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Abstract

Background: BioBin is a bioinformatics software package developed to automate
the process of binning rare variants into groups for statistical association analysis
using a biological knowledge-driven framework. BioBin collapses variants into
biological features such as genes, pathways, evolutionary conserved regions (ECRs),
protein families, regulatory regions, and others based on user-designated parameters.
BioBin provides the infrastructure to create complex and interesting hypotheses in
an automated fashion thereby circumventing the necessity for advanced and time
consuming scripting.

Purpose of the study: In this manuscript, we describe the software package for
BioBin, along with type I error and power simulations to demonstrate the strengths
and various customizable features and analysis options of this variant binning tool.

Results: Simulation testing highlights the utility of BioBin as a fast, comprehensive
and expandable tool for the biologically-inspired binning and analysis of low-frequency
variants in sequence data.

Conclusions and potential implications: The BioBin software package has the
capability to transform and streamline the analysis pipelines for researchers analyzing
rare variants. This automated bioinformatics tool minimizes the manual effort of
creating genomic regions for binning such that time can be spent on the much more
interesting task of statistical analyses. This software package is open source and freely
available from http://ritchielab.com/software/biobin-download
Background
Recent advances in sequencing technology and drastic decreases in cost have facilitated

the generation of a prolific amount of sequence data. This has presented an opportun-

ity for the investigation of low frequency and rare sequence variants beyond traditional

genome-wide association (GWA) based approaches. Rare variants have recently been

implicated in multifactorial conditions ranging from neurodegenerative diseases like

Alzheimer’s and Parkinson’s disease, to metabolic disorders, such as obesity, and vari-

ous cancers, including both prostate and lung cancer [1–6]. Elucidating the influence

of rare variants on common diseases may expand our understanding of the heritability

of complex traits, and it may eventually provide information that is useful to clinical

patient care through the implementation of personalized, preventive practices.
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Even with increased data availability, progress toward understanding rare genomic

variation and its association to common human disease lags behind technological sequen-

cing advances. Scientists are hindered in exploiting these advances because strategies for

analyzing these data are underdeveloped. The growing disparity in rapidly advancing data

collection versus slowly developing data analysis methods mandates a more concerted

research effort to develop the necessary analytical tools for successful interpretation of

genetic and biological data. Tools designed specifically for rare and low-frequency variant

analysis require special considerations as these variants are individually uncommon, and

often statistically underpowered for detecting phenotypic association [7, 8]. Also, the large

sample size requirements may be prohibitive [9]. To increase the composite allele

frequency and analyze smaller sample sizes, collapsing or binning methods are commonly

utilized. Collapsing methods aggregate variants into a single genetic variable, which can

then be used for subsequent statistical analysis, thereby reducing the number of degrees

of freedom and also improving power in the analysis.

Many previous strategies developed for rare variants have focused on the statistical

analysis of a pre-defined region rather than how to best group variants in an informative

manner. Agnostic or un-informed binning approaches can often lead to a decrease in

power when there are variants with different directions of effect or too many neutral

variants that mitigate the signal. The most successful collapsing method groups variants

likely to have an impact on the function of a specific gene or genomic unit and compares

the variant distribution or composite genetic score distribution across the trait of interest.

BioBin [10–12] is a novel bioinformatics tool developed for the multi-level binning of

rare variants using a biological knowledge-driven framework. BioBin collapses variants

into user-designated biological features such as genes, pathways, evolutionary con-

served regions (ECRs), protein families, regulatory regions, and others. Further, BioBin

provides the infrastructure to create complex and interesting hypotheses in an auto-

mated fashion thereby circumventing the necessity for advanced and time consuming

scripting. Simulation testing highlights the utility of BioBin as a fast, comprehensive

and expandable tool for the biological binning and analysis of low-frequency variants in

sequence data. While multiple biological applications of BioBin have previously been

described [10–13], the manuscript herein concentrates on the software features, specifi-

cations and various analysis options within the BioBin package. We focus on presenting

a comprehensive description of the capabilities of BioBin to provide a resource for

users to tailor binning analyses to their specific hypotheses. Additionally, we demon-

strate the utility of this software through type I error and power simulations. The

BioBin software package has the capability to transform and streamline analysis

pipelines for researchers analyzing rare variants in DNA sequencing data. This

automated bioinformatics tool minimizes the manual task of curating biologically-

relevant regions for binning, such that efforts can instead be spent on subsequent

statistical analyses. This software package is open source and freely available from

http://ritchielab.com/software/biobin-download.

Implementation
BioBin is a unified command line bioinformatics tool for the biologically-inspired

binning of rare variants. The novelty of BioBin is the automated multi-level binning

process, rather than a focus on a particular statistical test. BioBin frees users from the

http://ritchielab.com/software/biobin-download
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tedious task of manually curating biologically important regions from multiple sources

by using information from publicly available resources. The role of BioBin in a typical

rare variant analysis pipeline is illustrated in Fig. 1. BioBin accepts VCF files and utilizes

an internal binning algorithm in conjunction with biological information from an

internal repository known as LOKI (described in a subsequent section). The algorithm

will bin sequence variation in user-selected biologically-defined boundaries. The user

then has the freedom to choose a specific statistical test for association.
BioBin resource requirements

BioBin is a stand-alone command line application written in C++ that relies on a locally

built Library of Knowledge Integration (LOKI) database to create knowledge-based

bins. Source distributions are available for Mac and Linux operating systems and

require minimal prerequisites to compile. The BioBin distribution includes tools that

allow the user to create and update the LOKI database by downloading information

directly from source websites. BioBin is open-source and publicly available for down-

load on the Ritchie lab website (https://ritchielab.com/software/biobin-download).

To evaluate the computational requirements of BioBin, we randomly selected a

number of variants and a number of individuals from the 1000 Genomes Project Phase

I low coverage data [14] and applied a BioBin gene binning analysis to the resulting

dataset. Because the minor allele frequency dramatically impacts the selection of

variants to be binned, we set parameters to include all variants, regardless of rarity, to

produce consistent results. Over 10 replicates, Fig. 2 shows that bin generation is highly

correlated to the number of loci (or genomic positions) in the study and both the

number of loci and bin generation drive the memory requirements. The number of
Fig. 1 Rare variant analysis pipeline. General rare variant analysis pipeline starting with raw sequence data
and ending with association analysis results. BioBin accepts VCF files and is able to bin variation in
biologically informed boundaries using an internal biological knowledge biorepository, LOKI. BioBin’s output
easily facilitates use of various statistical tests

https://ritchielab.com/software/biobin-download


Fig. 2 BioBin resource requirements. BioBin resource requirements for varying numbers of study variants
and sample sizes. The number of variants is the primary driver of needed resources, with the number of
variants increasing the runtime due to the size of the input file
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individuals in a study does not have a large impact on resource requirements, but does

increase the size of the input VCF file and thus the time it takes BioBin to read the

input VCF file. Even with large datasets, BioBin can be run relatively quickly without

access to specialized computer hardware or a computing cluster; however, the number

of low frequency variants to be binned is the primary driver of memory usage. Running

a gene-based analysis of targeted exome capture of 82 pharmacogenes for 8194 samples

[15], BioBin took approximately 10 min and 150 MB of RAM using a single core of an

Intel Xeon E5-2670 processor. Using linear extrapolation based on the size of the tar-

get, we expect that a gene-based whole exome analysis of a similarly sized population

would take approximately 6 h and 6GB of memory.
BioBin software features

Library of Knowledge Integration (LOKI)

BioBin relies on the Library of Knowledge Integration (LOKI), which integrates

multiple databases providing a comprehensive biological knowledge platform for

variant binning [16]. LOKI is a database that contains biological information from

resources including the National Center for Biotechnology (NCBI) dbSNP and gene

Entrez [17], Kyoto Encyclopedia of Genes and Genomes (KEGG) [18], Reactome [19],

Gene Ontology (GO) [20], Protein families database (Pfam) [21], NetPath- signal trans-

duction pathways [22], and others. Figure 3 provides a complete list of databases within

LOKI. LOKI provides a standardized interface and terminology to disparate sources,

each containing individual means of representing data [16, 23]. The four main concepts

used in LOKI are position, region, group, and source. Position refers to the chromosome

and base-pair position of single variants, such as single nucleotide variants (SNVs). A

region represents any genomic segment with a start and stop position including genes,

copy number variants (CNVs), insertions or deletions, and evolutionary conserved



Fig. 3 LOKI. BioBin collapses variants into biological features by consulting LOKI, an internal biorepository
that integrates multiple resources from the public domain. All databases within LOKI are listed below their
corresponding feature category. Databases annotated with an asterisks (*) represent sources that will be
present in the version 3 release of LOKI
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regions (ECRs). Sources are the external databases compiled in LOKI that contain

groups of interconnected information, thus organizing the data in a standardized

manner. For example, BioGrid ID:468346 defines a group from the BioGrid data source

which contains the following regions: HMGB1P1, CTCFL, and PRMT7.

LOKI is implemented in SQLite, a relational database management system, which

does not require a dedicated database server. A system initially building LOKI should

have approximately 100GB of disk storage available for the LOKI database file, the

LOKI source data, and space for python installer scripts. An updater script will

automatically process and combine information from the various sources into a single

database file (some of the temporary files are removed during this process). Once the

build is complete, the LOKI database file required to run BioBin will be under 25GB.

The script to build LOKI is open source, publicly available on the Ritchie lab website,

and is included with the BioBin software. Users with knowledge of relational databases

can customize their LOKI database by including or excluding sources, providing

additional sources, and updating source information as frequently as needed [16].

Multi-level binning and filtering

The novelty of BioBin is its ability to automate bin generation at multiple levels of

biological knowledge into one streamlined analysis. Figure 4 provides example binning

strategies using biological information in LOKI. Using hierarchical biological relation-

ships and optional functional or role information, BioBin can create many variant

combinations to bin. As a standard in the current iteration of LOKI, NCBI dbSNP and

NCBI Entrez Gene have been selected as the primary sources of position and regional

information due to the data quality, reliability, and clearly defined database schema.

These sources also most closely correspond to the region and group IDs provided by

other database sources integrated into LOKI.

In addition to binning variants based on knowledge, BioBin also provides an option

to bin variants that do not associate with any available knowledge. These are known as

inter-region bins, or if generated between gene features, intergenic bins. After feature

selection using LOKI and/or external custom files, inter-region bins can be created



Fig. 4 Binning strategies in BioBin. Alternate binning strategies using biological knowledge (gene
information) and functional or role annotations (variant information). Three example binning strategies are
shown: gene burden analysis, pathway burden analysis, and functional pathway burden analysis. Note the
intergenic bins that collects variants fall outside of the binning strategy
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using a configurable width parameter (in kb). These bins catch variants that do not fit

into biologically defined feature types (see intergenic bin labels in Fig. 4). For example,

if one were testing low frequency burden differences between two groups across genes,

all variants in genes would be collapsed into respective gene bins, and variants outside

of gene boundaries would be binned based on genomic location in intergenic regions.

Locus selection and models

The framework of a BioBin analysis is to determine biological features upon which data

will be binned, such as genes, pathways or intergenic regions, and execute bin gener-

ation using LOKI. For locus binning, BioBin follows an allele frequency threshold

approach using the non-major allele frequency (NMAF). NMAF is defined as 1 minus

the frequency of the most common allele, and at biallelic markers, NMAF and minor

allele frequency (MAF) are interchangeable. BioBin allows variants below a user-

specified NMAF in the case or the control group to be binned, thereby facilitating the

aggregation of both potential risk and protective variants. In order to alleviate increased

Type I error, BioBin also gives an option to use the minimum of the NMAF in either

case or control group as the value to test against the given NMAF threshold [11].

BioBin provides multiple disease model options for determining individual contribu-

tion in a bin. This includes additive, dominant, or recessive encoding allowing the user

to test specific hypotheses using these inheritance patterns. The default option utilizes

additive encoding, where each allele adds to an individual bin score.

Customization

The power of BioBin becomes apparent in the flexibility provided to the user, which

makes the software applicable in a number of low frequency variant analysis pipelines.
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In addition to the predefined biologically-informed binning strategies, BioBin allows for

customized knowledge, adjustable multi-level feature types, filtering strategies and

individual variant weighting.

LOKI contains diverse knowledge from many databases, which together provide

variant details, region annotations, and group relationships. To accommodate a wide

variety of analyses, the user can choose to include or exclude any source in LOKI. Add-

itionally a user can expand on the predefined knowledge contained within this biorepo-

sitory as LOKI specification and code are open source allowing the addition of desired

database sources. For instance, users may specify additional knowledge through the use

of plain text files that can define regions, group or variant weights, and roles. Examples

of these input files are provided in the BioBin manual (https://ritchielab.com/software/

biobin-download). As part of the customization available, BioBin also accepts custom

role files, which contain single variant or region annotations. This file can be used to

exclude or specifically include variants based on the results returned from an annota-

tion tool such as Polyphen, SIFT, or SNPEff [24–26].

Variant weighting

To adjust statistical power in a rare variant analysis, BioBin provides the option of

weighting loci according to the weighted sum statistic proposed by Madsen and Brown-

ing [27], in which the weight of a variant is inversely proportional to its MAF. Multiple

weighting schemes are provided which use different populations to calculate these

locus weights. For instance, in control weighting, weighting is calculated based only on

the control population. This weighting represents an exact implementation of Madsen

and Browning weighting [27]. Because determining allele rarity solely on the control

population has been shown to potentially inflate type I error [28, 29], BioBin imple-

ments other weight models allowing the user a means by which to utilize variant

weighting while controlling this error. In the maximum model, the weight is the max-

imum calculated for the case and control populations, while the minimum model uses

the minimum weight in these populations. Overall weighting calculates the weight

using the entire overall population, regardless of case or control status. The overall

weighting scheme is nearly equivalent to the Madsen and Browning weighting imple-

mentation in SKAT [30, 31]. These methods will be equivalent in the circumstance

where there are no cases, or there is completely missing case or control population for

a given locus. Finally, BioBin can also incorporate custom weights based on the user’s

prior knowledge.
Simulations

Simulation testing was performed to evaluate type I error and power with the various

weighting schemes within BioBin (control only, maximum, minimum, overall, and no

weighting) using two standard statistical tests: logistic regression and the Wilcoxon

rank sum test. SeqSIMLA2 [32] a tool commonly used to simulate unrelated case con-

trol sequence data for various genetic analyses, was used to generate all sequence files,

which then served as input for BioBin in the present analyses. To generate a reference

sequence for SeqSIMLA2, the 1000 Genomes Project Phase I VCF file was parsed to

obtain allele frequencies for all gene regions in the autosomes specific to individuals of

European descent. A customized python script was then used to randomly select sites

https://ritchielab.com/software/biobin-download
https://ritchielab.com/software/biobin-download
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from this allele frequency file and generate a reference sequence in the format required

by SeqSIMLA2, a binary zip file with each row being a sequence and each column a

site. This custom script can be found in Additional file 1. For each SeqSIMLA2 dataset

simulation, a sequence file of 10,000 reference samples was created with the number of

generated markers varying in relation to the biologically-based bin size being tested

(specified under Type I Error Analysis and Power Analysis). SeqSIMLA2 was then run

with simulation parameters specific to the analysis being performed (see Table 1 for

parameters). The output plink files were converted to VCF, and a BioBin variant

binning analysis was performed with a MAF cutoff of 5 %. This was followed by statis-

tical analysis using logistic regression and the Wilcoxon rank sum test. Type I error

and power were evaluated for each weighting method.

Type I error analysis

Parameters for the type I error simulation analysis are listed in the left pane of Table 1.

Type I error was assessed by performing three different tests, each varying in the size

of the biological bin, as we attempted to simulate datasets that roughly correspond to

gene-level and pathway level analyses. The choice of size for gene-based simulations is

largely debated, and we decided to test three different bin sizes to accommodate

various binning analyses, and to explore the relationship between bin size and type I

error. These tests include a 25 kb gene-sized bin (referred to as average gene) com-

posed of 50 variants (standard deviation = 5), a large 100 kb gene-sized bin (referred to

as XL gene throughout this work) composed of 200 variants (standard deviation = 5),

and a pathway bin composed of 2–50 gene-sized bins, or 100–2500 variants (standard

deviation = 5). We chose 50 variants to represent an average sized gene bin by consult-

ing the autosomal variant site statistics reported by 1000 Genomes Project [14, 33] and

calculating a rough estimate for the number of possible variants expected in 25 kb, an

approximation for median gene size [34]. For each simulation, the specific number of

variants was randomly determined. For example, each pathway dataset simulation could
Table 1 Simulation parameters. Parameters for the type I error analysis and the power analysis
simulations performed using SeqSIMLA2

Testing parameter Type I error analysis Power analysis

Bin size assessed Gene-sized bin: 25 kb (50 ± 10 variants)
XL_Gene sized bin: 100 kb (200 ± 10 variants)

Gene-sized bin: 25 kb (50 ± 10 variants)

Pathway sized bin: 2–50 gene-sized bins
(100–2500 ± 10 variants)

Number of simulations 1000 1000

Sample size 500 cases, 500 controls 500 cases, 500 controls

Disease prevalence 5 % 5 %

Number of causal variants N/A 10

Odds ratio (OR) 1 1.25, 1.5,1.75, 2, 2.5, 3, 4, 5

Variant weighting No weighting No weighting

Control only weighting Control only weighting

Minimum weighting Minimum weighting

Maximum weighting Maximum weighting

Overall weighting Overall weighting

Statistical test Logistic regression Logistic regression

Wilcoxon Wilcoxon
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contain anywhere from 100 to 2500 variants. Type I error was estimated with 1000 null

dataset simulations for each bin size using an odds ratio (OR) of 1, and assessing

significance with an α of 0.05 for both regression and Wilcoxon.

Power analysis

To assess the statistical power of each weighting method, power analyses were

performed with 1000 simulations of an average sized 25 kb gene bin, containing 50

variants (standard deviation = 5), as described in the right pane of Table 1. For each

simulation, 10 causal variants or disease sites were randomly selected in the binned

locus. Eight independent simulation tests were performed for each weighting scheme in

which the OR of the causal variants was varied as 1.25, 1.5, 1.75, 2, 2.5, 3, 4, and 5.

Power was assessed for each of these OR analyses with logistic regression and

Wilcoxon using a significance criteria of 0.05.
Results and discussion
BioBin is an innovative variant collapsing method that provides a flexible infrastructure

for biologically informed variant binning adaptive to individual user needs. In this work,

we evaluated four weighting schemes provided within BioBin: control, minimum,

maximum and overall weighting, in addition to the no locus weighting option. These

weighting methods were examined using two standard burden tests: regression and the

Wilcoxon rank sum. While multiple studies have performed exhaustive comparisons of

statistical tests for rare variant analyses [35–37], the focus of BioBin is to build versatile

and biologically relevant bins rather than to implement a particular statistical analysis.

BioBin can provide the necessary files for a user to implement his or her statistical test

of choice; this provides the user with freedom to choose the statistical test that is most

appropriate for his/her hypothesis. We chose to specifically focus on regression and the

Wilcoxon rank sum test as these are very commonly used methods in rare variant

analyses [27, 38–41].
Type I error analysis

Results of the type I error analysis using logistic regression and Wilcoxon for bins of all

biological-based sizes are presented as quantile-quantile (QQ) plots in Figs. 5 and 6,

respectively. Both figures are comprehensive plots combining simulation p-value results

from the average gene, XL gene and pathway analyses. The simulation results indicate

that weighting using only the control population (CTRL_ONLY_weight) drastically

inflates the type I error in both tests examined. Similar to the observations made by

Lemire [28] and Pearson [29] in which allele rarity based solely on the control popula-

tion introduces a bias, we also observe that weight calculations using only this pheno-

typic class increase type I error. A variant selection bias is created since there is an

upper limit for the frequency of variants in the controls, but there is no bound for

variant frequencies in the case population. This error becomes even more inflated when

the size of the bin is increased from that of an average gene to a pathway, as evident in

the additional material, thus introducing a spurious correlation that can confound re-

sults. BioBin implements other weight models where frequency thresholds are estab-

lished using cases and controls, thereby imposing an upper frequency bound in both

phenotypic classes, providing the user a means by which to utilize variant weighting



Fig. 5 Logistic regression type I error analysis. A comprehensive quantile-quantile plot for the type I error
logistic regression analysis showing the combined p-value distribution from the average gene, XL gene,
and pathway simulations. The different colors are representative of the various weighting schemes in BioBin
that were analyzed
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while controlling type I error. Of the weighting models tested, minimum weighting

(MIN_weight) for the case and control populations presented the lowest type I error rate.

The weights calculated from the overall allele frequency (Overall_weight), which is a

common implementation of the Madsen and Browning test in current online tools, are

mostly well controlled. Maximum weighting (MAX_weight) had a greater type I error rate

than overall, minimum, and no weighting, but still a lower false positive rate when

compared with control only estimates, especially when the bin size was increased.
No correlation between significance and bin size (except with control weighting)

Table 2 displays the type I error results for the different weighting schemes and differ-

ent bin sizes. The majority of the weighting methods have a type I error controlled

around 5 %, with the exception of maximum weighting which is closer to 8–9 % and

control weighting which is dramatically higher. As seen in Figs. 5 and 6, control
Fig. 6 Wilcoxon type I error analysis. A comprehensive quantile-quantile plot for the type I error Wilcoxon
rank sum analysis showing the combined p-value distribution from the average gene, XL gene, and
pathway simulations. The different colors are representative of the various weighting schemes in BioBin
that were analyzed



Table 2 Type I error results. The Type I error simulation results displayed per BioBin weighting
scheme tested, biological bin size assessed, and statistical analysis test

Statistical
test

Bin size Weighting scheme

Control only weight Max weight Min weight No weight Overall weight

Logistic Gene 0.106 0.079 0.042 0.060 0.052

XL Gene 0.343 0.096 0.042 0.062 0.057

Pathway 0.847 0.090 0.040 0.066 0.059

Wilcoxon Gene 0.064 0.061 0.052 0.060 0.057

XL Gene 0.153 0.068 0.043 0.056 0.055

Pathway 0.795 0.085 0.045 0.072 0.056
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weighting yields a greatly inflated type I error, and further, Table 2 suggests that the

amount of error is highly correlated with the specific bin structure. Further evidence of

this can be seen in the supplemental section, where we show the QQ plots for each

specific biological structure independently. In order to assess the role that the bin size

plays in the false positive rate, we ran a logistic regression using the p-value of a

simulated bin as the outcome and number of loci in a bin as the predictor. We chose

logistic regression in this case because the outcome (p-value) is bounded between 0

and 1, but similar trends are seen using probit regression and ordinary least squares

regressions as well (data not shown). The results, shown in Table 3, clearly indicate that

for control weighting, an increase in the number of variants in a bin drastically

increases the chance of a false positive finding. All other variant weighting strategies

did not show any significant relationship between bin size and false positive rate. As

discussed above, this trend is explained by the bias imposed when weighting variants

using allele frequency thresholds calculated only from the control population, as no

upper bound is imposed for case variant frequencies. However, when we impose

bounds by weighting via the maximum, minimum or overall methods, we see a lower

type I error rate.
Power analysis

The power analysis simulation results are shown in Figs. 7 and 8 for the logistic regression

and Wilcoxon rank sum analysis, respectively. The most powerful BioBin weighting

method was using the control weighting (CTRL_ONLY_weight). However, this weighting

scheme has an inflated false positive rate, which is further magnified when the bin size is
Table 3 Correlation of bin size and significance. Using the control weighting, the larger bins result
in a higher chance of a false positive finding, showing a correlation between bin size and p-value.
All other weighting strategies have false positive rates independent of bin size

Logistic Wilcoxon

Beta (SE) p-value Beta (SE) p-value

Control −6.83e-3 (6.13e-4) 7.51e-29 −5.77e-3 (4.42e-4) 6.07e-39

Max 4.08e-5 (8.40e-5) 0.627 −4.75e-5 (8.39e-5) 0.572

Min 2.88e-5 (8.39e-5) 0.732 5.06e-5 (8.39e-5) 0.546

None −2.43e-5 (8.38e-5) 0.772 −3.15e-5 (8.38e-5) 0.707

Overall 3.64e-5 (8.38e-5) 0.664 2.05e-5 (8.38e-5) 0.806



Fig. 7 Logistic regression power analysis. Statistical power estimates for multiple weighting methods
assessed at varying odds ratios using logistic regression analysis. Results are based on 25 kb bins containing
50 (±10) variants with 10 of these representing causal variants. The different colors represent the various
weighting schemes in BioBin that were analyzed. Control only weighting is presented with a dashed line to
draw attention to the inflated type I error (presented in Fig. 6 and Additional files 2: Figure S1 and
Additional file 3: Figure S2) of this weighting method
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increased, as seen in Figs. 5 and 6 and Additional file 2: Figure S1. The most powerful Bio-

Bin weight with a more controlled type I error is the maximum weight, which has greater

power with a Wilcoxon test than with logistic regression (however, this strategy has the

second highest type I error rate around 8–9 %). To further evaluate sensitivity in the

context of bin size for the minimum, maximum and overall weighting methods, we

performed additional power analyses with 1000 simulations of a 100 kb sized gene bin,

containing 200 total variants (standard deviation = 5) with 10 of these being causal or

disease sites, and varying the OR of the causal variants from 1.25 to 5 (results not shown).

Power of the 100 kb (200 variant) gene bins was assessed using logistic regression with a

significance criteria of 0.05 and compared with that of the average 25 kb (50 variant) gene

bins. Results of this comparison show consistently decreased power in the larger gene bins

likely due to noise introduced by the addition of neutral variants, while maintaining the

same number of causal variants as in the 25 kb bins. While future work will aim at testing
Fig. 8 Wilcoxon power analysis. Statistical power estimates for multiple weighting methods assessed at
varying odds ratios using the Wilcoxon rank sum test. Results are based on 25 kb bins containing 50 (±10)
variants with 10 of these representing causal variants. The different colors represent the various weighting
schemes analyzed in BioBin. Control only weighting is presented with a dashed line to draw attention to
the inflated type I error (presented in Fig. 5 and Additional file 2: Figure S1) of this weighting method
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these observations by evaluating varied proportions of casual to neutral variants, early

indications implicate this ratio of variants as the primary driver in sensitivity for a

constant effect size (OR).

In the present simulations, the no loci weighting option in BioBin presents as statisti-

cally more powerful than both overall and minimum weighting. We believe this to be a

result of the specific simulation parameters chosen for this analysis, and would likely

be altered by the number of binned loci, the allele frequencies of the variants, the direc-

tion of the variant effect, and the sample size. Additional simulations were performed

in an attempt to demonstrate the influence of chosen parameters on our simulation

analyses. We performed comparable power analyses to those noted above, but

restricted the selection of variants to only those having a MAF below 5 %, thereby

causing all selected disease sites to be binned, and increased the number of casual

variants to 20 (standard deviation = 5). The results of this analysis show that simula-

tions without loci weighting had the lowest power across all tested ORs (1.25, 1.75, 2.5,

4 and 5) when compared with all other weighting methods. These results suggest that

weighting approaches may have a larger influence on power when the selected disease

sites are rare since different results were observed when disease sites with probabilities

inversely proportional to the MAF are chosen. Overall, the power results are heavily

influenced by simulation methodology, and future work will aim at performing a

thorough sweep of simulation parameters and weighting methods in BioBin.

Future work

We have performed a preliminary study on incorporating select burden and dispersion-

based statistical tests as well as multiple phenotype analysis capabilities into the frame-

work of BioBin [12]. Future work will include comprehensive testing of burden and

dispersion methods as well as dissemination of an updated BioBin software package,

BioBin 2.2.0, with these additional features.

Conclusions
Overall, BioBin is a powerful and versatile tool for the knowledge-guided biological

binning and analysis of low frequency variants in sequence data. BioBin uses a diverse

repository of data from a multitude of public sources, and thereby circumvents the

necessity of manually curating biologically important data for variant collapsing. BioBin

provides users with a flexible and customizable framework to analyze sequence data

and uncover novel associations with complex traits.

Additional files

Additional file 1: Script for generating reference sequence. Python script used to generate a reference
sequence file for input into SeqSIMLA2 simulation software. The allele frequency file used in the script was
obtained by parsing the protein coding regions of the autosomes in the 1000 Genomes Project VCF file.
Additional specifications include the number of reference samples to generate and the number of markers
to include in the reference file. (DOCX 14 kb)

Additional file 2: Figure S1. Logistic regression type I error per biological feature. QQ plots for the type I error
logistic regression analysis showing the p-value distribution from the average gene (a), XL gene (b), and pathway
(c) simulations. The different colors represent various BioBin weighting schemes analyzed. (PNG 170 kb)

Additional file 3: Figure S2. Wilcoxon type I error per biological feature. QQ plots for the type I error Wilcoxon
Rank Sum analysis showing the p-value distribution from the average gene (a), XL gene (b), and pathway (c)
simulations. The different colors represent various BioBin weighting schemes analyzed. (PNG 147 kb)
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