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Abstract

Background: Systems biology experiments generate large volumes of data of
multiple modalities and this information presents a challenge for integration due to
a mix of complexity together with rich semantics. Here, we describe how graph
databases provide a powerful framework for storage, querying and envisioning of
biological data.

Results: We show how graph databases are well suited for the representation of
biological information, which is typically highly connected, semi-structured and
unpredictable. We outline an application case that uses the Neo4j graph database for
building and querying a prototype network to provide biological context to asthma
related genes.

Conclusions: Our study suggests that graph databases provide a flexible solution for
the integration of multiple types of biological data and facilitate exploratory data
mining to support hypothesis generation.

Keywords: Disease management platform, Graph database, Neo4j graph,
Protein-centric framework, Systems medicine, Computational approach
Introduction
A major effort in translational medicine is to understand the molecular basis of disease

[1, 2]. Analysis of high-throughput experimental data together with patient phenotypic

information has led to the identification of sets of candidate genes, proteins and path-

ways that may be implicated in many disease conditions.

However, in order to build a higher level picture of the underlying processes involved

in the disease pathology, it is necessary to integrate various classes of heterogeneous

information, and to explore the complex relationships between entities such as dis-

eases, candidate genes, proteins, interactions and pathways. These relationships could

have a variety of different types, like participation (protein A participates in Pathway

X), sequence similarity (protein A is sequence similar to protein B) or protein inter-

action (protein A interacts with protein B), and typically, will be associated with some

provenance information. Generally, the relationships will describe complex networks.

Some genes or proteins, for example, may be associated with multiple diseases, while

others may be implicated in only one or two conditions. Additionally, some candidate

genes may encode large families of sequence-similar proteins, and may thus be
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involved in multiple protein-protein interactions. Identification of these wider relation-

ships between entities can help in providing biological context and in hypothesis gener-

ation on disease mechanisms. Traversing paths through the generated network can

suggest hitherto unexpected relationships between entities, (e.g. relationships between

disease conditions).

Biological information is typically highly connected, semi-structured and unpredict-

able, and these features are important in deciding an appropriate way to represent and

query disease-relevant biomedical networks. Representing multiple types of relation-

ships will generally lead to highly connected networks. Additionally, the amount of in-

formation associated with a given entity will not be uniform. Some proteins have been

extensively investigated experimentally, are well annotated and associated with multiple

complementary pieces of information. For example, a gene may be involved in a

protein-protein interaction with another protein, may be a drug target for a particular

drug, may be known to be enhanced in a particular tissue type or may participate in a

particular pathway. Other proteins can have little or no information associated with

them and are annotated only as ‘hypothetical proteins’. Therefore, such datasets do not

naturally fit into a classic relational database model which would have been originally

designed to handle application cases with a large number of uniform entries associated

with a limited number of data types and representing relatively few relationships in

each data model. Although highly connected and sparse networks can be stored in a re-

lational database, generally traversal-type queries (joins), which connect data linked by

different relationships, become too computationally expensive and cumbersome to de-

sign. Traversal type queries are important for hypothesis generation, as they can reveal

paths connecting entities that might not have been expected, and might not be appar-

ent from visual inspection of the network. Another issue is that biological data are

often semi-structured, i.e. lacking a structured data model, while still possessing some

semantic annotation. As relational databases require all data to be transformed to con-

form to a pre-defined schema, developing parsers for such semi-structured data can be

particularly problematic. Biological research is also unpredictable in that new types of

information can emerge with little advance notice – for example when new analytical

instruments or new data resources are released. In a relational database management

system, capturing these new data types often means re-design of a database schema,

which is generally a complex and costly process. However, in a research setting this in-

formation is often of great importance and can impact on our understanding of the

roles of genes and pathways in disease networks. A framework that facilitates the rapid

and seamless inclusion of new data types would therefore be particularly well-suited to

support the dynamic and ever-changing requirements of biomedical research commu-

nity. Graph databases are a natural way to represent highly connected, non-uniformly

distributed, semi-structured and unpredictable data as found in many biological sys-

tems studies [3, 4]. They also offer agile and flexible solutions and easily allow the in-

clusion of new data types.

Recently, there has been much interest in network representations of biological sys-

tems, particularly for network visualisation and network analytics. Several successful

frameworks have been established and used to support bioinformatics analysis includ-

ing, but not limited to, Cytoscape [5], Gephi [6] and NetworkX [7]. However, the tools

currently available are primarily for visualisation and analysis of network properties and
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do not offer an in-built support for semantics, graph querying or the ability to effect-

ively work with datasets that are too large to visualise. Graph databases can naturally

complement such tools and methods, by offering this much-needed extra functionality.

Several graph-based approaches have been developed for biological data integration

such as Biozon [8], BN++ [9], Ondex [10, 11], and BioMine [12]). Some approaches, al-

though providing network views, use an underlying relational database (e.g. BN++).

The Ondex platform is a data warehouse using a graph data model and has been ap-

plied to plant systems biology, a domain where the data is typically fragmented across a

large number of data sources and often poorly annotated. More recently, Bio4j [4] uses

a graph database (Neo4j) to integrate data from several major repositories such as

Uniprot KB [13], Gene Ontology (GO) [14], RefSeq [15], NCBI Taxonomy [16], and

Expasy Enzyme DB [17].

The need to move towards considering graphs as biological knowledge repositories is

particularly evident in the biomedical domain. Many important diseases have now been

extensively researched for decades and the amounts of knowledge accumulated are

both vast and heterogeneous. The large volume of interconnected data means that its

exploration using a network visualizer cannot be carried out easily and the heterogen-

eity of the data can make cost-effective management difficult in a relational database

system.

In this work, we have explored the potential of using a graph database to facilitate

data management and analysis in order to provide biological context to disease-related

genes and proteins. This application case used the well-established Neo4j graph data-

base for building and querying a prototype disease map for a complex disease, such as

asthma. Neo4j has a free community edition that can be run as a lightweight desktop

database as well as a database server, and an SQL-like versatile query language for

graphs called Cypher. The database comes with an immediately available easy-to-use

web interface that can display the results as both graphs and tables and also has inter-

faces to R, Python and Java - core languages of modern bioinformatics research.

We have integrated information from human protein-protein interactions, pathways,

sequence similarity, disease-gene, gene-tissue and protein-drug associations. The se-

lected examples are intended to illustrate how the Neo4j Cypher query language can be

used to perform complex queries on this integrated dataset. We also show how infor-

mation from gene expression studies can be easily added to the database and how the

database can provide biological context for these differentially expressed genes. The

main advantage of presented approach is in its ability to contextualise disease-

associated genes by facilitating the identification and visual exploration of their network

neighbourhood. In addition, as we have already explained, graph databases excel in

traversal-type queries, facilitating the exploration of chains of connected concepts. This

‘link discovery’ can lead to new hitherto unexpected relationships being identified.

Therefore, in our application case we have aimed to explore both of these data mining

strategies, namely discovering connections between different entities of biomedical

interest (queries in Listings 1, 2 and 5) and characterising the relevant context of dis-

eases and biomarkers (queries in Listings 3 and 4).

The knowledgebase we constructed is organised according to the following principles.

First, we integrated several typical multi-omics data (sequence similarity, transcripto-

mics metabolic pathways and protein-protein interactions), which provide a low-level
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perspective on the relationships between biological entities (genes, proteins and drugs).

Then we have added the more general information that relates these lower-level entities

to the higher-level processes – e.g. different diseases. The queries presented here are

intended to provide illustrative examples about how to leverage connections across

these two levels – for example, by discovering links in the multi-omics layer relevant to

understanding the differences between different related diseases or using that informa-

tion for suggesting drug targets.
Methods
A graph database offers several options for representation of data. Connections be-

tween entities (i.e. nodes) can be encoded directly as edges linking them together (e.g.

protein A interacts with protein B, where the edge between the nodes represents the

‘interacts with’ relationship). Additionally, properties can be associated with nodes (e.g.

protein A has annotation X, where ‘has annotation X’ is a property of the node repre-

senting protein A), and nodes that share a given property could be understood to be

linked. And lastly, nodes can be linked via edges to an intermediate node indicating a

common property (e.g. membership in the same pathway, for example node i repre-

senting protein A is connected to node j, representing pathway P by an edge that de-

scribes the relationship ‘participates in’). For this application case, the choice was

guided primarily by the concerns of efficiency in capturing the structure of the data.

For example, a property is an appropriate choice when annotation is simple, like a cat-

egory label. An edge can have properties of its own, so can capture situations where

the relationship is qualified, like a protein-protein interaction with given methods (e.g.

2-hybrid, anti tag co-immunoprecipitation) and associated with a confidence score.
Data sources imported

All data used in this application case were imported into the Neo4j v2.3.1 graph data-

base. The integration was done from a protein-centric perspective, where the nodes

corresponding to the individual entries in the human subset of UniProt/Swissprot

served as key anchoring points for all other types of annotation. As many of the data-

bases we used are continuously updated, the point of reference when all data were ac-

quired for this study is 27/03/2015. Sequence similarity was determined by running all

versus all Tera-BlastPTM for the UniProt Human reference proteome on the Timelogic

DeCypher system. The significance threshold was 1e − 05, with effective database size

adjusted to 16.9 bln bases. The results were further processed by retaining bi-

directional hits only and modelled in the graph database as sequence similarity edges.

The set of sequence similarity data was refined to exclude duplicates based on the

UniProt id pair: the similarity between protein1-protein2 and protein2-protein1 was

represented by a single, undirected edge. A score was assigned to each edge, calculated

as a negative log10 of the average of the two e-values; only hits for which the ratio be-

tween the alignment length and the shortest sequence was above 0.60 were included.

Protein-protein interaction data were imported from the EBI IntAct database [18]

(PSI-MI tab format). Each interaction edge was annotated with a list of experimental

methods supporting it, as well as a confidence score (as given by the IntAct database).

Data about human metabolic pathways were acquired from the Reactome database (see
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for example [19]). Individual pathways were modelled as nodes, with edges linking

them to proteins to indicate pathway membership. Data about protein association with

particular diseases were modelled in a similar way. The diseases, as defined by the cu-

rated subset of DisGeNET [20] (2014 release), were likewise represented as nodes with

edges connecting them to corresponding proteins; (mapping gene names to UniProt

identifiers was done via the Restful web services API of the UniProt database). Data on

approved drug compounds were downloaded from DrugBank [21] on 27/03/2015 as

DrugBank csv files. Where such information was available, those compounds were

linked to proteins they target via UniProt identifier references. Data on gene

expression-tissue enhanced association have been downloaded from the Human Protein

Atlas (HPA), (version 13), [22], and integrated in the database. The tissue types were

represented by nodes in the graph database and the enhanced expression in particular

tissue types were modelled as edges, with RNA-TS-FPKM values as property. Informa-

tion on ENSEMBL ids, (used for gene identification within HPA), was mapped to Uni-

Prot ids using the ‘Retrieve/ID mapping’ tool from the UniProt database, and noted as

a property of the Protein node.

We have included a set of high-confidence manually curated genes believed to be im-

plicated in one of the respiratory diseases as identified by Kaneko et al. [23]. The review

categorized genes into four partially overlapping subsets of Bronchial Asthma (BA),

Chronic Obstructive Pulmonary Disease (COPD), Essential hypertension (E-HTN) and

Tuberculosis (TB). TB and E-HTN are included in the list as controls [23]. The gene

names given in the paper were manually resolved to the UniProt identifiers and

imported as a list attribute of corresponding annotations. This resulted in 219 genes

(104 BA, 58 COPD, 35 TB, 54 E-HTN); detailed information on these gene sets is given

in Additional file 1: Table S4. This type of information, gathered typically from domain

experts or from careful study of the literature, is important in disease network con-

struction as it serves as a starting point to explore pathways and processes that may be

associated with the disease phenotype.

New experimental data may have significant impact on hypothesis generation on dis-

ease mechanisms. High-throughput transcriptomic experiments are a common original

source of such new information, and are routinely used to identify lists of new potential

candidate genes of biomedical interest. To evaluate the suitability of graph databases

for management and integrative analysis of these data types we have included several

such studies from the GEO database. We have extracted gene expression data from

three asthma-related GEO studies, namely GSE27876, GSE43696 [24] and GSE63142

[25]. Specifically, the GSE27876 series includes 5 normal control (NC), 5 mild asthma

(MiA) and 5 severe asthma (SA) samples, the GSE43696 series: 20 NC, 50 mild-

moderate asthma (MMA) and 38 SA samples, and the GSE63142 series: 27 NC, 72

MMA and 56 SA samples. Gene expression data analysis was conducted on the

GPL6480 platform [Agilent-014850 Whole Human Genome Microarray 4x44K G4112F

(Probe Name version)], within all these series. The identification of the differentially

expressed genes (DEGs) between asthma subtype/control cohorts was carried out using

the limma Bioconductor package [26]. The gene name (given by ENSEMBL identifier)

was mapped to the UniProt identifier, (again, via the ‘Retrieve/ID mapping’ tool from

the UniProt database), with the UniProt identifier represented as a node in the graph

database and the related ENSEMBL information as node property. Figure 1 illustrates



Fig. 1 The data model for inclusion of results from gene expression studies. The Protein nodes, (blue), are
associated to the GEO Comparison nodes (grey) by the DEG RELATED TO edges, (red); relationships between
GEO Comparison and GEO Study nodes (green) are represented by the PART OF edges, (green). The key for
i) the Protein node is given by the UniProt identifier, ii) the GEO Study node by its name and iii) the GEO
Comparison node by the GSM samples that are compared. Information on adjusted p-values of the differentially
expressed genes is stored as a property for the DEG RELATED TO edges. This simplified illustration includes only
10 differentially expressed proteins for the GSE43696 study [24], with similar representation for other studies.
NC: normal control; MMA: mild-moderate asthma; SA: severe asthma
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how a node represents a GEO Study (e.g. GSE43696), which is connected to the 3 com-

parisons that are ‘part of ’ the study. A ‘GEO Comparison’ node is related to the GSM

samples (from the GSE series) and describes which sample groups are compared

(e.g. normal control and mild-moderate asthma, NC - MMA). The Protein node is

linked to the GEO Comparison node by the ‘DEG RELATED TO’ edge, (with the

adjusted p-value of the DEG analysis). In this paper, the UniProt identifier gives

the label of the Protein node, but other information (e.g. gene name) can be

chosen from the Neo4j interface to be displayed as the label as well. Information

on the ENTREZ gene name and the protein name, specific to the Protein nodes

shown in Fig. 1, is given in Additional file 2: Table S5a.

Figure 2 illustrates the structure of the graph database and Table 1 gives details of

the data imported into the database in terms of nodes and edge types. Information to

add was checked with already stored data before each adding step in order to avoid du-

plicates. Thus, the UniProt identifier, (i.e. the key of the Protein node), can be uniquely

retrieved in the graph database. Similarly, names of diseases, pathways, tissues, GEO

studies, (i.e. the keys for the Disease, Pathway, Tissue, GEO Study nodes, respectively),

were checked for duplicates. The microarray data in the figure is also resolved to



Fig. 2 The Data Model: Schematic representation of biological information on proteins, pathways, tissues,
disease and drugs, and the names of the GEO data sources, (GEO Study id, GSM sample type comparison),
represented by nodes in the graph database. Relationships between these entities are shown by edges and
refer to associations between: a) protein-tissue, (TISSUEENHANCED); b) protein-pathway (IN PATHWAY);
c) protein-disease (BIOMARKER, GENETIC VARIATION, THERAPEUTIC, KANEKO ASSOCIATION); d) protein-drug
(DRUG TARGET, DRUG ENZYME, DRUG CARRIER, DRUG TRANSPORTER), e) protein-protein (PPI ASSOCIATION,
PPI COLOCALIZATION, PPI GENETIC INTERACTION, SEQ SIM); f) protein-GEO Comparison (DEG RELATED TO)
and g) GEO Comparison-GEO Study (PART OF)
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protein ids, so this information will be captured if available. E.g. some probe sets will

profile alternative splice variants and will therefore map to different protein ids. Rela-

tionships between entities, (i.e. edges), were also checked for duplicates based on keys

given by pairs of the involved entities; for example, the key of the Biomarker relation-

ship between the Protein and Disease nodes is given by the pair composed from the

UniProt identifier and disease name. Only when modelling associations between DEG

and GEO comparison/study, the key was taken as a triplet composed from the UniProt

identifier, the GEO Comparison name and the GEO Study identifier, given that the

GEO comparison names are not unique among all GEO studies integrated in this data-

base. Detailed information on node and edge occurrences is given in Table 1.
Data modelling strategy

Unlike the relational database, where tables and relationships are heavily influenced by

technical constraints formalized as “normalization rules”, graph databases offer much

more flexibility and are more closely guided by the needs of the intended application.

For this application case we have chosen the entities that correspond to either logical

or real entities of biomedical interest. From the multi-omics perspective, the two phys-

ical entities central to our application case are proteins and drugs. These can be mem-

bers of multiple thematic sets – e.g. the proteins can be grouped by disease

involvement, tissue and metabolic pathway and drugs can be linked to particular dis-

eases. To allow us to explore the potentially complex inter-relationships between these

sets, they are also represented as nodes and therefore can be referenced directly as part

of the query pattern. The edges are used to indicate both i) the membership of an



Table 1 Overall occurrences and types of nodes and relationships included in the graph database

(a) Occurrences of node types

Node type Occurrences

Protein 20762

Disease 4745

Pathway 1288

Tissue 32

Drug 1602

GEO Comparison_test 9

GEO Study 3

(b) Types and occurrences of relationships

Node type Edge type Node type Occurrences

Protein BIOMARKER Disease 17216

Protein THERAPEUTIC Disease 1209

Protein GENETIC_VARIATION Disease 2612

Protein KANEKO_ASSOCIATED Disease 251

Protein IN_PATHWAY Pathway 26085

Protein PPI_ASSOCIATION Protein 66678

Protein PPI_COLOCALIZATION Protein 1162

Protein PPI_GENETIC_INTERACTION Protein 43

Protein SEQ_SIM Protein 92089

Protein TISSUE_ENHANCED Tissue 4434

Protein DRUG_TARGET Drug 6429

Protein DRUG_ENZYME Drug 3204

Protein DRUG_TRANSPORTER Drug 1529

Protein DRUG_CARRIER Drug 222

GEO Comparison_test PART_OF GEO Study 9

Protein DEG_RELATED_TO GEO Comparison_test 87849
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entity in a particular set (e.g. protein participates in a pathway) and ii) existence

of relationships between individual entities (e.g. protein interacts with other

protein).

The level of the detail was chosen in accordance with the need of our intended

application case. For example, in theory it may be valid to model an interaction

as a concept rather than an edge and then link it to specific tissues to indicate

whether it can occur there. However, by doing so an extra node and two edges

will be introduced into the graph, which will increase the computational com-

plexity of querying the database and make query construction more challenging

for the user. In this case, due to the applied nature of the work presented here,

it was therefore more appropriate to opt for a more generalized representation.

However, we recognize that often it may be necessary to develop detailed repre-

sentations in order to capture provenance and in the case of broad-content ra-

ther than thematically focused resources. To demonstrate how such a scenario

can be accommodated in Neo4j, we have modelled transcriptomics component of

our dataset in a way that captures all information about its provenance
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(GEOStudy node), experimental design (GEOStudy to GEOComparison relation-

ship) and the analysis used (GEOComparison node) to process the data.
Results
Here we illustrate the use of a graph database for facilitating hypothesis gener-

ation on disease mechanisms. We describe four queries related to asthma, a com-

plex respiratory disease whose symptoms include airway inflammation and

remodelling. Asthma is associated with multiple phenotypes and co-morbidities

and has similarities to other respiratory diseases such as COPD. A significant

number of asthma patients do not respond to conventional corticosteroid therapy,

suggesting a complex underlying aetiology of this disease at both physiological

and molecular levels.
Identification of common proteins between Asthma and COPD, TB and E-HTN

We first show a simple query that returns proteins, (given by UniProt identifiers),

which are common to asthma and other respiratory diseases, (COPD, Tubercu-

losis (TB), and essential hypertension (E-HTN) respectively) using information

from two sources, a review by Kaneko et al. (2013) [23] and, separately the

DisGeNET database [20]. The Cypher queries are shown in Listings 1 and

Listings 2, the visual schematic of the query pattern is shown on Fig. 3 and the

results are shown in alphabetic order based on the second disease name in

Table 2. Some details of the Cypher query are briefly explained in Additional file

3. We see more genes in common for asthma and COPD than for asthma and

the other two respiratory diseases as expected, although differences are dependent

on the data source used for comparison. While there is a degree of commonality

among results from these resources, inclusion of multiple data sources can

provide complementary information. Information on genes related to a simple

disease only, as reported in [23], is provided in Additional file 4.
Fig. 3 A visual schematic representation of graph patterns matched by queries in listing 1 (a panel) and
2 (b panel)



Table 2 Common protein set between Asthma and COPD, TB and EHTN, respectively, based on
data from Kaneko et al. 2013 review [23] and the DisGeNET database [20]

Alter disease Uniprot id set (Kaneko) Uniprot id set (Disgenet)

Hypertension, Essential [P29474, P04040, P12821, P07550, P30711] [P35228]

Pulmonary Dis- Ease, Chronic Obstructive [P01375, O00206, P01137, P35225, P01584,
P29474, Q9BZ11, P07550, P12821, P09211,
Q96QV1, P09488, P16410, P05305]

[P35228, P09601, P01137,
P14780, P01375]

Tuberculosis, Pulmonary [P01579, P01920, P01911, P01584, P22301,
P29460, P05112, P13501, P11473, P01375,
O60603, Q9NR96]

[P13500]
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Listing 1: Cypher query to identify proteins common to asthma and other respiratory

diseases using Kaneko et al. (2013) data [23]
Listing 2: Cypher query to identify proteins common to asthma and other respiratory

diseases using DisGeNET data only [18]
Providing biological context: comparison of the network neighbourhoods of differentially

expressed genes from two asthma studies

Queries can easily be performed to select differentially expressed genes and relate them

to the rest of the network. This example compares the network neighbourhoods of two

sets of differentially expressed genes (DEGs) between Normal Control (NC) and Severe

Asthma (SA) from two studies, GSE43696 [24] and GSE63142 [25]. In this example we

have restricted the network neighbourhood to include only links from the DEGs com-

mon to these two studies, to Reactome signalling pathways [19] and to respiratory dis-

eases. The Cypher query is shown in Listing 3, the corresponding pattern – in Fig. 4

and part of the resulting network is shown in Fig. 5. Similarly to Fig. 1, details on the

ENTREZ gene name and the protein name of the Protein nodes (Fig. 5) are included in

Additional file 2: Table S5b.

Listing 3: Cypher query to identify DEGs that map to asthma and other respiratory

diseases as well as to signalling pathways.
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Retrieval of drug associations with asthma-related proteins and other sequence similar

proteins

We have queried for a set of drugs from DrugBank DB that target proteins of similar

sequence to known asthma biomarkers (associated to asthma disease through the Bio-

marker relationship in DisGeNET). The query, pattern and part of the relevant network

are shown in Listing 4, Figs. 6 and 7, respectively. The query can be easily extended to

include other disease-protein relationship types, (e.g. Therapeutic), other disease types,

(e.g. COPD), and filters for output, (e.g. for sequence similarity better than a threshold

value).

Listing 4: Cypher query to identify drugs associated with proteins that have sequence

similarity with asthma biomarkers.

Results obtained can be used to infer new associations between drugs and asthma

biomarkers. For example, although no direct association has been reported for the

P08727 protein (asthma biomarker) and Tenecteplase (drug), an indirect relationship

can be identified between these two entities given that the P05787 protein (KRT8 gene)

has sequence similarity with the P08727 protein, which was reported as a target for

Tenecteplase, (Fig. 7). Exploring such indirect relationships can be of interest in drug

development research. The ENTREZ gene name and the protein name for Fig. 7 are

provided in Additional file 2: Table S5c.
Fig. 4 A visual schematic representation of graph pattern matched by query in listing 3



Fig. 5 Disease – Protein-Signalling pathways associations: Common set of normal control - severe asthma
DEGs for GSE43696 [24] and GSE63142 [25] series and their associations with respiratory diseases and signalling
pathways. Node colour: protein, blue; GEO Comparison, grey; pathway, violet; disease, yellow. Edges:
GEO comparison - GEO study relationship, grey; protein-pathway association, violet; DEG association,
red; biomarker, green
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Graph traversal queries for exploring relationships between concepts

Studies suggest that asthma patients may experience exacerbations early in the morning

(see for example [27]). Independently, considerable research efforts have been directed to-

wards identification of genes involved in mediating circadian rhythms (’clock’ genes). Explor-

ation of the relationships between circadian system disruption and lung disease

development, (including asthma), may identify new potential targets (e.g. proteins, path-

ways) for disease treatment and may give better insights in drug administration [27, 28].

The following example identifies all shortest paths in the graph between asthma disease and

a subset of core clock components (protein-coding genes that generate and regulate circa-

dian rhythms), where the corresponding UniProt identifiers were resolved using the “Re-

trieve/ID mapping” UniProt tool (Table 3). Results are shown in Fig. 8, based on the Cypher

query in Listings 5, with the ENTREZ gene names and the protein names given in Add-

itional file 2: Table S5d. This example illustrates how simple graph traversal queries have

the potential to assist in hypothesis generation by exploring relationships between concepts.

Listing 5: Cypher query to explore shortest paths (in terms of graph representation)

between core clock genes and asthma.

Shortest pathways (Fig. 8) between the Asthma node and the core clock genes

(Table 3) node include: a) Asthma – Q9UIL8 – P67870 – Q99743; b) Asthma –



Fig. 6 A visual schematic representation of graph pattern matched by query in listing 4
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P84022 – Q99814 – O00327; c) Asthma – P01374 – Q92956 – O15055; d) Asthma –

[P09211, P01375, P13569] – [Q12933, P28799] – Q16526. The O15516 protein

(encoded by the CLOCK gene) is linked through Sequence Similarity and PPI relation-

ships by Q99743 (NPAS2) and O00327 (ARNTL/BMAL1), respectively, and the protein

Q49AN0 (CRY2) has sequence similarity with Q16526 (CRY1). Interestingly, the

O15534 protein, encoded by PER1, also a core clock gene, (Table 3), does not lie within

3 steps of Asthma and is not an immediate neighbour of any of the other core clock

components in Table 3, that are within 3 steps of Asthma, (Fig. 8). We further queried

for the shortest paths between O15534 (PER1) and the rest of the core clock gene sub-

set (Table 3), using only association types related to protein-protein relationships, such

as sequence similarity and PPI; the Cypher query is given in Listings 6a, in Additional

file 5. The resultant network indicates that, in terms of topological distance, PER1 is

closer to PER2, CRY1 and CRY2 than to CLOCK, ARNTL/BMAL1 and NPAS2 (refer to

Fig. 9a).

Durrington et al. [27] suggest the possibility of the disruption of clock genes affecting

airway inflammation through a possible link of clock proteins to the immune response

involving REV-ErbA-alpha. The graph network can be queried for P20393 (REV-ErbA-

alpha) which does not appear on the shortest paths network in Fig. 8, but lies 3 steps
Fig. 7 Drugs that target proteins, which have sequence similarity to asthma biomarkers. No information on
direct target interaction between these drugs and biomarkers is given in the database a priori. Nodes
colours: protein, blue; disease, yellow; drug, red. Edges: drug-target associations, red; sequence similarity
relationships, grey; biomarker, green



Table 3 Gene symbols and corresponding UniProt identifiers, (resolved via the “Retrieve/ID
mapping” tool), for the core circadian components

Gene symbol UniProt identifier

CLOCK O15516

ARNTL/BMAL1 O00327

CRY1 Q16526

CRY2 Q49AN0

NPAS2 Q99743

PER1 O15534

PER2 O15055
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from O00327(ARNTL/BMAL1) and Q99743(NPAS2), (Cypher query given in Listings

6b, in Additional file 5 and output results in Fig. 9b).

Discussion and conclusions
High volume datasets are being routinely generated in systems biomedicine. An on-

going concern for the interpretation of these data is that biological information has a

challenging mix of complexity and rich semantics. Modelling of data in graph database

ideally are guided by the same principles as those used for ontology design. In a way,

the ontology may play the same role as a schema plays in a relational database by defin-

ing a valid set of relationships and/or properties that can exist for particular entities or

their combinations. However, for this application case we have elected not to explore

this topic in great detail in order to keep focus firmly on the applied aspects of man-

aging biomedical data using the Neo4j database and to present it at a level accessible to

a more general audience. For completeness, we would like to point out that from the

ontology-centric data modelling perspective a Neo4j graph can be thought of as a
Fig. 8 Shortest paths (of length < 4) between core clock components (red squares) and asthma-related proteins in
the network. Node colour: disease, yellow; protein, blue. Edges: KANEKO association, blue; PPI association,
red; sequence similarity relationship, grey



Fig. 9 Shortest path queries to explore relationships between a) the O15534 protein (PER1 gene) and b)
the P20393 protein (REV-ErbA-alpha gene) and the circadian core genes, (Table 3). a In terms of distance in
graph, the O15534 protein (PER1 gene) (red square), transcriptional repressor, is closer to O15055 (PER2),
Q16526 (CRY1) and Q49AN0 (CRY2), (transcriptional repressors), than to O15516 (CLOCK), O00327 (ARNTL/
BMAL1) and Q99743 (NPAS2), (transcriptional activators). The circadian core genes are shown by black
squares. b The P20393 protein (REV-ErbA-alpha gene) (red square), suggested to be involved in the
disruption of clock genes [27], can be seen 3 steps away from the O00327(ARNTL/BMAL1) and
Q99743(NPAS2) core clock genes (black squares). Node colour: protein, blue. Edges: PPI association,
red; sequence similarity relationship, grey
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collection of instances of data, where node “Labels” are equivalent to classes, and types

of edges – to relationship types. Another important consideration in choosing how to

represent the data is the performance constraints. [Note: We would encourage devel-

opers to look at the Neo4j features relating to Cartesian product warning and to query

flow diagnosis, using the EXPLAIN and PROFILE features provided.] In this respect, as

we were specifically interested in exploring the applications of the link discovery type

of queries in a biomedical setting, it was necessary to ensure both the compactness of

paths and adequate annotation necessary to ensure that the traversal space can be com-

puted, e.g. it does not produce an all-versus-all set of entities as part of computing the

solution (a “Cartesian product”).

In traditional relational databases approaches, the technical structure often gets in

the way of exploratory data analysis either by visualisation or through data mining tech-

niques. Graph databases (explored here with Neo4j) offer a powerful but lightweight,

intuitive and flexible solution that is more readily compatible with a biological network
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view, a representation that is now near-ubiquitously employed for modelling complex

biological data. This study shows how a combination of a powerful query language (to

narrow down the search space) with network visualisation can help data exploration

and hypothesis generation. The use of graph database approaches has some similarities

with previous systems for logic-based modelling of integrated datasets [29, 30].

As we have illustrated in this work, graph databases offer many features that make

them a particularly attractive option for a research-based setting, in particular in cases

where it might be necessary to dynamically develop and interactively mine heteroge-

neous and not uniformly inter-related data. However, we would like to stress that in

our opinion graph databases are best thought of as a complement to relational database

technologies. There will clearly be cases where a relational database solution will be

preferable, especially when data are dense and naturally fit the tabular representation

where relational databases would offer much better processing performance.

Another important consideration is the place of Neo4j in a wider family of NoSQL

and especially graph databases. The concept of graph databases is still relatively novel

and therefore currently there are multiple alternative systems under active develop-

ment. However, one standard – Resource Description Framework (RDF) and its enab-

ling technologies (triple stores and SPARQL query language) have gained particular

prominence due to their importance for Semantic Web and Internet-powered federated

data solutions. For this reason we would like to further elaborate on the differences be-

tween these two standards and specifically the roles they could potentially play in man-

agement of large biomedical datasets.

Neo4j database belongs to the family of “Property graph” databases, which in contrast

to RDF have conceptually distinct property elements that can be attached to both

nodes and edges. In some respects, this syntax may be more familiar to users of object-

oriented languages, as in contrast to RDF, there is neither a global uniqueness con-

straint nor specifically required format for node identifiers. In combination, these fea-

tures make graph query syntax more compact and easier to read. Given that the Neo4j

database is inherently a “closed world” solution, it is possible to collect the entirety of

meta-data about the types and number of different entities and relationships between

them, which can then inform further exploration. As SPARQL and RDF are primarily

designed to operate in an “open world” setting of the Semantic Web, creating such

summaries may not always be possible or can be very computationally intensive.

However, we would like to acknowledge that the RDF formalism does have its un-

disputed advantages in facilitating integration and exchange of distributed data and

issues like lack of properties on edges can be addressed by leveraging more advanced

features like reification or named graphs. In our view, the matter of preferences

between the properties databases like Neo4j or RDF triple stores comes down to

whether a particular application case can actually benefit from the extra features

available via Semantic Web technologies. As adopting such technologies will inevitably

come with considerable costs in terms of technical overhead and increased complexity,

property databases may be preferable when speedy and flexible development of a single

non-federated resource is the ultimate requirement.

The lack of schema in Neo4j may also be somewhat of a double-edge sword: although

it does offer much flexibility, it also removes the interoperability standard from the

data, which may make sharing and management of large distributed projects datasets
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more challenging. One possible solution to this would be to re-introduce some consist-

ent semantics by binding critical attribute names and/or values of nodes and edges to a

consensus controlled vocabulary. In a biomedical domain, this controlled vocabulary

will likely come in the form of a suitable ontology. The ontologies could then provide a

de-facto data modelling standard and many key concepts in the biomedical domain

have already been modelled by projects like SNOMED [31], MeSH [32], GO [33] and

OBI [34], with several hundred of other more specialized ontologies available from the

OBO foundry [35] and NCBO Bioportal [36] repositories. Although at present the

availability of advanced ontology-based features, like reasoning and data validation, var-

ies in different graph databases, some notable solutions do offer examples of very close

integration - e.g. the already-mentioned graph databases based on the resource descrip-

tion framework (RDF) [37].

We have explored here the utility of a graph database in providing a powerful yet

flexible solution for disease network representations and for exploratory data mining

and analysis to support hypothesis generation on disease mechanisms. Our study sug-

gests that the Neo4j system offers a level of performance and an appropriate query and

visualisation interface to effectively mine and manipulate these data. In particular, we

have found the Cypher graph query language to be of great utility, because, as illus-

trated by our sample queries, it enabled us to generate a representative selection of

common biologically-motivated queries with minimal efforts. As systems medicine pro-

jects continue to generate large amounts of heterogeneous datasets, graph database ap-

proaches may offer useful solutions for their knowledge management.
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