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Abstract

Background: The problem of discovering genetic markers as disease signatures is of
great significance for the successful diagnosis, treatment, and prognosis of complex
diseases. Even if many earlier studies worked on identifying disease markers from a
variety of biological resources, they mostly focused on the markers of genes or gene-
sets (i.e., pathways). However, these markers may not be enough to explain biological
interactions between genetic variables that are related to diseases. Thus, in this study,
our aim is to investigate distinctive associations among active pathways (i.e., pathway-
sets) shown each in case and control samples which can be observed from gene
expression and/or methylation data.

Results: The pathway-sets are obtained by identifying a set of associated pathways
that are often active together over a significant number of class samples. For this
purpose, gene expression or methylation profiles are first analyzed to identify significant
(active) pathways via gene-set enrichment analysis. Then, regarding these active
pathways, an association rule mining approach is applied to examine interesting
pathway-sets in each class of samples (case or control). By doing so, the sets of
associated pathways often working together in activity profiles are finally chosen as our
distinctive signature of each class. The identified pathway-sets are aggregated into a
pathway activity network (PAN), which facilitates the visualization of differential
pathway associations between case and control samples. From our experiments with
two publicly available datasets, we could find interesting PAN structures as the
distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively.

Conclusions: Our pathway-set markers were shown to be superior or very comparable
to other genetic markers (such as genes or gene-sets) in disease classification.
Furthermore, the PAN structure, which can be constructed from the identified markers
of pathway-sets, could provide deeper insights into distinctive associations between
pathway activities in case and control samples.

Keywords: Biomarker discovery, Gene expression analysis, Pathway association mining,
Pathway-set markers, Pathway association network
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Background
The problem of finding effective disease markers or signatures is very important for the

successful diagnosis, treatment, and prognosis of complex diseases such as cancers. So

far, many studies have worked on identifying disease-related markers with a variety of

biological resources, such as gene expression profiles [1–8], protein-protein interactions

[9–11], pathway databases [12, 13], and so on. However, most of them focused on

examining the markers of individual genes or gene-sets (i.e., pathways) as disease signa-

tures. For example, such conventional methods like t-tests, fold change, and signal-to-

noise ratio were used to find differentially expressed genes [14–16] without regard to

gene associations or other biological information. On the other hand, some studies ex-

plored gene associations for disease marker findings. For example, Maulik et al. [17]

proposed a rule mining method that employs biclustering analysis to discover interest-

ing relationships among genes under certain conditions. Giugno et al. [18] generated

association rules between gene expression intervals for classification. Other researchers

performed pathway-based analyses to consider the predefined gene-sets (i.e., pathways)

as disease markers [19–25]. Kim et al. [22] introduced pathway-based markers by com-

bining gene-set enrichment analysis with support vector machine. Lee et al. [23] identi-

fied core genes in pathways for disease classification in pathway level.

Although such methods were shown to be very useful in many applications, they may

not be enough to fully understand disease mechanisms. Moreover, multiple candidate

pathways often share some genes, so it leads to forming complex interconnections

among pathways while making analysis and interpretation complicated. For example,

when there are common genes in multiple candidate pathways, they might be consid-

ered to be associated with each other. However, even when multiple candidate path-

ways do not share genes, they may be mutually associated or active together. Thus, it

seems worthwhile to investigate the associations among the activities of significant

pathways differentially shown in case and control samples, as potential disease

signatures.

In this study, our aim is to identify the sets of pathways (i.e., pathway-sets) having as-

sociations in the activities observed from gene expression profiles (or DNA methylation

data), especially shown differentially in case and control samples. For this purpose, we

utilized an association rule mining approach to find active pathway-sets that are shown

distinctively and frequently in each class of samples (case or control). This was done

based on the assumption that the set of pathways often being active together in gene

expression (or methylation) profiles could have some interesting biological relationships

among them. For the discovery of interesting pathway-sets, we conducted gene-set en-

richment analysis (GSEA) [26] to identify significant (active) pathways and derived

pathway activity profiles from gene expression (or methylation) data. Then, we applied

the BiMax clustering on the pathway activity profiles to detect clusters of co-activated

pathways frequently shown in class samples. In the end, interesting pathway-sets were

found by taking the significant sets of co-activated pathways that satisfy a certain

threshold of significance measures. For the evaluation of the identified pathway-sets,

we used them as disease markers for classification and analyzed the performance. Be-

sides, we aggregated the inferred pathway-sets in each class into a pathway activity net-

work (PAN) in which nodes represent significant active pathways and edges represent

interesting associations between the pathways. This PAN facilitates the visualization of
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differential pathway associations shown in case and control samples. Figure 1 summa-

rizes the overall workflow of our pathway association mining approach used in this

study.

Results and discussion
For experiments, we utilized two publicly available cancer datasets in this study.

GSE15852 [27] (Dataset 1) is the gene expression data about breast cancer, which in-

cludes 86 samples (43 controls, 43 cases) of 12,500 probes. GSE31699 [28] (Dataset 2)

is the dataset for uterine leiomyoma cancer that contains mRNA expression profiles of

48,803 probes in 16 uterine leiomyoma tumor (LM) samples and 16 normal myometrial

(MM) samples and DNA methylation profiles of 27,578 probes in18 uterine LM sam-

ples and 18 normal MM samples.

Identification of pathway-set markers in breast tumors and paired normal tissues

In breast cancer dataset (Dataset 1), we first identified 36 significant pathways by GSEA

with FDR q-value < 0.05. Then, we produced the activity profiles of these pathways and

utilized them to produce pathway-sets satisfying minimum support of 25%. (See the

Methods section for details) Out of these pathway-sets, we have chosen top 250 signifi-

cant pathway-sets in each class as disease markers for further analyses. Figure 2 shows

Fig. 1 The overall workflow for pathway association mining approach in our study
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the heatmap of our 500 pathway-set markers in which the rows represent 36 significant

pathways and the columns represent the activities of 500 pathway-sets. Also up-

regulated pathways are shown in red and down-regulated pathways are shown in blue.

From this figure, we can clearly find the distinctive feature of activities in the chosen

pathway-sets between case and control classes. The details of 36 selected pathways and

top 10 interesting pathway-sets that we identified are given in Additional file 1.

Identification of pathway-set markers in uterine leiomyoma and matched myometrial tissues

In uterine leiomyoma cancer dataset (Dataset 2), we first identified 24 pathways as dif-

ferentially expressed (DE) pathways from gene expression profiles and 25 pathways as

differentially methylated (DM) pathways from methylation data, by using GSEA. Then,

we chose the union of all these pathways (48 pathways) as significant pathways and

used them to detect interesting pathway-sets from gene expression data and methyla-

tion data, respectively. The details of 48 pathways are given in Additional file 2. All the

interesting pathway-sets obtained from gene expression data and methylation data are

shown in Fig. 3(a) and (b), respectively. From this figure, it is seen that the activities of

our chosen pathway-sets are clearly distinguishable between case and control classes.

Also, from these pathway-sets, the relationships between pathway activities shown in

gene expression and methylation data were analyzed. Interestingly, out of 48 pathways,

we could find an inverse relationship between pathway activities shown in gene expres-

sion and methylation data from 37 pathways in case and 36 pathways in control, which

are given in Fig. 4.

Evaluation of pathway-set markers with disease classification

For disease classification, three different types of genetic markers (including the

markers of genes/pathways/pathway-sets) were used and compared in terms of the sen-

sitivity, specificity, and accuracy. In the breast cancer dataset (Dataset 1), 67 differen-

tially expressed genes were identified as gene markers using Limma with p-value < 0.05,

Fig. 2 The heatmap of 500 pathway-set markers identified by our proposed approach from Dataset 1
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Fig. 4 Relationship between pathway activities shown in gene expression and methylation data

a

b

Fig. 3 The heatmap of all the interesting pathway-sets obtained from (a) gene expression data and (b)
methylation data. a includes 116 pathway-sets in control and 380 in case while (b) includes 260 pathway-sets
in control and 290 in case, respectively
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whereas 36 pathway markers were found by GSEA. As pathway-set markers, we used

500 pathway-sets chosen in earlier stage. For classification with pathway-set markers,

we derived the activities of pathway-sets from pathway activity profiles in the similar

way to define pathway activities from gene expression profiles. Table 1 summarizes our

classification results averaged over 8 repetitions with three types of markers (genes,

pathways, pathway-sets) in Dataset 1. According to this table, overall, the pathway-set

markers were superior or very comparable to other markers (genes, pathways) regard-

less of classification method.

For uterine leiomyoma cancer dataset (Dataset 2), we identified 276 differentially

expressed genes (DEGs) from gene expression and 1370 differentially methylated genes

(DMGs) from methylation data using Limma with p-value <0.001, respectively. Among

them, we selected 28 common genes between 276 DEGs and 1370 DMGs as gene

markers. For pathway and pathway-set markers, we used the 48 pathways and 496

pathway-sets identified earlier, respectively. Table 2 shows our classification results in

Dataset 2, which reveals that all the markers are comparable in classification

performance.

In addition, we performed paired t-test to support the claim that the difference in

classification accuracies between biomarkers is significant, as in Table 3. From this

table, it is found that pathway-set markers are significantly superior to gene markers in

Dataset 1 for all 4 classification methods, while showing no significant difference from

gene markers in Dataset 2 except kNN. Also, there was no significant difference be-

tween pathway-set and pathway markers except in kNN. That is, pathway-set markers

are superior or comparable to other biomarkers (genes, pathways) in classification

performance.

Distinctive features of pathway activity networks in case and control samples

To have better understanding of the identified pathway-set markers, we constructed

the pathway activity network (PAN) (See the Method section for details). Based on our

pathway-sets, two different PANs were generated that demonstrate differential pathway

Table 1 Comparison of classification performance with three types of markers in the breast cancer
dataset

Classifiers Markers Sensitivity Specificity Accuracy

kNN genes 93.6 (2.06) 82.56 (3.29) 88.08 (1.94)

pathways 92.44 (1.08) 89.53 (1.76) 90.99 (1.2)

pathway-sets 97.09 (2.06) 90.7 (1.24) 93.9 (1.03)

RF genes 87.21 (1.76) 87.79 (1.08) 87.5 (0.82)

pathways 93.31 (2.62) 92.73 (1.49) 93.02 (1.08)

pathway-sets 93.31 (2.62) 92.73 (1.49) 93.31 (1.03)

SVM genes 86.63 (1.08) 86.63 (2.41) 86.63 (1.52)

pathways 93.9 (1.73) 91.28 (1.08) 92.59 (1.23)

pathway-sets 91.57 (3.27) 92.44 (1.08) 92.01 (1.91)

Naïve Bayes genes 86.63 (1.08) 86.63 (2.41) 86.63 (1.52)

pathways 93.9 (1.73) 91.28 (1.08) 92.59 (1.23)

pathway-sets 91.57 (3.27) 92.44 (1.08) 92.01 (1.91)
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associations appeared in case and control samples, respectively. By doing so, we could

easily capture the distinctive features of pathway activities and their associations shown

in class samples. In the PAN, the thickness of an edge is proportional to the relative

frequency of pathway associations shown in pathway-set markers of class samples. The

size of a node is proportional to the relative significance of corresponding pathway in

the sense of how much distinguishable its activity level is between case and control

samples. Thus, as pathway is more significant, its node size would be larger. Also, the

color of a node indicates the activity type of its corresponding pathway in terms of ex-

pression changes, i.e., the node is displayed in red when its corresponding pathway is

up-regulated under the class condition (case/control) or in blue when it is down-

regulated.

For Dataset 1, we obtained the two PANs shown in case and control samples, as in

Fig. 5. They clearly revealed distinctive features of pathway activities each in case and

control classes. In particular, Fig. 5(a) and (b) show the distinguishable signature of

pathway associations existing only in case PAN and only in control PAN, respectively.

For example, in Fig. 5(a), it is seen that pathway 4 (spliceosome) has significant associa-

tions with many other pathways (including pathways 14, 16, 17, 20, 21, 22, 23, 27, 30,

and etc.), indicating that these associations are observed only in case samples while not

in control samples as in Fig. 5(b). In particular, it is interesting that even if pathway 4

(spliceosome) itself is relatively not that significant in pathway-level analysis, our

pathway-set analysis could newly discover the significance of pathway 4 in the

Table 2 Comparison of classification performance with three types of markers in the uterine
leiomyoma cancer dataset

Classifiers Markers Sensitivity Specificity Accuracy

kNN genes 93.75 92.97 (2.21) 93.36 (1.1)

pathways 92.97 (2.21) 93.75 93.36 (1.1)

pathway-sets 93.75 93.75 93.75

RF genes 90.62 (3.34) 93.75 93.36 (1.1)

pathways 92.97 (2.21) 92.97 (2.21) 92.19 (1.45)

pathway-sets 93.75 92.97 (2.21) 93.36 (1.1)

SVM genes 93.75 92.19 (2.89) 92.97 (1.45)

pathways 92.97 (2.21) 93.75 93.75

pathway-sets 93.75 93.75 93.75

Naïve Bayes genes 93.75 92.19 (2.89) 92.97 (1.45)

pathways 93.75 93.75 93.75

pathway-sets 93.75 93.75 93.75

Table 3 Statistical significance (p-values) of the difference in classification accuracies between
biomarkers in Dataset 1 and Dataset 2

Dataset 1 Dataset 2

pathway-set vs gene pathway-set vs pathway pathway-set vs gene pathway-set vs pathway

kNN 3.316504e-05 0.0005898392 0.01994213 NaN

RF 1.241385e-06 0.3506167 0.1035517 NaN

SVM 5.368579e-05 0.4699636 NaN NaN

Naïve Bayes 5.368579e-05 0.4699636 NaN NaN
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associations with many other pathways. Thus, such distinctive features of pathway asso-

ciations shown in case samples may be possibly good disease signature itself or vital

clues to the disease signature. To verify the biological significance of pathway associa-

tions shown over the PAN, we searched for literatures and found some interesting evi-

dences that pathway 4 (spliceosome) is related to the cause of breast cancer [29].

Moreover, pathway 30 (transcriptional regulation of white adipocyte differentiation)

that is significantly associated with pathway 4 over the PAN is known to have relevance

to breast cancer [30, 31].

For Dataset 2, we obtained the PANs shown in case and control samples of gene ex-

pression data, which are given in Fig. 6. Also, the PANs shown in case and control sam-

ples of methylation data are given in Fig. 7. In Fig. 6, we can see that pathway 9

(CXCR4 pathway) is significantly associated with pathway 21 (insulin receptor recyc-

ling) only in case samples. Whereas, in Fig. 7, it is observed that pathway 35 (double

strand break repair) has some interesting associations with pathway 6 (P53 signaling

pathway) and pathway 48 (intrinsic pathway for apoptosis) only in case samples.

Fig. 5 Differential patterns of PANs in case (left) and control (right) classes from Dataset 1

Fig. 6 PANs differentially shown in case (left) and control (right) class obtained from mRNA expression in
Dataset 2
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Conclusions
In this study, we have focused on identifying interesting pathway-sets that indicate

the distinctive features of the activities of significant pathways and their associa-

tions shown in case and control samples. These pathway-sets were found by con-

sidering sets of significant pathways frequently activated together over class

samples. For this purpose, we utilized an association rule mining approach that

employs the BiMax biclustering method to detect pathway associations with discre-

tized pathway activity profiles. Even if the BiMax method is relatively faster and

more time-efficient than traditional approaches like Apriori algorithm that often

create too many rules and is time-consuming, it still has the practical problem

such that the number of clusters tends to increase drastically as the number of in-

put features (i.e., the number of significant pathways) increases, leading to the rad-

ical increase of corresponding pathway-sets. To handle this situation, we prioritized

the identified pathway-sets using rule interestingness measures and selected top-n

most significant pathway-sets. The chosen pathway-sets performed superior or very

comparable to other biomarkers in disease classification. Moreover, by constructing

pathway activity network from the identified pathway-sets, we could gain deeper

insights into pathway associations differentiating between case and control samples.

However, since our experiments were conducted with only one disease and one

kind of control types, the results we obtained in this study may have some limita-

tion. To strengthen the prominence of our approach, it will be necessary to per-

form additional experiments with wide selection of data, including multiple cancer

and tissue types. Although our work may not cover all aspects of biomarker identi-

fication issues, the methodology used in this study could be still applicable to dis-

cover interesting biomarkers for other diseases, as well as to underpin the

biological mechanisms of target diseases. As future works, we plan to perform

pathway association studies with multiple cancer types. We also plan to work on

identifying disease-specific markers using normal samples of multiple tissue types

in near future.

Fig. 7 PANs differentially shown in case (left) and control (right) classes obtained from DNA methylation in
Dataset 2
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Methods
Data preparation

In the gene expression (or methylation) data, when there are multiple probes corre-

sponding to gene, we used their averaged expression values as an expression value of

the gene. Also, such genes that the variances of their expression values are lower than a

certain threshold were excluded from the data, and zero-mean normalization was ap-

plied to adjust different scales of genes into a common scale. We used MSigDB C2 cu-

rated data to define candidate pathways and found significant (active) pathways among

the candidates by performing GSEA with gene expression or methylation data, in which

two different methods (i.e., SNR and t-test) were used to find differentially expressed

genes. From two GSEA results obtained by SNR and t-test, respectively, common path-

ways were considered as significant pathways.

In case of the uterine leiomyoma cancer datasets (Dataset 2), since it contains gene

expression profiles and DNA methylation data, significant pathways were finally chosen

by taking the union of significant pathways found from gene expression data and from

DNA methylation data, respectively.

Finding pathway-set markers by pathway association analysis

For pathway association analysis, we first obtained pathway activity profiles from

gene expression (or methylation) data by adapting the method used in [23] and

discretized them by assigning either −1 (lowly expressed, down-regulated) or +1

(highly expressed, up-regulated) to each value of pathway activity. Then, these dis-

cretized pathway activity data of +1’s and -1’s were converted into the binarized

data of 0’s and 1’s for biclustering analysis. Specifically, for each n-dimensional

pathway activity vector of +1’s and/or -1’s, we produced a 2n-dimensional binary

vector of 1’s and 0’s by assigning first n bits to the binarization of up-regulated

data (or hyper-methylation data) and other n bits to the binarization of down-

regulated data (or hypo-methylation data), as in Fig. 8. Next, with the binarized

pathway activity data, we performed the BiMax biclustering analysis to generate

such clusters that each cluster should contain at least 2 pathways and as many

samples as satisfying a minimum support threshold. Here the minimum support

specifies the minimum size of samples included in each cluster. For example, if

minimum support is 25%, it means that each cluster should have at least 25% of

class samples or more. As a minimum support threshold increases, the number of

generated clusters would decrease while they would have higher support.

Once all clusters were found for case and control samples, respectively, we examined

each of them to generate association rules. Prior to rule generation, we calculated the

confidence and the lift of each cluster for evaluation, and eventually produced the

Fig. 8 An example of 2n-bit binarized pathway activity vector produced from n-bit discretized pathway
activity vector
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association rules only for the clusters that satisfy the thresholds of confidence ≥0.8 and

lift >1. If a certain cluster were found in the both classes, two association rules are con-

sidered; one for the case and the other for the control. Out of these two rules, the less-

significant rules are eliminated. Then, from all the produced association rules, we

extracted interesting pathway-sets. Figure 9 illustrates an example of interesting

pathway-sets in the rule form of {pathway-set}⇒ {class}, where the constituent path-

ways in a pathway-set are expressed as being up-regulated (↑) or down-regulated (↓).

Disease classification with pathway-set markers

From the pathway-set markers, we obtained pathway-set activity profiles by applying

the method adapted from Lee et al. [23] to pathway activity profiles, and used them for

classification. That is, the activity of pathway-set was defined by combining the activ-

ities of pathways in such a way to have the most discriminative power in the pathway-

set. To calculate discriminant power, we used a statistical test Limma that performs

well regardless of sample size and data distribution.

For classification with pathway-set markers, we employed four classification methods,

including k-nearest neighbor (KNN), support vector machine (SVM), random forest

(RF), and naïve Bayesian classifiers. This task is to predict a target class (control or

case) of a given sample from the distinctive signature shown in identified pathway-set

markers. For performance evaluation, we used 4-fold cross-validation with 8 repetitions

in which each repetition is for random selection in data partitioning, and compared the

averaged classification results over 8 repetitions in terms of sensitivity, specificity, and

accuracy. We also conducted paired t-test between the accuracies of biomarkers (genes,

gene-sets, and pathway-sets) and examined if the difference between classification ac-

curacies is statistically significant.

Construction of pathway activity network from pathway-set markers

For better understanding of the identified pathway-set markers, we constructed

pathway activity network (PAN) in which the nodes represent significant (active)

pathways, the edges represent the associations between active pathways. The thick-

ness of an edge represents the relative frequency of pathway associations shown in

the identified pathway-set markers. Also, the size of a node represents the relative

significance of pathway that is defined as –log2 (p-value) when p-value is a

Fig. 9 Example of interesting pathway-sets in the rule form for each class, in which an upward pointing
arrow (or downward pointing arrow) indicates up-regulation (or down-regulation) of each pathway
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statistical significance of the difference in its activity level between case and control

classes. The size of a node represents the relative significance of corresponding

pathway in the sense of how much distinguishable its activity level is between case

and control samples. The PAN can be drawn separately for each class (case or

control), which shows distinctive features of pathway activities and their associa-

tions in case or control samples.

Additional files

Additional file 1: (a). Significant pathways in Dataset 1. (b). Top 10 interesting pathway-sets obtained from
Dataset 1. (PDF 199 kb)

Additional file 2: Significant pathways in Dataset 2 and 3. (PDF 103 kb)

Abbreviations
BiMax: Binary inclusion-maximal biclustering algorithm; GSEA: Gene set enrichment analysis; MSigDB: The molecular
signatures database

Acknowledgements
We would like to appreciate anonymous reviewers for their valuable comments on the manuscript.

Funding
This research was supported by Kyungpook National University Research Fund, 2016.

Availability of data and materials
The breast cancer dataset used in this article is available in the Gene Expression Omnibus (GEO), accession number
GSE15852 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15852).
The uterine leiomyoma dataset used in this article is available in the Gene Expession Omnibus (GEO), accession
number GSE31699 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31699).
Molecular Signatures DB (MSigDB) C2 curated data were used for pathway information (www.broadinstitute.org/msigdb).
Significant pathways were identified by using Gene Set Enrichment Analysis (GSEA) (www.broadinstitute.org/gsea).

Authors’ contributions
HL carried out the studies, performed the analysis, and wrote/reviewed the manuscript; MS participated in the design
of the study and wrote/reviewed the manuscript. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Bio-Intelligence & Data Mining Laboratory, Graduate School of Electronics Engineering, Kyungpook National
University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. 2School of Electronics Engineering, Kyungpook
National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.

Received: 3 May 2016 Accepted: 26 January 2017

References
1. Li S, Wu X, Hu X. Gene selection using genetic algorithm and support vectors machines. Soft Comput. 2008;12(7):

693–8.
2. Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y. Robust biomarker identification for cancer diagnosis with

ensemble feature selection methods. Bioinformatics. 2010;26(3):392–8.
3. He Z, Yu W. Stable feature selection for biomarker discovery. Comput Biol Chem. 2010;34(4):215–25.
4. Mordelet F, Vert JP. Prodige: prioritization of disease genes with multitask machine learning from positive and

unlabeled examples. BMC Bioinf. 2011;12(1):389.
5. Glaab E, Bacardit J, Garibaldi JM, Krasnogor N. Using rule-based machine learning for candidate disease gene

prioritization and sample classification of cancer gene expression data. PLoS One. 2012;7(7):e39932.
6. Holzinger ER, Dudek SM, Frase AT, Krauss RM, Medina MW, Ritchie MD. ATHENA: a tool for meta-dimensional

analysis applied to genotypes and gene expression data to predict HDL cholesterol levels. Pac Symp Biocomput.
2013;385–96.

Lee and Shin BioData Mining  (2017) 10:3 Page 12 of 13

dx.doi.org/10.1186/s13040-017-0127-7
dx.doi.org/10.1186/s13040-017-0127-7
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15852
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31699
http://www.broadinstitute.org/msigdb
http://www.broadinstitute.org/gsea


7. Wang X. Identification of marker genes for cancer based on microarrays using a computational biology approach.
Curr Bioinforma. 2014;9(2):140–6.

8. Jong VL, Novianti PW, Roes KC, Eijkemans MJ. Selecting a classification function for class prediction with gene
expression data. Bioinformatics. 2016. doi:10.1093/bioinformatics/btw034.

9. Taylor IW, et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat
Biotechnol. 2009;27(2):199–204.

10. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-
phenotype interactions. Nat Rev Genet. 2015;16(2):85–97.

11. Xin J, Ren X, Chen L, Wang Y. Identifying network biomarkers based on protein-protein interactions and
expression data. BMC Med Genet. 2015;8(2):S11.

12. Caspi R, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/
genome databases. Nucleic Acids Res. 2012;40(D1):D742–53.

13. Tarca AL, Bhatti G, Romero R. A comparison of gene set analysis methods in terms of sensitivity, prioritization and
specificity. PLoS One. 2013;8(11):e79217.

14. Sreekumar J, Jose KK. Statistical tests for identification of differentially expressed genes in cDNA microarray
experiments. Indian J Biotechnol. 2008;7(4):423–36.

15. Wang X, Simon R. Microarray-based cancer prediction using single genes. BMC Bioinf. 2011;12(1):391.
16. Bandyopadhyay S, Mallik S, Mukhopadhyay A. A survey and comparative study of statistical tests for identifying

differential expression from microarray data. IEEE/ACM Trans Comput Biol Bioinform. 2014;11(1):95–115.
17. Maulik U, Mallik S, Mukhopadhyay A, Bandyopadhyay S. Analyzing large gene expression and methylation data

profiles using StatBicRM: statistical biclustering-based rule mining. PLoS One. 2015;10(4):e0119448.
18. Giugno R, Pulvirenti A, Cascione L, Pigola G, Ferro A. MIDClass: microarray data classification by association rules

and gene expression intervals. PLoS One. 2013;8(8):e69873.
19. Emmert-Streib F, Glazko GV. Pathway analysis of expression data: deciphering functional building blocks of

complex diseases. PLoS Comput Biol. 2011;7(5):e1002053.
20. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS

Comput Biol. 2012;8(2):e1002375.
21. Gu Z, Liu J, Cao K, Zhang J, Wang J. Centrality-based pathway enrichment: a systematic approach for finding

significant pathways dominated by key genes. BMC Syst Biol. 2012;6(56):1–13.
22. Kim S, Kon M, DeLisi C. Pathway-based classification of cancer subtypes. Biol Direct. 2012;7(1):21.
23. Lee E, Chuang HY, Kim JW, Ideker T, Lee D. Inferring pathway activity toward precise disease classification. PLoS

Comput Biol. 2008;4(11):e1000217.
24. Khunlertgit N, Yoon BJ. Identification of robust pathway markers for cancer through rank-based pathway activity

inference. Adv Bioinforma. 2013;2013:618461.
25. Liu Y, Hu Z. Identification of collaborative driver pathways in breast cancer. BMC Genomics. 2014;15(1):605.
26. Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide

expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.
27. Ni IBP, et al. Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian

context. Pathol Res Pract. 2010;206(4):223–8.
28. Navarro A, Yin P, Monsivais D, Lin SM, Du P, Wei JJ, Bulun SE. Genome-wide DNA methylation indicates silencing

of tumor suppressor genes in uterine leiomyoma. PLoS One. 2012;7(3):e33284.
29. Hsu TYT, et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 2015;525(7569):384–8.
30. Bertolini F, Petit JY, Kolonin MG. Stem cells from adipose tissue and breast cancer: hype, risks and hope. Br J

Cancer. 2015;112(3):419–23.
31. Schweizer R, Tsuji W, Gorantla VS, Marra KG, Rubin JP, Plock JA. The role of adipose-derived stem cells in breast

cancer progression and metastasis. Stem Cells Int. 2015;2015:120949.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Lee and Shin BioData Mining  (2017) 10:3 Page 13 of 13

http://dx.doi.org/10.1093/bioinformatics/btw034

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Identification of pathway-set markers in breast tumors and paired normal tissues
	Identification of pathway-set markers in uterine leiomyoma and matched myometrial tissues
	Evaluation of pathway-set markers with disease classification
	Distinctive features of pathway activity networks in case and control samples

	Conclusions
	Methods
	Data preparation
	Finding pathway-set markers by pathway association analysis
	Disease classification with pathway-set markers
	Construction of pathway activity network from pathway-set markers

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

