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Abstract

Background: Discovering relevant features (biomarkers) that discriminate etiologies of
a disease is useful to provide biomedical researchers with candidate targets for further
laboratory experimentation while saving costs; dependencies among biomarkers may
suggest additional valuable information, for example, to characterize complex epistatic
relationships from genetic data. The use of classifiers to guide the search for biomarkers
(the so–called wrapper approach) has been widely studied. However, simultaneously
searching for relevancy and dependencies among markers is a less explored ground.

Results: We propose a new wrapper method that builds upon the discrimination
power of a weighted kernel classifier to guide the search for a probabilistic model of
simultaneous marginal and interacting effects. The feasibility of the method was
evaluated in three empirical studies. The first one assessed its ability to discover
complex epistatic effects on a large–scale testbed of generated human genetic
problems; the method succeeded in 4 out of 5 of these problems while providing
more accurate and expressive results than a baseline technique that also considers
dependencies. The second study evaluated the performance of the method in
benchmark classification tasks; in average the prediction accuracy was comparable to
two other baseline techniques whilst finding smaller subsets of relevant features. The
last study was aimed at discovering relevancy/dependency in a hepatitis dataset; in this
regard, evidence recently reported in medical literature corroborated our findings. As a
byproduct, the method was implemented and made freely available as a toolbox of
software components deployed within an existing visual data–mining workbench.

Conclusions: The mining advantages exhibited by the method come at the expense
of a higher computational complexity, posing interesting algorithmic challenges
regarding its applicability to large–scale datasets. Extending the probabilistic
assumptions of the method to continuous distributions and higher–degree interactions
is also appealing. As a final remark, we advocate broadening the use of visual graphical
software tools as they enable biodata researchers to focus on experiment design,
visualisation and data analysis rather than on refining their scripting programming skills.
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Background
The current state of data acquisition technology is providing industry and academy with
large–scale sources of information that are relatively cheap to store and collect, but expen-
sive to process and understand; this phenomenon is pervasive to domains as diverse as
bioinformatics, fraud detection, computer vision, recommender systems, particle physics,
financial analysis, weather forecasting, and social networks media streaming, to name a
few. One of the main challenges arising in processing such huge amounts of data, is to
discover from the many observed variables (also known as features), those that are most
relevant to explain significant patterns –or markers– of hidden concepts. This task is
known as feature selection in the data–mining community or biomarker discovery in the
biomedical ambit. In addition to relevancy discovery, also of interest is the identifica-
tion of interactions (dependencies) between those markers; a schematic depiction of such
relevancy–dependency scenario is illustrated in Fig. 1.
Relevancy estimation techniques are aimed at finding subsets of markers in datasets

with a high number of dimensions, where noisy, redundant or irrelevant variables abound.
The selected features may become targets of more detailed studies requiring expensive
experimentation or human expertise, thus saving costs and time not spent on the dis-
carded variables. This problem of selecting the relevant variables can be regarded as a
search procedure over the space of all possible combinations of variable subsets, therefore,
an NP-Hard problem [1]; similarly, finding the underlying structure of a graph represent-
ing dependencies between those variables is also combinatorial [2]. Thus the need of using
approximating, iterative methods is an alternative to find suitable solutions.
Research in techniques for discovering relevant variables is a very active field in the

data mining community (see e.g. [2–7]), and has attracted much attention in the last two
decades [8]. The filter approach ranks the variables according to a linear criterion such as

Fig. 1 Depiction of simultaneous variable selection and dependency estimation in data mining. a A dataset
built with any data acquisition technology (here illustrated as a schematic high–throughput proteomic
analysis of blood samples in a protein array using a mass spectrometer). bMarginal effects (independence) of
the variables describing the data are modeled. c Interacting effects (dependencies) among variables are
estimated, relevant variables are selected, whilst irrelevant variables along with associated dependencies are
discarded (shown in grey)
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their correlation to the prediction target; they are computational simple, but usually fails
to capture non–linear patterns of discrimination.
In contrast, the wrapper approach performs the search guided by the classification

accuracy of a discriminant rule that evaluates the suitability of a subset of features;
although computationally more demanding, this setting is able to find smaller and more
discriminative sets of relevant features, specially when non–linear concepts are hid-
den. In this respect several approaches have been proposed previously using different
metaheuristics, probabilistic assumptions and discrimination techniques. One particular
flavor uses probabilistic model–building genetic algorithms combined with well–known
classifiers (a review of applications of this approach in the bioinformatics domain can
be found in [9]). This kind of algorithms simultaneously estimate the parameters of a
probabilistic relevance model of the variables and the structure of a graph represent-
ing relationships among them. Recent studies using a Bayes network as such model have
reported promising results in discovering interactions in genetic data [2, 6, 10, 11].
In a similar vein, here we describe a novel method that models relevancy and depen-

dency by coupling a weighted kernel machine for pattern classification [12] into a
probabilistic–based genetic algorithm [13] for dependency estimation. Previous studies
considered combining classical and probabilistic genetic algorithms with weighted ker-
nel classifiers for relevancy–only discovery [14, 15]; our contribution in this paper is to
extend those approaches to take advantage of the discrimination power of a weighted ker-
nel classifier to guide the search for a probabilistic model that simultaneously estimates
marginal and interacting effects among the features in a discrimination problem.

Method
Previous work

Overview of probabilistic-based genetic algorithms

This kind of genetic algorithms are stochastic search techniques that evolve a probability
distribution model from a pool of solution candidates, rather than evolving the pool itself.
The distribution is adjusted iteratively with the most promising (sub-optimal) solutions
until convergence. Hence, they are also known as Estimation of Distribution Algorithms
(EDA, for short). The generic estimation procedure is shown in Algorithm 1. Step (1)
initialises the model parameters θ . Step (2) is the loop that updates the parameters θ until
convergence. Step (3) samples a pool S of n candidates from the model. Step (4) ranks
the pool according to a cost function f (·) and chooses the top-ranked into B. Step (5)
re-estimates the parameters θ from this subset of promising solutions.

Algorithm 1: Generic EDA
Input: Pool size n, problem dimensionality �, and cost function f (·)

1 θ ← initialize(�)

2 repeat until θ converges
3 S ← sample(P(X; θ), n)

4 B ← select(S , f (·))
5 θ ← estimate(θ ,B)

6 end
Output: Model parameters θ
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The actual realisation of each step in the generic template of Algorithm 1 defines differ-
ent types of EDA s: discrete or continuous parameters; binomial, multinomial or Gaussian
distributions; univariate, bivariate or multivariate dependencies, see among others:
[14, 16–23]. Our approach to the problem of interest is based on the following assump-
tions: discrete parameters, Gaussian distributions, bivariate dependencies.
For this purpose we resorted to build upon the Bivariate Marginal Estimation of

Distribution Algorithm (BMDA) proposed by [19]. In BMDA the nodes of a graph G are
associated to the problem variables Xi, and pair-wise dependencies are represented with a
minimum-spanning-forest,MSF (see Fig. 2). The roots of theMSF correspond to indepen-
dent variables associated with marginal effects, whereas the rest of the nodes correspond
to dependant variables associated to interaction effects with respect to their parents
(notice that in a forest, any non–root node has at most one parent). Therefore, the prob-
ability model assumed by BMDA is the following bivariate binomial distribution with
parameters θ = {MSF, {ρi}, {ρij}}, where RMSF is the set of root variables, EMSF is the set of
interactions among the variables, and {ρi} and {ρij} are the parameters of the independent
and interacting factors respectively, of the overall probability distribution:

P(X; θ) =
∏

i∈RMSF

P(Xi; ρi)
∏

(i,j)∈EMSF

P(Xi|Xj; ρj, ρij)

BMDA adheres to the generic EDA template of Algorithm 1, with tailored sampling
and estimation rules that we describe next for illustration purposes. Firstly, the sampling
mechanism (Step (3) in the algorithm) is modified as to preserve the most promising can-
didatesB from the previous iteration along with new candidates sampled from the current
model (n2 candidates):

S = sample
(
P(X; θ),

n
2

)
∪ B (1)

Secondly, the estimation strategy (Step (5) in the algorithm) comprises the following
operations:

1. Build a disconnected graph G(V,Et), with V the set of problem variables, and Et
the set of variable interactions determined by a bivariate Pearson χ2 dependency
test criterion: Et = {(i, j) ∈ V × V : i �= j ∧ χ2

ij ≥ 3.84}. Here the statistic χ2 is
computed from the current candidate pool B at iteration t.

2. ComputeMSF(Et) representing variable dependencies. Build the set of root nodes
RMSF by choosing at random one node of every component inMSF(Et).

Fig. 2 A probability model representing dependencies using a MSF. Here, k = 3 connected components are
depicted, where �1 = 1, �2 = 2, �3 = 7 and � = ∑

k �k = 10 Feature order is arbitrary
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3. Estimate parameters {ρi : i ∈ RMSF} and {ρij : (i, j) ∈ EMSF} using frequentist
updates (see Eq. (2)), again over the current candidate pool B at iteration t (N.B.
Here, [ c]= 1 if the argument c is true or 0 otherwise).

ρa
i =

n∑

k=1
[Bki = a] , ρab

ij =
n∑

k=1

[
Bki = a ∧ Bkj = b

]
, (2)

Overview of kernel machines for pattern classification

As it was mentioned earlier, we use a classifier that guides the search for more suitable
subsets of features (Step 4 of Algorithm 1). From the many pattern classification tech-
niques, kernel machines [12] have shown outstanding performance on diverse problem
domains; thus we chose them as base classifiers for our method.
Kernel machines classify patterns using a linear combination of nonlinear mappings,

known as kernel functions, evaluated on the current input instance i over the observed
instances in the past j < i, using the rule ŷi = sign

(∑i−1
j=1 αjκ(xj, xi)

)
, where ŷi is the

class prediction and the coefficients {αj} are learnt with standard linear discriminant
algorithms such as the Perceptron or the SVM [12].
The classification power of kernel machines is partly due to the ability of the kernel

function to map the input space into a higher–dimensional space [24], that is, κ(xj, xi) =
�(xj)��(xi). In such transformed space nonlinearities are probably easier to resolve,
while the classifier preserves the computational simplicity of a linear discriminant in
input space [25] (see Fig. 3). There is no need to explicitly declare the nonlinear mapping
as long as the kernel function is defined as a symmetric positive semidefinite function
[12, 24]. Two of such widely–used kernel functions are the RBF and the polynomial ker-
nel, κσ (x, z) = exp

(
−σ

∑�
i=1(xi − zi)2

)
, and κd(x, z) = (x�z)d. The parameters σ and d

define the width of the RBF and the degree of the polynomial kernel, respectively.
Modified weighted versions of these kernels incorporate scale factors w = {w1, . . . ,w� :

wi ∈ [0, 1] } for each of the � dimensions (i.e. variables) in order to modulate their contri-
bution to the total computation [14, 26, 27]. The weighted RBF and weighted polynomial
kernels are then defined as κσ (x, z;w) = exp

(
−σ

∑�
i=1 wi(xi − zi)2

)
, and κd(x, z;w) =

(∑�
i=1 wi(xi · zi)

)d
, respectively. Here we remark that as wi is closer to 1, its associated

variable becomes more relevant since it contributes a larger magnitude to the final value
of the kernel computation. It is in this sense that we interpret the vectorw as representing

Fig. 3 Transforming the input space onto a higher dimensional space using a nonlinear mapping �(·), may
resolve nonlinearities with linear discriminants. Here a binary dataset (positive class=red, negative=blue) is
visualised in two different subspaces, a line in R

1 and a parabola in R
2. The original data (ovals) is not linearly

separable in R
1. The transformed data (squares) is separable in R

2 by an arbitrary linear discriminant (green).
The mapping used was �(x) 	→ (x, 1 + x2)
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the relevancy distribution of the variables for the purposes of classification. Accordingly,
classification performance will guide the EDA to estimate these relevancy factors.
Additionally we observe that because of the additive nature of these kernel functions,

the resulting scaling in each dimension can be obtained by preprocessing the input data
with a modified version of the weight vector w. For instance, regarding the RBF kernel it
can be seen that:

κσ (x, z;w) = exp

(
−σ

�∑

i=1
wi (xi − zi)2

)
= exp

(
−σ

�∑

i=1

(√
wixi − √

wizi
)2

)

= κσ (w̃ ⊗ x, w̃ ⊗ z) ,

where w̃ = {√w1, . . . ,
√w�} and⊗ denotes the component–wise product. The case of the

weighted polynomial kernel is analogous. This observation was originally pointed out in
[14] and more recently in [27].

Relatedmethods for relevancy and dependency estimation

Some previous studies have considered a multi-objective approach for simultaneous opti-
misation of accuracy and relevance distribution. Two representative techniques utilise
EDA s to estimate the parameters of a probability model from which the relevance fac-
tors are sampled. One of such approaches, the EBNA algorithm [28]) uses a multivariate
probabilistic model that incorporates second–order dependencies between the variables.
The search of relevancy and dependencies is guided by the discriminatory power of a
Naive-Bayes classifier. The authors report promising results in finding suitable variable
subsets with good generalisation performance, although the benefit of obtaining insights
about relationships between variables is traded–off with an overhead in computational
complexity.
On the other hand, wKiera is a wrapper approach for feature relevance estimation that

combines EDA s and kernel machines [14]. The estimation is carried out using an array of
scale factors coupled to a weighted kernel machine whose classification accuracy guides
the search for the relevance distribution using an UMDA algorithm [13]. The authors
reported encouraging results compared to filter methods in discovering relevant variables
on a number of different classification tasks, including problems with linear and non-
linear hidden concepts in very–high dimensional spaces. The algorithm however, does
not retrieve additional information about the interactions between the relevant variables,
because it assumes they are conditionally independent. In this respect, wKiera dif-
fers from the method we propose in this paper which, despite combining also a kernel
machine with an EDA, estimates relevance based on a probabilistic model of bivariate
interactions, obtaining a network of dependencies that may provide additional insights
regarding the combined effects of related features, as we shall explain in the next section.
Lastly, another well-known approach to treat dependencies is ReliefF [29]. This tech-

nique has been used to estimate feature quality in prediction and regression tasks. It can
be applied as a previous step (filter) to feature subset selection. In contrast to other filter
techniques assuming conditional independence of the features (i.e. correlation coefficient,
information gain or Gini index), ReliefF detects local context interactions between
variables and use that information during estimation of their relevancy. In this way, it is
able to analyse combined effects due to dependencies among relevant features.
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The scores computed by ReliefF are positive for relevant features and negative for
irrelevant ones. Although it does not provide explicit information about the dependen-
cies, this technique has proven fast and effective for relevance estimation on problems
with strong feature interactions, where other filters become myopic and fail to find
them [30].

Proposed algorithm

The new method that we termed weigthed Kernel Iterative Estimation of Dependencies
and Relevancy Algorithm (Kiedra for short) uses a hybridised version of BMDA and
wKiera to estimate the relevancy distribution and second order dependencies of input
variables. The search is guided by the suitability of the relevance factors when classifying
the data with its corresponding weighted kernelSVM. The following steps were introduced
in the design of Kiedra:

• When building the correlation graph, the Mutual Information (MI) criterion [31] was
additionally considered to estimate dependencies between arbitrary pairs of variables,
that is, to the extent to which they share information. A third Combined Mutual
Information and p-value (SIM) criterion was also considered; the latter mixes both
statistical and information–theory dependence [32]. Consequently, the rule to
compute the edges on the dependency network was modified to that in Eq. (3):

Et =
{
(i, j) ∈ V × V : i �= j ∧ any_of

({
χ2
ij ≥ 3.84,MIij > 0, SIMij > 0

})}
(3)

• When choosing the root nodes RMSF of the dependency network (forest), instead of
selecting at random we introduced another information–theory criterion that selects
nodes minimising the marginal entropy H(·) in each connected component Vk of the
network,

⋃
k Vk = V ∧ ⋂

k Vk = ∅, as stated in Eq. (4). The marginal entropy is
computed frequentist-wise from the current candidate pool B at iteration t. The
rationale behind the introduction of this criterion is that those nodes with lowest
entropy are richer in information content, and thus good candidates to become
independent parents of the dependency subnetworks (in this sense this criterion was
originally proposed in the MIMIC algorithm [17]).

RMSF =
{
rk : rk = argmin

i
H(Xi ∈ Vk)

}
(4)

• Finally, candidate relevance factors are sampled from the current probability model
and incorporated to a population including the previous best solutions found:
S ← sample(P(X; θ), n2 ) ∪ B. Each candidate in this population wk ∈ S is assessed
by building a weighted SVM and obtaining its classification accuracy with a 5–fold
cross–validation on the modified dataset D̃ ← D ⊗ wk . The population is ranked by
best accuracies and the top candidates are selected. These candidates are then used
to re–estimate the dependency network and the relevance parameters of the
probabilistic model, and the process iterates until these parameters converge. Further
details and specification of Kiedra are given in the Additional file 1: Additional
Methods and Tools section.



Rodriguez and Rojas–Galeano BioDataMining  (2017) 10:12 Page 8 of 19

Empirical study
In this section we report the results of a number of experiments designed to validate
the feasibility of the proposed method. Initially we provide details about our implemen-
tation platform. Then we describe the first experiment aimed at testing the ability of
the method in discovering epistasis on generated human genetic datasets; there we used
ReliefF as a baseline to compare, for it is also a method that treats feature interactions.
Our empirical study continued with a second experiment designed to compare the pro-
posed approach with other EDA-based and kernel-based methods on some benchmark
classification problems. Lastly, we conducted a third experiment intended again to dis-
cover relevancy and dependencies in a medical domain, specifically on a hepatitis dataset,
this time corroborating the results with recent findings in the literature of that disease.

Implementation

The method was implemented using the Goldenberry suite of visual components for
stochastic–based search optimisation within the Orangemulti–platform workbench for
data mining [33, 34]. In this environment, visual components (known as widgets) exe-
cuting different steps of the algorithm such as data input and sampling, SVM s training,
BMDA estimation, etc., are dragged onto a visual canvas where they are assembled to cre-
ate the Kiedra program shown in Fig. 4. The WrapperCostFunction widget is the
core of the program; it gets input from the Data and SVM widgets and wraps them up
in a weighted kernel machine which in turn is provided as the cost function required by
the BMDA optimiser. Additional widgets were used for comparison with ReliefF and
wKiera, and also for results collection and visualisation, namely Rank, DistanceMap,
BlackBoxTester and UMDA (we note in passing that the wKiera algorithm can be
implemented by simply replacing BMDAwith UMDA in this assemblage). More information
of these widgets and their configuration can be found in the Additional file 1: Additional
Methods and Tools section.

Experiment 1: Relevancy and dependency in genetic epistasis

Genetic epistasis refers to those complex gene-gene interactions that may trigger sus-
ceptibility to a common human disease. Instead of characterising a single nucleotide

Fig. 4 The visual program implementing Kiedra in the Orange/Goldenberry workbench. Widgets on
the left–hand side of the canvas provide the required input (data sampling, kernel machine setup, etc.) for
the central discoverer component (Kiedra) which executes the algorithm so as to estimate relevancy and
dependency, and then provides these results as inputs for the collection and visualisation widgets on the
right–hand side of the canvas. Two additional widgets shown on the top of the canvas were used to
implement wKiera and to execute ReliefF. See text for further details
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polymorphism (SNP) as an isolated marker of a disease, epistasis assumes a combi-
nation of markers is in fact associated to the phenotypic manifestation of the disease.
Hence, epistasis in genetic datasets is an interesting target for simultaneous relevance and
dependencies mining.
In this first set of experiments we focused on evaluating the effectiveness of the

method in discovering such complex interactions. For this purpose we considered a
recently proposed testbed of human genetic–like model–free datasets simulating eti-
ologies between combinations of SNPs [35]; the datasets were designed to minimise
predictiveness of single or pairs of genetic variations and maximise highe–order inter-
actions. The original datasets consisted of 3, 4 or 5 SNPs; we modified them by adding
both 5 and 10 features unrelated to disease status so as to represent three, four, or
five-way epistatic problems polluted with noise. The irrelevant features were sampled
from an uniform random distribution as Ri ∼ U(0, 10). A summarised description of
these datasets is given in Table 1; those labeled as “NoLow” indicates that no lower–
effects can be found, that is, epistasis involves strong interactions among the entire set
of relevant SNPs. Besides, we chose ReliefF as a baseline to compare the perfor-
mance of the proposed method, considering its ability to also treat feature interactions, is
well-known [30].
For each dataset, the experiment was conducted following the scheme shown in Fig. 4.

On the one hand, once the noise was added, features in the polluted dataset were scored
using ReliefF; those obtaining positive scores were labeled as relevant, otherwise as
irrelevant. On the other hand, Kiedra experiments were executed as follows. Firstly the
modified dataset was split in training and testing subsets (25%/75%); then an SVM was
parameterised (C = 100, RBF kernel with σ = 10) and wrapped–up in a weighted kernel
machine along with the data. The latter was then provided as the cost function to evolve
a BMDA (n = 20, iter = 80, SIM criterion). In view of the stochastic nature of Kiedra,
the above protocol was repeated 30 times with the resulting scale factors being collected
and averaged; then a cut–off threshold of 0.7 was applied to select relevant from irrelevant
features.
The subsets found with both methods were finally contrasted to the ground truth in

order to record a coordinate (#R, #N) of the correct number of relevant (#R) and noisy
(#N) features that were discovered. These records are summarised in the bubble fre-
quency plots of Fig. 5. They are arranged according to their pollution rate (5 or 10 added
noisy features). Here, the area of any bubble in each problem represent the frequency
at which the method hit the corresponding coordinate (#R, #N) of relevant and noisy
features within the 100 datasets.
Let us examine first the plots in the left-hand column of the figure. In the first two prob-

lems, 3way and 4way, Kiedra was able to discover the correct number of relevant and

Table 1 Description of simulated epistatic problems (see [35] for further details)

Problem Datasets Simulated SNPs Noisy SNPs Disease status Instances

3way 100 3 5 and 10 0 or 1 3000 (balanced)

4way 100 4 5 and 10 0 or 1 3000 (balanced)

4way-NL 100 4 5 and 10 0 or 1 3000 (balanced)

5way 100 5 5 and 10 0 or 1 3000 (balanced)

5way-NL 100 5 5 and 10 0 or 1 3000 (balanced)
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Fig. 5 Bubble frequency plot of epistasis discovery with Kiedra (blue) and ReliefF (green). Plots are
arranged by epistatic problem in rows, i.e. number of relevant SNPs, and noise pollution in columns, i.e.
number of irrelevant features: 5 (left) or 10 (right). One hundred datasets per problem were analysed; a
bubble in any plot depicts the relative frequency of correct discovered (#relevant, #noisy) features
corresponding to its coordinate (abscissas are #relevant). Largest bubbles are the most frequent result found
by Kiedra in each problem; the slices shown in such bubbles illustrate in proportion (hits) how often
ReliefF agreed with that finding

noisy features within the whole collection of datasets. Likewise, in problems 4way-NL
and 5way, Kiedra only missed a few 2 datasets in each problem. ReliefF in turn,
discovered correctly up to 84, 97 and 93 datasets in problems 3way, 4way and 5way,
achieving a lower rate of 61 hits for problem 4way-NL. These results hint at the abil-
ity of Kiedra to discover epistatic effects even with coexisting uninformative markers.
ReliefF shows a comparable trend, except in problem 4way-NL where probably the
higher–order dependencies causes some trouble so as to find the correct relevant features.
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Now, let us discuss the results shown in the plots of the right–hand column of the
figure. We recall that these problems were modified with twice the number of polluted
features. A similar trend can be seen for the behaviour of Kiedra. The method achieved
a correct hit rate of 98 out of 100 in problems 3way and 4way; this rate was down to
80 in problem 4way-NL and slightly lower in 5way. On the other hand, ReliefF was
adversely affected by such level of noise, for it obtained correct hit rates of 44, 39, 3 and
12 respectively.
Finally, let us comment on the plots of the last row in the figure (problem

5way-NL), whose results differ amply from those reported previously. In this prob-
lem, ReliefF seems to perform better in comparison with Kiedra, although not a
conclusive trend is evident. In the 5-noisy features problem it is able to find the cor-
rect coordinate (5,5) in about 10 hits, but the most frequent result was coordinate (4,4)
with 21 datasets. Likewise in the 10-noisy features problem the most frequent discov-
ered coordinate was (3,5) while the optimal (5,10) was never found. On the other hand,
Kiedra clearly underperformed in this problem as their findings are highly biased to
coordinates where the correct number of noisy features are identified, but in contrast few
or none of the relevant are found. We recall that the originators of these epistatic datasets
reckon that this is the hardest problem, as its etiology comprises interactions of the entire
set of 5 SNPs, while no lower-degree interactions were enabled, as opposed to the other
problems [35].We remark however, that the dependency graph in which Kiedra is based
assumes a bi–variate probability distribution, which may explain why it fails in modeling
higher–order interactions appropriately.
On a different note, it is worth mentioning that at the expense of obtaining explicit

information about gene–gene interactions, Kiedra is computationally more demand-
ing than ReliefF. This is because Kiedra requires training and testing a classifier at
every iteration during the evolution of its probability model. This effort is compensated
however, by its ability to explicitly compute the feature dependency graph while searching
for the relevant variables. To illustrate this point, Fig. 6 shows examples of dependency
heatmaps generated from the dependency graph computed by Kiedra for arbitrary cho-
sen datasets belonging to problems 3way to 5way (5 noisy features), whose epistasis,
as it was discussed above, was correctly discovered by the method. These dependency
heatmaps are symmetric matrices that were visualised using the ShowDependencyMap
widget of Fig. 4. Notice that each interaction map is meant to be interpreted jointly with
the associated relevance factors, in order to identify informative interactions between rel-
evant features and to ignore irrelevant interactions. For example, in the shown heatmaps
the epistatic interactions would be located in the section of the matrices involving fea-
tures 0 to 2 (3way) or 0 to 3 (4way) or 0 to 4 (5way), as those were the features correctly
selected as relevant by Kiedra. In contrast, one can argue that the remainder sections of
the matrices contain spurious dependencies arising from correlations due to randomness
of the added noise, a fact corroborated because these features were correctly designated
as irrelevant by the method.

Experiment 2: Feature relevance discovery in benchmark classification problems

This second set of experiments were conducted to study the relevance discovery abil-
ity of Kiedra on classification problems, in comparison with the other EDA–based and
kernel–based techniques described in Section 6. We chose a benchmark of five datasets



Rodriguez and Rojas–Galeano BioDataMining  (2017) 10:12 Page 12 of 19

Fig. 6 Dependency heat maps in epistatic problems with 5 added noisy features. These matrices represent
dependency graphs (gene–gene interactions) computed by Kiedra (notice that dependencies are
non–directed since matrices are symmetric). Relevant variables are numbered starting from 0 (i.e. {0,1,2} in
problem 3way, {0,1,2,3} in problem 4way and so on). Interaction intensity is represented by a warm–based
gradient palette

from the UCI repository [36] (see description in Table 2). The results for EBNAwere taken
from those reported in [28]. wKiera and Kiedra were implemented with the visual
components of Fig. 4.
One experiment was conducted per each dataset as follows. The dataset was initially

preprocessed as to fill–in missing values with a Naive Bayes classifier and to normalise
within a [0, 1] real interval. The processed dataset was then randomly split into training
and test subsets of equal size. These subsets are the inputs for the cross–validation scheme
used to estimate the accuracy of each candidate solution. For each method, 10 repetitions
were executed with different random splits. Average statistics were collected using the
BlackBoxTester widget.
We evaluated the performance of these methods in two aspects: relevancy discovery

and classification accuracy. Firstly, let us examine the average number of relevant variables

Table 2 Description of benchmark classification datasets

Dataset Variables Classes Instances

Ionosphere 34 2 351

Soybean 35 19 307

Horse–colic 27 24 368

Annealing 38 6 798

Image 19 7 2310
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Table 3 Average number of relevant variables discovered in each dataset

Dataset Raw EBNA wKiera Kiedra

Ionosphere 34 13.40 ± 2.11 7.30 ± 0.82 7.20 ± 0.92

Soybean 35 6.10 ± 1.85 5.10 ± 0.99 6.50 ± 1.58

Horse–colic 27 18.90 ± 2.76 16.40 ± 1.90 16.60 ± 2.12

Annealing 38 20.50 ± 3.13 9.60 ± 0.97 9.40 ± 1.43

Image 19 8.00 ± 0.66 7.72 ± 1.24 7.45 ± 1.36

per dataset, which are reported in Table 3. It is clear that Kiedra and wKiera show
comparable results; besides both obtained smaller variable subsets than those of EBNA.
Kiedra was able to outperform wKiera in three cases. Reduction rates in the number
of variables with respect to the original dimensionality, varied from around 76% or more
(Ionosphere, Soybean and Annealing) to 60% (Image) to 40%, (Horse–colic). It is worth
noting that in two cases (Ionosphere and Annealing), the new method achieved around
half the size of the subsets found with EBNA; moreover, these were among the datasets
with higher number of raw variables.
Regarding average classification accuracy (see Table 4), again Kiedra and wKiera

show similar performance, with a slight advantage to Kiedra in two datasets. The sim-
ilarity in the performance of these two techniques was anticipated, given that both are
based on a kernel classifier (SVM). However, we remark that Kiedra provides additional
valuable information about possible dependencies in the variable subsets, which wKiera

do not. On the other hand, EBNA outperformed the kernel-based techniques in two cases
(Horse–colic and Annealing), suggesting the Naive Bayes classifier may yield more effec-
tive discriminants for those datasets, although using larger feature subsets (almost twice
the size).
Lastly, we also report on runtime performance statistics for the kernel–based methods

(see Table 5). In average, wKiera needed fewer evaluations of the cost function in order
to converge, compared to Kiedra; in terms of execution times there is no conclusive evi-
dence of one method being faster that the other. However, we reckon these differences as
being not remarkable, considering that Kiedra simultaneously produces estimates about
possible variable dependencies. Unfortunately runtime information was not reported in
the referenced EBNA report.

Experiment 3: Relevancy and dependency estimation on amedical domain

The third study was focused on assessing the simultanoeus relevancy/dependency ability
of the method on a medical domain. It was conducted on the Hepatitis dataset from the
UCI repository [36, 37]. In this dataset, 19 clinical observations from 155 patients suf-
fering from hepatitis were recorded, along with the final outcome (die or survive). The
notation and domain of the variables in the dataset are given in Fig. 7(a).

Table 4 Average prediction accuracy in each dataset

Dataset EBNA wKiera Kiedra

Ionosphere 92.40 ± 2.04 98.07 ± 1.36 98.49 ± 0.9

Soybean 83.93 ± 1.58 90.31 ± 1.94 89.89 ± 2.31

Horse–colic 88.64 ± 1.70 82.31 ± 2.78 81.42 ± 3.81

Annealing 94.10 ± 3.0 76.3 ± 3.76 76.42 ± 4.49

Image 88.98 ± 0.98 89.55 ± 1.28 90.29 ± 1.78
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Table 5 Average runtime performance (only available for wKiera and Kiedra)

Dataset
wKiera Kiedra

Evaluations Time (secs.) Evaluations Time (secs.)

Ionosphere 2893.8 ± 331.59 93.11 ± 30.21 3009.00 ± 838.81 87.62 ± 36.06

Horse colic 1826.20 ± 251.74 43.02 ± 13.19 2258.20 ± 507.71 75.07 ± 25.68

Soybean-large 3501.00 ± 437.77 151.04 ± 38.42 4747.00 ± 1647.87 141.34 ± 48.16

Annealing 1059.40 ± 159.38 87.76 ± 15.42 1160.20 ± 204.92 67.41 ± 14.11

Image 1246.60 ± 299.86 31.14 ± 9.15 1541.80 ± 860.79 44.76 ± 24.40

The experiment was implemented using the same Kiedra testbed of Fig. 4; we simply
changed the data source. The data was preprocessed and sampled for training and test-
ing subsets as before. This protocol was repeated 100 times in order to prevent biased
results due to randomness in the proposed method. Relevancy factors of the best solu-
tion found in each repetition were collected; then, variables discovered in more than half
of the repetitions yielding accuracies greater than 80%, were selected as relevant (see the
relevancy heatmap of Fig. 7(b)).
Additional variability was induced by shuffling the order of the patients in the dataset

in each repetition. As a result we noticed dissimilar dependency trees were found. Thus,
these trees were aggregated into a single graph, accounting the strengths of the dependen-
cies as proportional to the number of times they showed up during the repetitions (see
Fig. 7(c)). Lastly, in order to estimate the final pairwise dependencies, we computed the
minimum-spanning-tree on this aggregated graph, using the inverse of the counts as edge
costs and applying Kruskal’s algorithm [38] (see Fig. 7(d)).
Kiedra found a total of nine relevant variables: Sex (X2), Malaise (X6), Liver big (X8),

Liver firm (X9), Spleen palpable (X10), Spiders visible (X11), Ascites occurrence (X12),
Albumin level (X17) and Prognosis (X19). Besides, according to Fig. 7(b), themethod found
strong evidence of relevancy in subset {X6,X19}, followed by fair evidence of relevancy
in {X8,X9,X10,X11,X12}, and lastly, borderline evidence in {X2,X17}. The first subset
indicates, not surprisingly, that prognosis by histology is probably the most effective pre-
dictor of the disease, although being expensive and risky of complications [39]; similarly,
malaise is seemingly correlative with the disease and it is a symptom usually reported by
patients [40].
In contrast, the second subset correspond to more disease-specific symptoms: hep-

atomegaly (liver oversizing and stiffness) and splenomegaly (spleen enlargement) com-
monly reflect severity of liver damage [39, 41], spider nevi are visible in patients with the
different variants of the disease [42, 43], and ascites has been reported as being strongly
associated with hepatic dysfunctions [44]. Regarding the last subset, albumin is a protein
synthesised in the liver, so it is reasonable to correlate changes in its level with infection
with hepatitis. The peculiar finding here is Sex (X2), a non-disease-specific variable that
nonetheless, has been recently linked to treatment response and survival rates with other
unexpected features such as race (female, white) [39, 44]. In addition, it is worth noting
that the relevant dependencies found by our method are between this variable and the
other disease-specific X9,X10,X11,X12 predictors mentioned earlier.
We remark that these findings are corroborated by other related studies, such as

[45] suggesting that variables X19, X11, X17 and X12 were highly indicative of the
diagnosis. Likewise, [46] applied a method that discovered the subset of variables
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Fig. 7 Relevancy and dependency discovery in the Hepatitis dataset using Kiedra (see the discussion of
these results in the text). a Description of the variables in the dataset. b A heatmap of the discovered
relevancy factors; each row correspond to the factors comprising the best solution of one repetition of the
experiment. Relevant (white) and irrelevant (shaded) variables where chosen with a cutoff value of 0.5 on the
average factors over all repetitions (only repetitions obtaining a classification accuracy greater than 80% were
considered). c A graph of aggregated dependencies obtained over all repetitions. Opacity indicates the
frequency of repetition a dependency was found. d The minimum-spanning-tree on the aggregated graph,
suggesting the final estimated dependencies. Relevancy is also shown (irrelevant variables and associated
dependencies are shaded)

{X6,X17,X14,X19,X11} as relevant, with further experimentation finding predictive value
in variable X2. Other studies using information theoretic, statistical and regularisation
learning methods [47] as well as various machine learning and bioinspired techniques
[48] also reported these variables in their relevant subsets, or report subsets with similar
sizes (10–12 variables) obtaining similar prediction accuracies between 80–85% [49].
On the other hand, the following variables were characterised as not explanatory by

Kiedra: Age (X1), Steroids detected (X3), Antivirals applied (X4), Fatigue (X5), Anorexia
(X7), Varices exposed (X13), Bilirrubin level (X14), Alkaline PO4 level (X15), SGOT level
(X16) and Protein level (X18). From this subset, it causes surprise bilirrubin not being
discovered as indicative of the disease, as this protein is responsible of jaundice, the
most common symptom related to fulminant hepatitis; we speculate that this may be
due to the fact that bilirrubin levels differ depending on the type of illness and dura-
tion: acute or chronic, viral, drug–induced or autoimmune [44]. Unfortunately, in this
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dataset such information was not available. The other potential marker included in this
subset is the alkaline phosphate level; however, some clinical studies have shown that this
enzyme maintain normal levels during hepatitis infection, although it may raise in other
hepatic–related injuries such as cholestasis [40].
No further evidence of other data mining studies assigning relevancy in the remainder

variables was found [37, 47, 48]. Notice that consequently, we also regarded the depen-
dencies associated with these variables as not relevant for the prediction of the disease
outcome.

Conclusion
We have described a method to tackle the dual combinatorial problem of relevancy-
dependency discovery by coupling a weighted kernel classifier to guide the evolution of
a probabilistic model of marginal and interacting effects among the problem features.
Empirical evidence found in two experiments, one in a genetic epistasis testbed and
another in a classification benchmark, indicates comparable performance with related
baseline methods while providing richer dependency and relevancy information; in a
third experiment comprising a hepatitis dataset, the method findings were corroborated
with those reported in recent medical literature.
The promising potential mining capabilities of the method come at the expense of

higher computational complexity of the algorithmic and data structures that it involves. In
view of the nowadays increasingly availability of high–throughput and stream technolo-
gies for data acquisition, natural questions emerge in regards to the applicability of the
method in large–scale scenarios. In this respect, we envisage two interesting avenues for
further research, the first one related to algorithmic crafting so as to speed up the compu-
tation of the kernel function, which might be a bottleneck in such big data scenarios e.g.
[14, 27, 50, 51]; the second one is considering compact representations of the probability
model enabling memory and time savings during updating of its parameters [23, 52–54].
On a different perspective, the current design of the method is restricted to discrete

probabilistic models; therefore modeling continuous distributions with its associated
computational challenges, is also of significant interest. Besides, since the probabilistic
model assumes a bivariate distribution, the method is prone to miss epistasis due to
higher–order interactions, as it was shown in the hardest genetic problem in the empirical
study. Thus, future work would also consider addressing this limitation.
As a final word, we also advocate adopting user–friendly visual graphical data–mining

tools enabling biomedical analysts to focus on their experiments rather than on improving
their low–level programming skills (see [55] for deeper insights on visual programming
environments for bioinformatics). Hence, an additional challenge arising is growing and
refining the suite of visual software components that currently implements the method.
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