAS), due to the combinatorial explosion of the search
space. We introduce here a stochastic search algorithm called Crush for the
application of MDR to modeling high-order gene-gene interactions in genome-
wide data. The Crush-MDR approach uses expert knowledge to guide probabilistic
searches within a framework that capitalizes on the use of biological knowledge
to filter gene sets prior to analysis. Here we evaluated the ability of Crush-MDR to
detect hierarchical sets of interacting SNPs using a biology-based simulation
strategy that assumes non-additive interactions within genes and additivity in
genetic effects between sets of genes within a biochemical pathway.

Results: We show that Crush-MDR is able to identify genetic effects at the gene
or pathway level significantly better than a baseline random search with the same
number of model evaluations. We then applied the same methodology to a
GWAS for Alzheimer’s disease and showed base level validation that Crush-MDR
was able to identify a set of interacting genes with biological ties to Alzheimer’s
disease.
(Continued on next page)
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Conclusions: We discuss the role of stochastic search and cloud computing for
detecting complex genetic effects in genome-wide data.

Keywords: Bioinformatics, Epistasis, Genome-wide Association study, Machine
learning, Common diseases

Introduction
Genomics has provided a better understanding of how DNA sequence variations influ-

ence disease susceptibility through biomolecular interactions, including protein-DNA,

protein-RNA, RNA-RNA, and protein-protein binding within the context of a gene

regulatory region. For example, Cowper-Sal. Lari et al. showed that single-nucleotide

polymorphisms (SNPs) associated with breast cancer in genome-wide association stud-

ies (GWAS) are enriched in FOXA1 transcription factor binding sites resulting in

allele-specific gene expression in cancer cells [1]. These same kinds of biomolecular in-

teractions drive biochemical pathways and physiological systems, propagating genetic

effects to the disease phenotype level. Given the complexity of biomolecular interac-

tions that connect DNA sequences to anatomical and physiological perturbations, ul-

timately driving phenotypes from the healthy to diseased range, it is logical to assume

that some genetic risk factors will manifest themselves as non-additive gene-gene inter-

actions at the population level [2]. Revealing the complexity of the genetic architecture

of common human diseases such as Alzheimer’s disease or essential hypertension will

require a combination of computational, mathematical, and statistical methods that

embrace, rather than ignore, the hierarchical and interactive nature of the genetic sig-

nals that are propagated to a healthy or disease phenotype [3, 4].

Bateson, who recognized that one gene could modify the effects of another gene

thereby skewing Mendelian expectations, was the first to describe this concept of gene-

gene interaction, or epistasis [5]. This was a biological concept of gene action in cells

[6]. In contrast, Fisher described epistasis as deviation from additivity in a linear statis-

tical model such as analysis of variance [7]. This population-level concept is based on a

statistical summary of many individuals. The relationship between biological and statis-

tical epistasis is an unsolved problem in human genetics, [8, 9] but it is critical if we

are to use population-based measures of genetic association to guide the development

of new treatments that target biological processes at the cellular level. We focus here

on the detection of epistasis in human populations using computational methods de-

signed to detect non-additive gene-gene interactions in high-dimensional data.

Parametric statistical methods, such as logistic regression, are commonly employed

to detect genetic associations. These approaches have nice mathematical properties and

produce parameter estimates that can be interpreted as measures of risk. However,

there are several disadvantages, including the assumption imposed by a specific math-

ematical model (i.e. a linear regression function with a logit link) and reduced power to

detect interactions. Machine learning provides a nonparametric and genetic model-free

alternative by harnessing the power of adaptive algorithms, which are designed to de-

tect complex patterns in high-dimensional data [10]. A key difference is that machine

learning allows the data to determine the model rather than forcing the data to fit a

preconceived notion of what a model should look like. Several recent reviews highlight
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the need for new methods [11] and discuss and compare different strategies for detecting

statistical epistasis [3, 4, 12]. The methods reviewed by Cordell [3] include novel ap-

proaches such as combinatorial partitioning, [13, 14] multifactor dimensionality reduction

(MDR), [15, 16] and logic regression [17, 18]. We focus here on the MDR method.

MDR was developed as a nonparametric (i.e. no parameters are estimated) and gen-

etic model-free (i.e. no genetic model is assumed) data mining and machine learning

strategy for identifying combinations of genetic and environmental factors that are pre-

dictive of a discrete clinical endpoint [15, 16, 19–22]. Unlike most other methods,

MDR was designed to detect interactions in the absence of detectable marginal effects

and thus complements statistical approaches such as logistic regression and machine

learning methods such as random forests and neural networks.

At the heart of the MDR approach is a feature or attribute construction algorithm

that creates a new variable or attribute by pooling genotypes from multiple SNPs [21].

The general process of defining a new attribute as a function of two or more other at-

tributes is referred to as constructive induction, or attribute construction, and was

first described by Michalski [23]. Constructive induction, using the MDR kernel, is ac-

complished as follows. Given a threshold T, a multilocus genotype combination is

considered high-risk if the ratio of cases (subjects with disease) to controls (healthy

subjects) exceeds T, otherwise it is considered low-risk. Genotype combinations con-

sidered to be high-risk are labeled G1 while those considered low-risk are labeled G0.

This process constructs a new one-dimensional attribute with values of G0 and G1. It

is this new single variable that is assessed, using any classification method. The MDR

method is based on the idea that changing the representation space of the data will

make it easier for methods such as logistic regression, classification trees, or a naive

Bayes classifier to detect attribute dependencies. As such, MDR significantly comple-

ments other classification methods such as those reviewed by Hastie et al. [24]. This

method has been evaluated in numerous simulation studies, [19, 25] and a user-

friendly open-source MDR software package written in Java is freely available [22, 26].

The MDR method was first implemented as a combinatorial approach that per-

formed an exhaustive search across all two-way, three-way, and higher-order combi-

nations of genetic variants for a best model. As reviewed by Moore et al., [4] this is

not practical in the context of GWAS due to the exponential explosion of the search

space. High-performance computing can only enable exploration of all two-way and

perhaps three-way combinations of genetic variants in a typical genome-wide scan

[27, 28]. Moore et al. outline two different approaches to MDR analysis in genome-

wide data [4]. The first is to use computational filter methods, such as ReliefF, to re-

duce the number of variants to those most likely to be involved in gene-gene interac-

tions [29, 30]. Another approach is to use biological filters to limit the analysis to

variants in genes within the same pathway or those that exhibit protein-protein inter-

actions [31]. A third approach, which we explore here, is to use stochastic search

algorithms that probabilistically pick genetic variants for consideration by MDR.

We introduce here a multiobjective evolutionary search engine for MDR imple-

mented in the Parabon Crush™ statistical analysis application. Crush employs an oppor-

tunistic evolutionary strategy designed to maximally utilize an arbitrary collection of

distributed compute nodes [32]. MDR’s evaluation of candidate groups of SNPs serves

as one of the critical objectives in the Crush-MDR application, the details of which are
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provided below. The methods introduced here will facilitate the search for gene-gene

interactions on a genome-wide scale using cloud computing resources.

Methods
There are five major components to the Crush-MDR method. The first is the MDR ma-

chine learning component. The second is the Crush stochastic search framework. The

third is the expert knowledge component. The fourth is the multiobjective optimization

component. The final component is the Software as a Service (SaaS) framework, which

combines all of these components for cloud-based analysis. We describe each of these in

turn and then describe methods for evaluating Crush-MDR using simulated data.

Modeling gene-gene interactions using MDR

The goal of this component is to provide a machine learning framework for modeling

non-additive gene-gene interactions. As described above, MDR uses constructive induc-

tion to collapse multiple genetic variants to a single new feature that is used to classify

cases and controls. We specifically used the quantitative MDR or QMDR extension to

enable the modeling of quantitative traits [33, 34]. Here, QMDR identifies those geno-

type combinations with mean trait levels above or below or the global mean and then

constructs a new feature by collapsing all the genotypes above the mean into one group

and all those below the mean into another group. The genotype groups are then com-

pared using a t-test. As presented in detail by Gui et al., [33] constructive induction by

QMDR is performed as follows:

1. Assume there are m SNPs in the dataset; to examine a K-order interaction, select K

SNPs from the m total SNPs.

2. For each multi-locus genotype combination defined by the K SNPs, calculate the

mean value and compare it with the overall mean.

3. If the mean value from the genotype combination is larger than the overall mean,

the corresponding genotype is considered high-level. Otherwise, it is considered

low-level. Once all of the genotypes are labeled ‘high-level’ and ‘low-level’, a new

binary attribute is created by pooling the “high-level” genotype combinations into

one group and the “low-level” into another group.

Once a new attribute is constructed, high and low level groups defined by QMDR are

compared using a t-test. The t-statistic is used as a training score to choose a best

model. The cross-validation procedure for QMDR is the same as that used in the

discrete version of MDR. The difference is that the training score and testing score are

defined from the t-test (replacing training and testing accuracy). The training score is

used to determine the best K-order interaction model, and the maximum testing score

is used to identify the best overall model. It is important to note that the discrete ver-

sion of MDR can be used here when the endpoint is binary.

Stochastic search for gene-gene interactions using Crush

The goal of this component is to provide a stochastic search algorithm for MDR to

enable the search for gene-gene interactions in genome-wide data without the
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computational burden of exhaustively evaluating all combinations. To achieve this

goal, we implemented MDR as an objective function under Parabon Crush, which

performs stochastic search using an opportunistic evolution search algorithm over

candidate solutions comprised of one or more SNPs [32]. Crush’s opportunistic evo-

lution algorithm is designed to maximize the efficiency and throughput of evolu-

tionary search across intermittently available compute nodes, such as Amazon’s EC2

Spot Instance. Briefly stated, Crush uses a central steady-state evolutionary process,

controlled by the client (launching) application, to populate and remotely execute in-

dependent evolutionary tasks on participating compute nodes. Crush-MDR employs

generational evolution on compute nodes, which periodically return subpopulations

of candidate solutions for incorporation into the global steady-state population. This

process of launching evolutionary tasks from the client, evolving candidate solutions

on distributed compute nodes, and incorporating resulting subpopulations into the

master steady-state population on the client, is repeated until a termination condition

is reached. We describe below the computational details of how good MDR models in

a population of many models are selected and then varied through mutation and

crossover. Key to this process is tournament selection that randomly picks three

MDR models from the population of all models and then picks the best one according

to the score for that model and the complexity as measured by the number of SNPs.

The approach to balancing these two criteria is called Pareto optimization and is de-

scribed further below in the evaluation section. Together these form the non-

dominated sorting genetic algorithm (NSGA II) method that is described in detail

below [35].

Crush-MDR begins by generating a population of MDR models. The algorithm first

chooses the number of SNPs (K) for a model in the initial population by randomly

selecting a value between one and five. This is based on a configurable value of how

many SNPs should be in a model, plus or minus a delta. The default settings are three

SNPs per model, plus or minus two giving a range of one to five. The SNPs for each

model are selected 50% of the time at random with equal probability and 50% of the

time using expert knowledge (see below). This initial set of models is then evaluated

(see below). Breeding of candidate solutions in the global steady-state population is

performed by any-point crossover of two parent solutions picked by two tournament

selections from the population of evaluated solutions. The first tournament selects

the solution with the lowest Pareto rank (see discussion of Pareto optimization below)

and best (highest) crowding distance as computed by NSGA II [35]. The second tour-

nament performs the same selection (lowest Pareto rank and best crowding distance)

and then mutates the selected solution with a variable probability of 0.5 or 5% that an

arbitrary SNP will be mutated for datasets with 1000 or 100 SNPs, respectively. The

size of both tournaments is set to three. Any-point crossover is then performed on

the solutions produced by the tournaments, and the resultant solutions are used as

part of the initial population of a new evolutionary task. It is important to note that

models with more than five SNPs can be generated through crossover.

Breeding of candidate solutions in the evolutionary task generational population is

performed by crossover or mutation. Any-point crossover of two parent solutions

picked by two tournament selections from the population of evaluated solutions is

used 90% of the time. The first tournament of size six selects individuals with the
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lowest model order, while the second tournament of size three selects the solution

with the lowest Pareto rank and best (highest) crowding distance as computed by the

nondominated sorting genetic algorithm II (NSGA II). This tournament combination

applies parsimony pressure to candidate solutions by favoring those with lower model

order for the first parent solution. This is unlike other parsimony strategies, such as

weighting factors or cutoff limits on model order, as it requires no a priori knowledge

of the fitness space. The remaining 10% of the time solutions are randomly selected

from the population and then mutated with a probability of 0.5% that an arbitrary

SNP will be mutated.

Expert-knowledge guided Crush-MDR

As discussed by Moore et al., expert knowledge is critical for identifying gene-gene in-

teractions in genome-wide data [4]. Expert knowledge can come from any source that

the investigator thinks might be important for guiding an algorithm to a more fruitful

part of what is, practically speaking, an infinite search space. Since we are interested in

identifying gene-gene interactions, we selected interaction information as an entropy-

based measure of non-additive interactions [21]. A detailed description of this method

and its implementation can be found in Moore and Hu, [36] and example applications

can be found in Hu et al. and De et al. [34, 37]. Briefly, we measure the gain in infor-

mation from phenotypic values due to the joint effects of each pair of SNPs above and

beyond that provided by the independent main effects. A positive information gain is

indicative of a synergistic interaction, while a negative score is indicative of correlation

or redundancy (e.g. due to linkage disequilibrium), resulting in loss of information. We

computed the information gain due to interaction for each pair of SNPs and then

stored this expert knowledge about pairwise gene-gene interactions in a lookup table,

which is used by Crush-MDR to construct models in the initial population. The lookup

table approach was used by Pattin et al. for using protein-protein interactions as expert

knowledge [31]. This sensible initialization approach seeds Crush-MDR models at the

start of the algorithms with SNPs likely to be involved in interactions. The algorithm

first picks the number of features in the initial models using a uniform distribution be-

tween one and five. The algorithm then probabilistically selects the features for that

model from the list of all genetic variants. Each feature has a probability of 0.5 for be-

ing selected randomly with equal probability or from a lookup table based on expert

knowledge indicating what features interact with the previously selected feature. The

pairs of features selected using expert knowledge represent initial building blocks for

the algorithm to work with. We have previously shown this type of sensible

initialization is beneficial for these kinds of problems [30].

It is important to note that the entropy-based measures of interaction that we used as

expert knowledge are not statistically independent of some of the interactions that are

later modeled by MDR. This is in contrast to the example of Pattin et al. that used

protein-protein interactions as expert knowledge that were statistically independent of the

data being analyzed [31]. An advantage of Crush-MDR is that it can build models of any

arbitrary size allowing it to potentially capture higher-order interactions. We selected this

particular source of expert knowledge to provide Crush-MDR with some lower-order in-

teractions that might be useful for higher-order models thus reducing the search space.
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Evaluating Crush-MDR models using multiple criteria

A common approach for addressing overfitting in data mining and machine learning is

to use cross-validation as an estimate of the generalizability of a model. Unfortunately,

implementation of cross-validation methods in conjunction with stochastic methods,

such as evolutionary computation, can be complex, given that these algorithms are

likely to find different models in each division of the data. Pareto optimization

(reviewed in [38]) offers a viable alternative and has been shown to be effective in the

context of evolutionary methods [39]. Pareto optimization balances several different

model objectives that are each treated equally. We previously used classification accur-

acy and model size as our two objectives [40]. We have also used a third objective de-

fined by the average interaction information of the SNPs in the model [41]. This extra

objective rewards models for stronger gene-gene interactions. For a given population,

models for which there are no better models as measured by accuracy, model size and

interaction information are selected. This subset of Pareto-optimal models is referred

to as the Pareto front. As described by Moore et al., a benefit of this approach is that it

allows Crush-MDR to explore models that score well on the interaction scale but that

might not have strong associations [41]. These models are selected, changed, and

passed on to each new generation model in the evolutionary algorithm. Here we used

the QMDR t-statistic as the measure of association. The algorithm works to jointly

maximize the t-statistic and maximize the interaction information, while minimizing

the model complexity. Putting pressure on the algorithm to explore smaller models is

beneficial because these are the models that are more likely to generalize to independ-

ent data. At the same time, Pareto optimization also allows bigger models to be ex-

plored thus preserving the diversity of the SNPs represented to allow new models to be

more effectively explored throughout the evolutionary process. This helps prevent the

algorithm from becoming stalled or fixated on a local minima.

Cloud-computing implementation of Crush-MDR

We implemented the Crush-MDR method as both stand-alone software and a Software

as a Service (SaaS) application [42]. The SaaS implementation of Crush-MDR provides

users with simple on-demand access to the Crush-MDR statistical algorithms through

a standard web browser. In addition to these analytical capabilities, the SaaS interface

includes capabilities for visualizing results (e.g., visualization of the Pareto front and

visualization of statistical epistasis networks) and support for user collaboration and

data sharing. Both the stand-alone and SaaS versions of Crush-MDR run on a parallel

cloud computing infrastructure, [43] enabling massively parallel execution of evolution-

ary searches across a wide variety of computational resources, including public and pri-

vate clouds, high performance computing clusters, and enterprise computing resources.

Evaluation of Crush-MDR using simulation

We previously developed several approaches to simulating genetic association data with

complex relationships between genotype and phenotype. Our Genetic Architecture Model

Emulator for Testing and Evaluating Software (GAMETES) method uses penetrance func-

tions to probabilistically specify risk of disease given different combinations of genotypes

from two or more SNPs [44, 45]. We developed here an extension of GAMETES that
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allows multiple sets of interacting SNPs to be combined additively to produce hierarchical

models that simulate the action of two or more genes or biochemical pathways. We also

extended GAMETES to simulate quantitative traits that are more common now that gen-

etic data is being integrated with proteomics data, metabolomics data, and clinical data

from electronic health records. These extensions allowed for more complex and higher-

order models to be easily generated for the evaluation of Crush-MDR.

Using the GAMETES extension method described above, we designed a comprehen-

sive simulation study to evaluate Crush-MDR across different genetic models exhibiting

non-additive interactions, different effect sizes, and different data characteristics such

as sample size. The biological framework used in the simulation is based on additive

sets of non-additive gene-gene interactions within a biochemical pathway. Here, each

gene produces a continuous protein product that is dependent on a non-additive inter-

action between the genotypes at two SNPs. This could be thought of as the interaction

between two regulatory SNPs governing gene expression. We then combined the pro-

tein products from two or four genes additively to produce a final quantitative trait that

is used as the phenotype in the Crush-MDR analysis.

The simulated data varied by number of functional genes (two and four), functional

SNP allele frequencies (0.2 and 0.4), sample sizes (2000 and 8000), effect sizes measured

in terms of heritability (0.001, 0.01, 0.1, and 0.2), and effect sizes due to standard deviation

of quantitative traits (0.05, 0.1, 0.2, and 0.3). The chosen heritability values used represent

broad-sense heritability for each pair of interacting SNPs within each gene. The standard

deviation represents the dispersion of the quantitative trait around a mean value equal to

the penetrance for that genotype combination. Thus, each pair of SNPs within a gene gen-

erates a quantitative trait (e.g. protein level) that is then summed across genes to generate

the quantitative trait used as the phenotype in the Crush-MDR analysis. The goal of the

Crush-MDR analysis was to correctly identify the four or eight functional SNPs from this

hierarchical model consisting of additive units of non-additive gene-gene interactions.

These SNPs were then added to 996 or 992 randomly generated SNPs representing the

tag-SNPs from a single biochemical pathway embedded in a GWAS for a total of 1000

SNPs. A total of ten data sets were simulated for each combination of parameter settings.

The results are presented as the success rate defined by the proportion of times the cor-

rect SNPs were identified across all 10 datasets.

Application of Crush-MDR to the genetic analysis of Alzheimer’s disease

To evaluate performance on real data, Crush-MDR was applied to whole-genome se-

quence data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [46]. Se-

quenced variants were filtered to biallelic SNPs with minor allele frequency > 0.05 and

pairwise linkage disequilibrium < 0.8 using PLINK, [47] for a total of 1,321,689 ADNI

SNPs. We constructed a list of 734 genes in the Alzheimer’s disease pathway using In-

genuity Pathway Analysis (IPA) and used Biofilter [48] to estimate pairwise biological

interactions among this set of genes. A minimum Biofilter interaction threshold of four

to six was chosen to yield a SNP set comparable in size to the simulated datasets (758

SNPs in 28 genes). For each subject, the hippocampal volume (HV) at baseline was cal-

culated and normalized by intracranial volume, and this continuous variable was used

as the phenotype for Crush-MDR analysis on 718 subjects. Initially, all pairs of factors
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were evaluated for pairwise entropy, and the maximum entropy and best partner for

each SNP was recorded. A Crush-MDR evolutionary run was then performed using

multiobjective optimization with three objectives: maximized MDR t-Statistic, maxi-

mized average entropy, and minimized model size.

Results
Evaluation of Crush-MDR using simulation

The results of the simulation study are summarized as a heatmap in Fig. 1a. The dark

blue shading indicates a detection success rate of 80% or greater for each particular

heritability, minor allele frequency (MAF), total number of SNPs (100 and 1000), size

of the embedded ‘target’ models (i.e. the number of SNPs they contain), sample size,

and trait standard deviation combination. On average, analysis of each simulated data-

set consumed 4.7 h of total computation on 12 concurrently executing nodes, each

with eight of 16 cores (Intel Xeon E5 class processors). As expected, the success rate is

reduced as the effect size (heritability) decreases and as the standard deviation of the

trait increases. We also find that the sample size of 8000 has a better success rate than

2000 as expected. In general, the four-SNP target models are also harder to detect than

simpler two-SNP target models. Also, detecting target four or eight-SNP models is eas-

ier when there are 100 SNPs compared to 1000 total SNPs. It is important to note the

runtime for the 1000 SNP data sets averaged five hours.

More specifically, we find that Crush-MDR succeeds in identifying the correct four

simulated SNP targets out of 100 or 1000 SNPs, respectively, at least 80% of the time at

the lowest heritability (0.001), with a sample size of 8000, MAF 0.4, and standard devi-

ation of the quantitative trait 0.05. These values are consistent with real GWAS data.

Further, an eight SNP target model can be reliably detected under the same parameter

settings when the heritability is 0.01. In both cases, four or eight SNP target models

were detected out of 1000 total SNPs, a number of SNPs that is consistent with the

analysis of all genes in a biochemical pathway. For comparison, Fig. 1b shows the same

analysis but with a random search instead of Crush over the same number of fitness

evaluations. These results confirm that Crush-MDR is able to model complex, hierarch-

ical relationships between multiple genetic risk factors in realistic population-level data.

Application of Crush-MDR to the genetic analysis of Alzheimer’s disease

Out of an input set containing 758 SNPs in 28 genes, Crush-MDR analysis of normal-

ized HV in the ADNI study identified 180 models on the Pareto front (Fig. 2) contain-

ing 136 unique SNPs in 23 genes. The association between genotype and phenotype for

each genotype combination in the two- and three-factor models with the highest MDR

t-statistic scores are shown in Fig. 3. In the three-factor model (Fig. 3a), rs429358 is

one of two main SNPs in the Apolipoprotein E (APOE) gene associated with late-onset

Alzheimer’s disease (LOAD), with the C allele being pathogenic. In this interaction, the

main effect of this SNP can be seen, with the zero and one genotypes having generally

smaller HV, which is associated with LOAD. However, there are some genotype combi-

nations in this interaction that do not fit the simple main effect association. For ex-

ample, subjects homozygous for the non-pathogenic allele (rs429358_T_2) show

smaller than average HV when combined with rs7243201_C_2 and rs2074620_A_2.
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Fig. 1 Heatmaps summarizing the results of the simulation study. The dark blue shading indicates a
detection success rate of 80% or greater for each particular heritability, minor allele frequency (MAF; 0.2
and 0,4), total number of SNPs (100 and 1000), size of the embedded ‘target’ models (i.e. the number of
SNPs they contain; 2 and 4), sample size (2000 and 8000), and trait standard deviation combination (0.05,
0.1, 0.2, and 0.3). Panel a represents the described Crush-MDR search. Panel b represents a random search
with the same number of evaluations
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These kinds of non-additive interactions could help explain why some subjects without

high-risk alleles are affected by LOAD. In the two-factor model (Fig. 3b), rs1213266

has a weak individual effect (p = 0.00240), but this effect is clearly modulated by the

genotype at rs60544817, which has no individual effect (p = 0.448). For example, the

heterozygous genotype rs1213266_G_1 is protective (larger HV) when paired with

rs60544817_C_1 but pathogenic (smaller HV) when paired with rs60544817_C_2.

The set of genes on the Pareto front was analyzed using the Integrative Multi-Species

Prediction (IMP) webserver, [49] which evaluates biological evidence for functional in-

teractions between genes (Fig. 4a). In IMP, the strength of the functional interaction be-

tween each pair of genes is estimated using a Bayesian algorithm that considers gene

co-expression across thousands of gene expression datasets in addition to factors such

as protein-protein interaction, association with the same disease, being part of the same

pathway, or sharing transcription factor binding sites. This gene set was also analyzed

using the related Genome-scale Integrated Analysis of gene Networks in Tissues

(GIANT) webserver, [50] which looks for functional interactions within a particular hu-

man tissue, the neuron in this case (Fig. 4b). Both approaches find strong evidence for

biological interactions among the genes on the Pareto front, including high levels of

co-expression, physical interactions, and shared transcription factor binding. Between

the two analyses, all Pareto front genes have at least one biological interaction with

Fig. 2 MDR t-statistic (x-axis) vs. Cartesian entropy (y-axis) results for the Crush-MDR multiobjective optimization
analysis of normalized hippocampal volume in the ADNI dataset, as visualized in the Crush-MDR visualization
module. Models on the Pareto front are shown as pink points, and all other models explored by Crush-MDR in
the run are shown as gray points
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another Pareto front gene at a confidence ≥ 0.2. These functional genomics analyses

provide base level validation that Crush-MDR successfully identified a set of interacting

genes with biological ties to Alzheimer’s disease in genome-wide data.

Discussion
We have entered the golden era of bioinformatics [51] marking a shift of focus from

the technology used to generate big data to the computational methods and software

for making sense of it. Univariate analyses of GWAS data have yielded numerous asso-

ciations of small effect accounting for 20% or less of the heritability of most common

diseases. It is our working hypothesis that much of the remaining heritability is due to

context-dependent effects. That is, each genetic variant will impact disease susceptibil-

ity in the context of its genomic background and local ecology defined by a history of

environmental exposure. Machine learning and artificial intelligence methods will play

an important role in modeling these context-dependent effects, which will sometimes

present as non-additive interactions between sets of genetic variants and/or environ-

mental factors. We have explored here the use of the MDR algorithm for the detection

of gene-gene interactions using a stochastic search framework implemented in a cloud-

computing environment. Both simulation and real data analyses suggest that Crush-

MDR is able to identify non-additive gene-gene interactions in genome-wide data.

Fig. 3 Associations between genotype and phenotype for the top-scoring (a) three-factor and (b) two-factor
models on the Crush-MDR Pareto front. Each cell shows one genotype combination and the average
phenotypic difference from the mean for subjects with those genotypes. Wider bars indicate a larger
number of subjects with those genotypes. Dark gray cells indicate genotypes associated with higher-
than-average hippocampal volume (HV). Light gray cells indicate lower-than-average HV, and white cells
represent genotypes with no subjects. Genotypes are coded as 0/1/2 according to the number of
copies of the major allele
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There are several lessons learned from this study and our previous studies mentioned

above. First, it is not computationally feasible to enumerate all three-way, four-way,

and higher-order genetic models in genome-wide studies. The combinatorial explosion

of the model space makes this impossible given global computing resources. Quantum

computing holds some promise for these high-order models. In the meantime, we rec-

ommend applying statistical, computational, or biological filters to reduce the set of

genetic variants to a computationally tractable number prior to machine learning ana-

lysis [4]. This could take the form of expert knowledge derived from databases such as

Gene Ontology or literature sources such as PubMed. Even then, stochastic search is

necessary to explore the model space. Second, we need to move away from evaluating

models based on a single criterion such as a p-value from a statistical test. Many other

objectives will be equally important. Here, we used entropy-based measures of inter-

action information as one of three objectives for evaluating model quality. This could

easily be another important criterion such as the drugability of the genes in the model.

Third, machine learning is by nature computationally intensive. We implemented

Crush-MDR in a cloud-computing environment, as cloud services are increasingly

available and inexpensive compared to local parallel computing clusters. We expect

these technologies to play an important role in the detection and characterization of

gene-gene interactions using methods such as Crush-MDR.

The most important and most challenging aspect of this kind of analysis is the pre-

processing of the data to reduce the search space of Crush-MDR. Here we used bio-

logical knowledge to select a subset genes and their SNPs representing an Alzheimer’s

disease pathway prior to analysis. Other filtering methods such as ReliefF algorithm

could be used to select a smaller subset of SNPs that are more likely to interact. ReliefF

and its extensions have been shown to be effective at filtering SNPs with interaction

effects [30]. We used pairwise entropy-based measures of interaction information as ex-

pert knowledge in Crush-MDR. These are relatively fast computational methods that

Fig. 4 a IMP and b GIANT neuron analysis of the 19 genes found on the Pareto front of the Crush-MDR
analysis of normalized hippocampal volume in the ADNI dataset. The minimum relationship confidence in
each figure is 0.2
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can be used to prioritize SNPs for gene-gene interaction analysis using machine learn-

ing methods. These pairwise interaction information measures could also be used as a

filter with an appropriate threshold. An overview of filter approaches is provided by

Ritchie [52].

Conclusions
The future success of this kind of analysis will depend primarily on the expert know-

ledge that is used to filter big data to a manageable size and the availability of inexpen-

sive high-performance computing. It is our position that the time is now to tackle the

search for combinations of genetic variants that interact to influence disease risk. Func-

tional genomics data made available through tools such as IMP [49] and increasing

availability of inexpensive cloud computing due to competition between vendors will

enable methods such as Crush-MDR to be used for large-scale genetic analyses.
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