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Abstract
Background: Real Time Cell Analysis (RTCA) technology is used to monitor cellular
changes continuously over the entire exposure period. Combining with different
testing concentrations, the profiles have potential in probing the mode of action
(MOA) of the testing substances.

Results: In this paper, we present machine learning approaches for MOA assessment.
Computational tools based on artificial neural network (ANN) and support vector
machine (SVM) are developed to analyze the time-concentration response curves
(TCRCs) of human cell lines responding to tested chemicals. The techniques are capable
of learning data from given TCRCs with knownMOA information and thenmaking MOA
classification for the unknown toxicity. A novel data processing step based on wavelet
transform is introduced to extract important features from the original TCRC data. From
the dose response curves, time interval leading to higher classification success rate can
be selected as input to enhance the performance of the machine learning algorithm.
This is particularly helpful when handling cases with limited and imbalanced data. The
validation of the proposed method is demonstrated by the supervised learning
algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11
concentrations in each test case. Classification success rate in the range of 85 to 95 % are
obtained using SVM for MOA classification with two clusters to cases up to four clusters.

Conclusions: Wavelet transform is capable of capturing important features of TCRCs
for MOA classification. The proposed SVM scheme incorporated with wavelet transform
has a great potential for large scale MOA classification and high-through output
chemical screening.

Keywords: Time-concentrations response curve, Mode of action, Wavelet transform,
Dose response curve, Machine learning, Support vector machine, Artificial neural
network

Background
In recent years, considerable progress has been reported in the study of toxicity profiling
using in vitro assays [1]. It is important to develop fast and effective methods capable of
analyzing large amount of in vitro data set [2, 3]. By comparing the response profiles of
chemicals with known mode of actions (MOAs), we are able to infer the MOA of tested
chemicals [4, 5]. One such in vitro assay utilizes the real-time cell analysis system (RTCA)

© 2016 Zhang et al.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-016-0098-0-x&domain=pdf
mailto: yhuang@ucalgary.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Zhang et al. BioDataMining  (2016) 9:19 Page 2 of 21

[6–8]. The RTCA system integrates the micro-electrode on the bottom of the wells, such
that the electronic impedance data reflect adherent cells status including cell number,
cell morphology and adhesion strength. The impedance data at different time points are
measured and converted to the cell index (CI) data for further analysis [9, 10]. The system
allows multi-concentration assays, such that the Time Concentration Response Curves
(TCRCs) can be generated and recorded. The TCRC profiles provide useful information
to study the cell-chemical interaction mechanism.
A few analysis methods have been developed to extract useful information from the

TCRCs. For example, LC50 reflects the chemical concentration that leading to killing 50 %
of tested cells [11], KC50 uses an exponential model to calculate the LC50 value [11–13],
AUC50 represents the area under the normalized TCRCs, which can be employed to eval-
uate the toxicity [14]. Based on these indices, further classification or pattern recognition
can be investigated. However, these indices only provide partial information of TCRCs
and some significant features may not be uncovered. All these indices have the primary
goal of detecting toxicity potency of the testing chemicals. The application into MOA
classification is indirect, and not tested [15, 16].
MOA describes a cellular level functional change, which is a result of exposure of a

living organism to a chemical. According to a pre-set criterion, the chemicals can be clas-
sified into different MOA clusters [17]. The machine learning approach has already been
utilized in life science research including toxicity classifications [18, 19], analyzing high
throughput screening data [20], and drug design [21]. Cheng et al. [22] investigated the
toxicity pattern recognition for diverse industrial chemicals with substructure. Vanneschi
et al. [23] compares different machine learning algorithms in classifying patients by using
breast cancer dataset. Recently, Beck et al. [24] investigate the machine learning by ran-
dom forests and logistic regression classifiers in bacterial vaginosis (BV) classification,
Lareau et al. [25] apply machine learning to analyze functional effectors in microar-
ray data, Lu et al. [26] compares four supervised learning methods in modeling the
differentiation of CD4+ T cell.
In this study, we focus onMOA classification for the 63 chemical compounds screening

data provided by the Alberta Centre for Toxicology. The list of the chemicals and their
ten-cluster MOA classification are given in Additional file 1. The same chemicals were
investigated by Pan et al. [13, 14] and Xi et al. [27] for toxicity assessment. Instead of using
end-point results, the goal of this study is to develop a new machine learning methodol-
ogy utilizing the entire TCRCs data recorded for the 63 chemical compounds to perform
MOA clustering analysis. The results were validated with the known MOA classification.
It should be noted that it is not trivial to uncover the MOA correlation from the TCRC

profiles. In Fig. 1, we display the TCRC profiles of six compounds in cluster 1: DNA/RNA-
Nucleic Acid Targets, and the corresponding TCRCs are quite different. However, com-
pounds with different clusters may have similar profiles as illustrated in Fig. 2 showing
TCRCs from four different clusters resemble with each other. When the concentration is
small, the TCRC profile is very close to the negative control curve. Therefore, to present a
better illustration, only the six highest concentrations and the negative control are plotted
in Figs. 1 and 2.
The main contributions presented in this work are twofold. First, a novel computational

tool is developed based on machine learning for toxicity assessment which was validated
for the effectiveness using the TCRCs of 63 chemicals with known MOAs as input. The
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Fig. 1 TCRCs from Cluster 1: DNA/RNA-Nucleic acid target. The detail of chemicals in (a)-(f) are provided in
the Additional file 1

machine learning methods are based on the artificial neural network (ANN) and support
vector machine (SVM) with supervised learning algorithm. Second, wavelet transform
is implemented to resolve the difficulty due to taking a large data set from the entire
TCRCs. Therefore, instead of directly using the TCRCs as input data to themachine learn-
ing algorithms, the wavelet coefficients are selected as input. The application of wavelet
preprocessing step not only significantly reduces in the input data, but extracts useful

Fig. 2 TCRCs from four different clusters. The detail of chemicals in (a)-(f) are provided in the Additional file 1



Zhang et al. BioDataMining  (2016) 9:19 Page 4 of 21

information and features of the original TCRCs. Consequently, success rate in clustering
analysis is improved.
The remainder of this paper is organized as follows. The materials and data preprocess-

ing of the present study is first previewed. The next section focuses on the methods based
onmachine learning approach using ANN and SVM, and the application of wavelet trans-
form is discussed. To validate the developed computational tools, we present binary and
multi-cluster classifications applied to the 63 compounds in the fourth section. The effec-
tiveness of SVM is demonstrated by the excellent agreement resulted from the known
clustering based on MOA applied to the tested chemical compounds. The use of DRCs
is proposed, and the advantage of utilizing DRCs to enhance the performance of the
machine learning algorithm for limited data set is reported. Finally, conclusion remark is
presented.

Materials and data preprocessing
Cell line

Human hepato carcinoma cells line-HepG2 (ATCC, cat. no. HB-8065) were grown and
tested in EMEM basal media supplemented with 10 % fetal bovine serum. All growth and
assay were conducted in 37 ◦C tissue culture hood with 95 % humidity and 5 % CO2.

Chemicals

All testing chemicals were at least 95 % purity. They were obtained through commercial
sources including Sigma-Aldrich, Cayman Chemicals, Tocris, and Santa cruz biotech-
nologies. Three solvents were used for powder solubilization: water, DMSO or ethanol.
The solvent providing highest solubility when diluted in assay media were used for stock
solution preparation. Stock solution were aliquoted for single usage and stored at –20 ◦C.
The highest testing concentration is at most 1/500th of the stock concentration, so that
solvent (DMSO or ethanol) concentration are no more than 0.2 %. Each chemical were
tested with 11 concentrations, with 1:3 serial dilution.

RTCA HT assay

The xCELLigence RTCA HT system developed at ACEA Biosciences Inc. runs four 384x
well E-Plates on four independent HT Stations. The continuous cell monitoring enabled
both transient and long term effects being recorded. The system was integrated with the
Biomek FXp System and the Cytomat hotels for fully automated liquid handling and plate
shuffles. The HepG2 cells were seeded into the E-plate 384, and monitored once an hour
in the first 24 h for initial attachment and growth. 11 concentrations of each chemical
were applied into the wells by using automatic pipetting. The cellular responses were
continuously monitored for at least 72 h.

Data preprocessing

The RTCA technology monitors the impedance signal generated by cells covering elec-
trodes. The impedance signal R is converted to a parameter Cell Index (CI) with the
following formulation [28, 29]:

CI = max
k=1,··· ,K

[
Rcell( fk)
Rb( fk)

− 1
]
, (1)
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where Rcell
(
fk

)
and Rb

(
fk

)
are the electrode impedance with and without cell in the well,

and k is the discrete time points.
To focus on cellular response to testing chemicals, CI differences from seeding and

growth variation were minimized by using Normalized Cell Index (NCI), which is
given by

NCI[ k]= CI[ k]
CI[ 0]

, k = 1, 2, · · · ,K . (2)

Here, k refers to different time points after testing chemical addition, and k=0 refers to
the time point right before treatment.
Because not much information can be extracted from the TCRCs before adding the

compounds, we focus on the NCI data after chemical treatment. Moreover, for the irreg-
ular data set, the time grids for different compounds are not uniform. We apply a cubic
spline to interpolate the non-uniform data into uniform grids, where the time interval is
one hour for the interpolated data set. The uniform data set enables the use of wavelet
transform, which is critical in data reduction and better extracting the features from the
original TCRCs data set.

Methods
Two machine learning algorithms, namely artificial neural network (ANN) and support
vector machine (SVM) were used in this study. The application of wavelet transform to
enhance the performance and effectiveness of ANN and SVM will also be introduced.

Artificial neural network

Artificial neural network (ANN) is inspired by a biological neural network, and it can be
considered as a computational information processingmodel simulating a “brain like" sys-
tem of interconnected processing units. ANN has already been applied in toxicity study
[30–32]. A typical feedforward multi-layer ANN [33] is shown in Fig. 3.

Fig. 3 Feedforward n-layer ANN
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In the network, there are one input layer and one output layer. The number of input
neurons equals to the number of attributes, and the number of output neurons depends
on the particular application of the network. In the present study, input neurons are given
by the time series of TCRCs, and the output neurons are determined by the number of
clusters being classified. The layers between input and xoutput layers are the hidden lay-
ers. The network architecture (i.e., the size of hidden layers and the number of neurons in
each hidden layer) is depended upon the complexity of a specified problem under inves-
tigation. Each neuron is interconnected with other neurone in the next layer, and the
information passing though the neurons are determined by the weights. The weights are
computed by a supervised algorithm by presenting the TCRCs data as input with known
MOA clustering as desired output in the training phase. The weights will then be adjusted
by minimizing a given objective function. The training process is conducted repeatedly
until the network achieved a prescribed success rate for all training data and it will then
be used to classify the future compounds with unknownMOA. Once the training is com-
pleted, the network is capable of performing a specified task rapidly with little computing
time and it is particularly suitable for a real time application.
Mathematically speaking, training the ANN is to seek a function f : X → Y to fit a set of

example pairs (x, y), x∈ X, y∈ Y. The network as a whole can be regarded as a multivari-
ate function or multivariate vector function if there is multiple outputs. By minimizing
f (X) − Y , we are able to find a function f to approximate the relationship between the
attribute of sample set X and the corresponding cluster Y. By inputting the attribute of
future sample x̂ to the obtained function f, its classification information ŷ can be inferred.
Obviously, the information in the minimization process is unknown; the training process
of ANN is actually a black box model. However, since there exists many local minimum in
minimizing f (X) − Y , the same training set (X,Y ) may produce totally different network
parameters and lead to inconsistent classification results. This is particularly true for the
MOA classification, where the data set is relatively small and imbalanced.

Support vector machine

In addition to ANN, another important machine learning algorithm is the support vector
machine (SVM). The application of SVM in toxic predictions has been reported in
[34, 35]. As one of the popular classifiers, the idea of SVM is quite different from that of
ANN. To perform a classification for a given data set, SVM uses a hyperplane to separate
the sample data points [36]. Assuming there is a set of data xi along with their corre-
sponding label yi, and considering the data is composed of two clusters denoted by -1 and
1, then we have the data space

D = {(xi, yi)|xi ∈ RP, yi ∈ {−1, 1}}ni=1.

Initially, we hope to find a hyperplane separating the sample data, in which each class
of data belongs to one side. Let the plane be

w · x − b = 0.

The problem of constructing such a hyperplane is to ensure its robustness. Suppos-
ing that there are two samples very closed to each other but on the different sides of the
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hyperplane, then it is not reasonable to classify them into different categories. To resolve
the problem, we select two hyperplanes such that they separate the data with no point
between them. The best robustness is achieved when the distance between them is maxi-
mized. The region bounded by the planes is called "margin", and the two hyperplanes can
be rewritten as

w · x − b = ±1,

therefore, the distance between them is defined by 2
||w|| . It is clear that to maximize the

distance, we need to minimize the ||w||. Consider the fact that if the sample xi belongs to
the first class, then w · x−b > 1. Similarly, w · x−b < −1 if it is in the second class. Thus,
we can rewrite the classification problem as the following optimization problem

min ||w|| subject to yi(w · xi − b) ≤ 1 for i = 1, · · · , n.

The weight vector w and the parameter b are determined by a supervised learning algo-
rithm similar to ANN. Now, the remaining problem is that for a large amount of data in
the data space and due to the highly non-linearity in the sample data, it is not possible to
divide them into multiple clusters by hyperplanes. This problem can be resolved by con-
sidering a mapping from a lower dimensional space to a high dimensional space using
a suitable kernel, so that the data are expected to be separable in the high dimensional
space. The selection of the kernel is critical to the success of SVM.
Recent studies indicates that the SVM is more accurate and robust than ANN in the

chemical classification [37], and it is capable of handling data set with more complex
structure. The SVM algorithm used in this study is based on the standard SVM classifier
in MATLAB with a Gaussian kernel. Comparing with ANN, the most significant advan-
tage of SVM is that it has global minima instead of local minima, so that the convergence
speed is significantly faster than ANN. Therefore, in the multi-cluster classification, SVM
is used as a main tool. Note that the classification of SVM is always binary, but the binary
classification algorithm can be recursively applied for applications to multiple clusters.
The details will be discussed in the next section.

Wavelet transform

The training process is a crucial component to ensure the success of a learning machine.
To certain extent, large input data in the training will affect the structure of learning
machine and also introduce more difficulty in the supervised learning. In the present
study, the input data contains the time series of TCRCs, and it could have more than 850
points. For ANN, the size of the hidden layers and the number of neurons depends on the
number of input neurons. Therefore, taking a large data set of input is not a trivial task
for a learning machine, and this may be the reason why no reference has been reported
on using ANN or SVM for toxicity assessment using TCRCs as input. We now propose
a novel idea to deal with large input data by using wavelet transform. Different from
the standard Fourier transform, which is only localized in frequency, wavelets are local-
ized in both time and frequency. Wavelet transform has been successfully demonstrated
to be a powerful tool for data compression and feature extraction in signal and image
processing.
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Let {ei} be an orthonormal and complete set in a Hilbert space H, and T be an arbitrary
vector in H [38], then

T =
∑
i

< T , ei > ei,

here T is the vector consisting of the data from TCRCs, ei is the orthonormal basis, <,>
is the inner product and < T , ei > denotes the coefficients under the basis ei. By selecting
a set of orthonormal vectors ei, we can use wavelet coefficients to represent the TCRCs
toxicity data. An orthonormal basis ψs,τ (t) [39] having scale parameter s and translation
parameter τ can be expressed in the following form:

ψs,τ (t) = 1√
s
ψ

(
t − τ

s

)
.

Let T(t) be the original TCRCs data, then the wavelet coefficients X =< T , ei > is a
function of s and τ given by

X(s, τ) =
∫

T(t)ψ∗
s,τ (t)dt

where ∗ denotes the complex conjugation, this equation shows how a T(t) is decomposed
into a set of wavelet basis function ψs,τ (t). Accordingly, T(t) can be recovered by the
inverse wavelet transform as

T(t) =
∫ ∫

X(s, τ)ψ∗
s,τ (t)dsdτ ,

where the wavelets are generated from one mother wavelet ψ(t) by scaling and
translation.
One of the advantages of wavelet transform lies in its ability to extract multiscale

information from the input data. By recursively applying wavelet transforms, it leads
to multi-level wavelet decomposition. The procedure for a three-level wavelet decom-
position is illustrated in Fig. 4, where the raw TCRCs are represented by T. In the
first level of wavelet transform, the original signal T is decomposed into two vectors
CA1 and CD1 representing the approximate and detail coefficients, respectively. In the
second level of decomposition, the wavelet transform is applied again to CA1 result-
ing two decomposition CA2 and CD2. In a n-level wavelet decomposition, the wavelet

Fig. 4 Three-level wavelet decomposition
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transform is applied recursively to decompose the approximation coefficient CAj at the
jth level into the coefficients CAj+1 and CDj+1. Therefore, applying an nth level wavelet
decomposition, we have one approximation coefficient CAn and detail coefficients CDn,
CDn−1, · · · , CD2, CD1. We now denote all wavelet coefficients at the nth level decom-
position as Wn. When particular coefficients are used instead of the entire wavelet
coefficients, we denote the coefficients as Wn(m) where m is the number of coefficients.
Generally speaking, the selection of wavelet coefficients starts from the approximation
coefficient and highest level of detail coefficients, because the detail coefficients at lower
level always contain small fluctuations including noise from the original information [40].
Consider a three-level decomposition (i.e., n = 3), W3(4) means that four wavelet coeffi-
cients: CA3+CD3+CD2+CD1 are kept and W3(2) implies taking two wavelet coefficients
CA3+CD3.
To demonstrate the capability of extracting important feature of the original data

using fewer wavelet coefficients, we apply wavelet transform to two compounds listed
in cluster 1. Figure 5 displays the profiles of one concentration TCRC for two different
compounds and the corresponding profiles using wavelets W5(1). It is clear that the pro-
files are in good agreement, but a tremendous data reduction over 90 % is achieved using
wavelet transform. Note that the original TCRC contains 72 data, while only five wavelet
coefficients are in W5(1).
We now illustrate how to construct input data for machine learning. A given set of

TCRCs is arranged as shown in Fig. 6, where 1 denotes the TCRC with the highest con-
centration, 2 for the next highest concentration, and 11 for the lowest concentration.
By concatenating the vectors according to the order 1, 2, · · · , n, we form a new vec-
tor TCRC(n). Here, TCRC(1) contains data from the highest concentration, TCRC(2)
contains the first two highest concentrations and TCRC(11) contains data from all 11 con-
centrations. It will be demonstrated later that including the negative control will enhance
the performance of the developed machine learning tools. The new vector TCRC(n) can
now be considered as input data to the machine learning algorithm. However, we also

Fig. 5 Plots of original TCRCs and wavelet coefficients W5(1) for (a) Actinomycin D and (b) Cordycepin
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Fig. 6 Input data to machine learning using wavelet transform

consider using wavelets by applying wavelet transform to TCRC(n) and selecting speci-
fied multi-level wavelet coefficients as input to ANN or SVM. The advantages of using
wavelets will be clearly demonstrated in the next section.

Results and discussion
To validate the developed machine learning tools based on ANN and SVM for MOA clas-
sification and to verify the effectiveness of using wavelets for input data preprocessing, we
present the following computational simulation applied to the 63 compounds. As shown
in Appendix, there are 10 clusters in the 63 compounds with imbalanced cluster distribu-
tion as illustrated in Fig. 7. Note that C1 and C10 contain 33 compounds, and they make
up more than half of the 63 compounds. Here, we will not consider the three clusters C5,
C7 and C9, since each cluster comprises only 3, 2 and 1 compounds, respectively.
For the ANN, a feedforward three-layer network with 24−12−6 neurons in the hidden

layers is used. The results are not sensitive even by doubling the hidden-layer neurons.
In the training process, the network is accepted when the success rate of the targeted
classification reaches 85 %. For problems with limited and imbalanced data, setting a
higher success rate for trainingmay lead to over-fitting and producing an inferior network
performance.

Binary classification

We first consider the classification for the two largest clusters, namely C1 with target
class DNA/RNA and C10 with target class protein. There are 20 compounds in C1 and
13 compounds in C10, therefore, using 70 % training data implies that 14 compounds in
C1 and 9 compounds in C10 are available as training set. The remaining 30 % data, 6
compounds in C1 and 4 compounds in C10 will be considered as test set. All simulation
reported in this work are based on 70 % training data and 30 % for the testing data.



Zhang et al. BioDataMining  (2016) 9:19 Page 11 of 21

Fig. 7 Distribution of 63 compounds

We define the success rate (SR) for the classification as

SR = Number of compounds classified into correct MOA
Total number of compounds in datasets

.

Once the number of compounds in the training set is determined, the developed
machine learning tools can be used to perform the classification for C1 and C10. The
effectiveness of ANN and SVM can then be evaluated by the computed success rate (SR).
For example, in the case of 70 % training set, there are 10 compounds available for the test
data. If 9 of them are classified into the correct clusters in C1 or C10, then the success-
ful rate is 90 %. However, it is not reasonable to conclude about the performance of the
classifier merely based on one result, especially because the current problem has limited
test data for some clusters. To obtain a reliable conclusion for the machine learning tools,
the classification process is conducted 100 times, and the training and test set are ran-
domly selected for each simulation. Consequently, 100 SR will be computed from the 100
classifications using 100 different partitions of training and test set. The overall average
of the 100 SR will be recorded as the final success rate. Different from the conventional
cross validation, which is based on a fixed partition of the data set, the data set parti-
tion in the present study is in a more random fashion. This is due to the limited size of
the data available in this study, so that a fixed partition can cause significant bias in the
classification SR.
As mentioned before, the performance of the machine learning algorithms will be

affected by the input data. Intuitively, one may expect that feeding more information to
the input should improve the performance for the machine learning tools. In this study,
the input is given by the TCRCs and a typical data set consists of 11 concentrations.
Let TCRC(1) denote the data taking only the highest concentration, TCRC(2) for data
with the first two highest concentrations and TCRC(11) for data including all 11 con-
centrations. In Tables 1 and 2, we report the SR for ANN and SVM using 70 % of the
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Table 1 ANN SR with different concentrations

Raw W1 W2 W3 W4 W5

TCRC(1) 0.550 0.705 0.738 0.731 0.742 0.701

TCRC(2) 0.711 0.782 0.760 0.774 0.750 0.795

TCRC(3) 0.741 0.782 0.779 0.774 0.798 0.787

TCRC(4) 0.739 0.788 0.811 0.796 0.817 0.820

TCRC(5) 0.750 0.803 0.802 0.829 0.822 0.811

TCRC(6) 0.767 0.819 0.836 0.817 0.826 0.827

TCRC(7) 0.770 0.831 0.825 0.850 0.843 0.817

TCRC(8) 0.838 0.856 0.836 0.861 0.836 0.832

TCRC(9) 0.864 0.852 0.845 0.873 0.829 0.827

TCRC(10) 0.859 0.871 0.849 0.830 0.834 0.838

TCRC(11) 0.855 0.879 0.865 0.863 0.861 0.855

observations as training data. TCRC(j) with j = 1, 2, · · · , 11 denotes input using the
raw data, and Wi for i = 1, 2, .., 5 indicates the corresponding wavelet coefficients from
the ith-level wavelet decomposition is taken as input data. Using the raw data TCRC(j),
the SR is poor and unacceptable when j = 1. As expected, the SR for ANN is improv-
ing when the value of j is increased. However, it is observed that the SR for SVM with
TCRC(j), j = 3, 4, · · · , 7 is even lower than the SR using the highest concentrations
data TCRC(1)and the first two highest concentrations TCRC(2). The advantage of using
wavelet coefficients Wi instead of the TCRC(j) raw data is clearly demonstrated from the
results presented in in Tables 1 and 2. By first applying the wavelet transform to TCRC(j)
data, consistent improvement in the SR results for both ANN and SVM is achieved as
more data are taken as input. Using only the highest concentration TCRC(1), the ANN
SR is improved by 35 % when the input data is using wavelet coefficients instead of the
raw data. In addition to confirming that wavelet coefficients capture all features in the raw
TCRCs data and yield better SR for ANN and SVM, another important enhancement can
be achieved by selecting appropriate wavelet coefficients such that much less input data
is needed for the machine learning tools. The details and the discussion will be presented
shortly.
The computational results presented so far are based on input data taken fromTCRC(j).

However, the performance can be further enhanced by taking account information from

Table 2 SVM SR with different concentrations

Raw W1 W2 W3 W4 W5

TCRC(1) 0.690 0.667 0.698 0.688 0.705 0.669

TCRC(2) 0.746 0.766 0.742 0.744 0.727 0.764

TCRC(3) 0.694 0.802 0.789 0.785 0.787 0.774

TCRC(4) 0.664 0.817 0.834 0.812 0.837 0.838

TCRC(5) 0.627 0.846 0.836 0.851 0.857 0.838

TCRC(6) 0.636 0.870 0.878 0.853 0.864 0.866

TCRC(7) 0.634 0.849 0.852 0.874 0.870 0.846

TCRC(8) 0.749 0.894 0.869 0.876 0.867 0.875

TCRC(9) 0.789 0.867 0.867 0.908 0.868 0.881

TCRC(10) 0.788 0.880 0.853 0.859 0.866 0.869

TCRC(11) 0.821 0.888 0.898 0.898 0.890 0.907
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the negative control (NC). The improvement is due to the NC data containing informa-
tion of the assays such as the cell plate condition, environment temperature, and so on.
Figure 8 illustrates the classification SR for C1 and C10 usingmachine learning algorithms
with input data given by TCRC(j) and W5 with and without information of NC. There is
no doubt that incorporating NC into the input data does play an important role of provid-
ing more information to the machine learning algorithms, and this leads to a significant
enhancement for ANN and SVM. It is particularly noted that tremendous increase in SR
is observed when the input is based on a few TCRC data. Using wavelet transform and the
highest concentration TCRC(1) data without and with NC, the SR increases from 0.550 to
0.870 for ANN, and 0.691 to 0.907 for SVM. Among the two data mining tools, it is prefer-
able to use SVM since it consistently produces a higher SR than that using ANN. Hence,
the remaining results presented in this work will be based on SVM and with TCRC(j)
including negative curve as input data.
By including the negative control (NC) with the TCRC(11), the input contains 876

data points, and almost the same amount of data will be required for wavelets Wi, i =
1, 2, · · · , 5 if all coefficients in wavelet decompositions are kept. However, it is well known
that wavelet transform is especially effective for data compression. Utilizing this attrac-
tive feature, we could achieve the same or better performance by appropriately pruning
the wavelet coefficients. Consequently, much less data is needed as input for SVM. Now,
consider a 5-level wavelet decomposition is applied to TCRC(11) with NC, and let W5(i)
denote the corresponding wavelet coefficients, where i = 1, 2, · · · , 6. Note that W5(6)
corresponds to the case when all the wavelet coefficients are included, i.e., W5(6): CA5 +
CD5 + CD4 + CD3+ CD2 + CD1 and only one set of coefficients is kept in W5(1), where
W5(1) is the CA5. The length of input data for TCRC(11) with NC andW5(i) are listed in
Table 3. Compared with the original TCRC(11) data with NC, savings of 74 % and 97 %
are achieved when usingW5(4) andW5(1) as input. Clearly, a tremendous data reduction
is achieved by pruning the wavelet coefficients. Applying the same approach for the high-
est concentration data TCRC(1) with NC, the corresponding wavelet coefficients W5(i)
are shown in Table 3.

Fig. 8 Classification SR of (a) ANN and (b) SVM by using different number of concentrations
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Table 3 Length of input data using raw data and wavelet coefficients

Raw W5(6) W5(5) W5(4) W5(3) W5(2) W5(1)

TCRC(11) + NC 876 889 450 229 117 60 30

TCRC(1) + NC 146 157 83 45 25 14 7

Recall that by taking all wavelet coefficients from TCRC(1) and TCRC(11), the SVM
SR shown in Fig. 8 is 90 % and 95 %, respectively. In Table 4, we evaluate the SVM
performance for C1-C10 classification using coefficients based on various wavelet decom-
position levels as listed in Table 3. Using the information from all TCRC(11) data, the
SR is the range of 80.8 % to 96.4 %. It is remarkable to observe that even using W5(2)
and W5(1) with 60 and 30 data points as input, over 80 % SR is achieved. Note that the
original raw data contains 876 data, and using W5(2) and W5(1), the input data is being
reduced by 93 % and 97 %. It is also worthwhile to note that over 90 % SVM SR is recorded
when the input data is based on only the highest concentration TCRC(1) and with W5(i)
for i > 3. Without going through a detail study to optimize the wavelet decompositions,
we now fucus on the data mining tools based on SVM(11) and SVM(1). Here, SVM(11)
denotes SVM using input data from the W5(4) based on entire TCRC(11), and SVM(1)
corresponds to input using W5(6) from the highest concentration TCRC(1). Thus, the
input data in SVM(11) and SVM(1) are 229 and 157, and this produces a reduction of 74 %
and 82 % compared to taking entire raw data TCRCs with 11 concentrations.
In Table 5, we present the two-cluster MOA classification results using SVM(11) and

SVM(1). The two-cluster is defined by clustering C1 and Cj where j �= 1. Let the error
in each classification be (1-SR), and define the average error as E=[ (1 − SR(C1/C2)) +
(1 − SR(C1/C3)) + . . . + (1 − (SR(C1/C10))] /6. The results presented in Table 5 reveal
that the performance for SVM(11) and SVM(1) are comparable, and the average error in
SR is 0.1592 and 0.1547 for SVM(11) and SVM(1), respectively. However, it is important
to note that while SVM(11) produces low SR 74.2 % and 77.9 % for (C1/C2) and (C1/C6)
classification, the corresponding SR using SVM(1) increases to 87.9 % and 83.3 %. There-
fore, by examining the SR values resulting from SVM(11) and SVM(1), we can enhance
the accuracy for the MOA classification. Let SVM denote by selecting the best SR from
SVM (1) and SVM(11), and the SVM SR for the two-cluster classification is reported in
Table 5. Note that, the average error E for SVM is now reduced to 0.1085. Although fur-
ther improvement is possible by investigating other data from TCRC(k) where k �= 1 and
11 and by optimizing the wavelet coefficients, we will only carry out computation using
SVM(1) and SVM(11) and the best value will be recorded as SVM in this study.

Multi-cluster classification

In many applications, a data set may contain more than two clusters. Therefore, it is nec-
essary to expand machine learning algorithm from binary classification to multi-cluster
classification. ANN can easily be adapted to deal with multi-cluster cases, and we only

Table 4 SVM SR for C1 and C10 classification

Raw W5(6) W5(5) W5(4) W5(3) W5(2) W5(1)

TCRC(11) + NC 0.857 0.947 0.944 0.964 0.905 0.821 0.808

TCRC(1) + NC 0.845 0.909 0.904 0.930 0.795 0.779 0.770
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Table 5 SVM SR for two-cluster classification

(C1/C2) (C1/C3) (C1/C4) (C1/C6) (C1/C8) (C1/C10)

SVM(11) 0.742 0.995 0.845 0.779 0.720 0.964

SVM(1) 0.879 1.000 0.694 0.941 0.657 0.901

SVM 0.879 1.000 0.845 0.941 0.720 0.964

need to assign the number of output neurons equal to the number of clusters. Since the
performance of ANN is not as effective as SVM, we will not present the results using
ANN. To carry out multi-cluster classification for SVM, we utilize a tree structure strat-
egy [41]. Due to the imbalanced data in the 63 chemical compounds, our study will focus
on extending the SVM algorithm for classifications with three and four clusters.
First, consider an example of a three clusters C1, C3 and C10. Since C3 contains only

four data sets which is much smaller than C1 and C10, a reasonable tree structure for
classification is shown in Fig. 9, in which a binary classification is conducted at each level.
Figure 9 illustrates extending a two-level tree structure methodology for three-cluster
classification. For the left configuration, we first label both compounds in C3 and C10 as
one class C, then a binary classification for C1 and C is carried out. In the second level,
the cluster C is further classified into C3 and C10 by using binary classification again.
Similarly, for the right configuration, C1 and C3 are first labelled as one class C in the first
level, and then be classified in SVM algorithm. Although it is feasible to have a tree struc-
ture by first combing C1 and C10 into one class, this selection will not be recommended.
It is known that SVM works well for balanced data set such that the training and test
data in both groups are almost equal. For the structure given by [C3 and (C1+C10)] with
70 % training, we have a highly imbalanced data since there are only 3 training data in
one group and 23 data in the other group. Using the same approach, we consider another
three-cluster for C1, C2 and C10. The MOA classification results for the two test cases
are shown in Table 6. Obviously, the clustering SR is sensitive to the specified tree struc-
ture. The overall SR for [(C1 + C3) and C10] is significantly higher than for [C1 and (C3 +
C10 )] as reported. However, for the second example, [C1 and (C2 + C10 )] will be a better
choice.
The methodology using a tree structure approach can be further extended to deal with

four-cluster classification, and let consider MOA classification for C1, C3, C4 and C10
as shown in Fig. 10. Note than C3 and C4 contains less data than C1 and C10. By the
same argument presented for a three-cluster classification, we propose two-level and

Fig. 9 Tree-structure for three-cluster classification

s
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Table 6 SVM SR for three-cluster classification

C∗ C1 and (C10 + C∗) (C1 + C∗) and C10

C3 0.841 0.968

C2 0.880 0.810

three-level configurations for the four-cluster MOA classification. To evaluate the robust-
ness of SVM for multi-cluster classification, we construct another test case by replacing
C4 data sets by C2 data. The SVM SR for the four configurations are reported in Table 7.
The best configuration is based on [(C1+C*)+C3] and [C10], for which 85.6 % and 84.7 %
classification SR is achieved for C∗ = C4 and C∗ = C2, respectively.

Dose response curves

In order to deal with the limited data sets for some clusters considered in this study, we
proposed to construct the Dose Response Curves (DRCs), and utilizing the information
from DRCs as input to the developed learning algorithm.
Instead of using TCRCs as input data, we now utilize information from Dose Response

Curves (DRCs) as input to SVM. The DRCs reveals the effect of the chemicals at different
concentrations, and it can be computed from the difference between the time concen-
tration response curves and the negative control curve at a particular time point. Let,
denote

TEt(k) = TCRCt(k) − NCt
NCt

∗ 100% (3)

where TEt(k) is the toxicity effect (TE) of the chemical with kth concentration at time t,
NCt is the cell index value of the negative control at time t. From this definition, it is clear
that when TEt(k) = 0, it implies that the chemical compound with concentration k has
no toxicity effect to the cell growth at time t. Similarly, we can also define the TE by the
area under the curve (AUC) as suggested in [14]:

TEt(k) = AUC{TCRCt(k)} − AUC{NCt}
AUC{NCt} ∗ 100% (4)

where AUC{TCRCt(k)} denotes the area under the curve TCRC(k) between 0 to t hours,
AUC{NCt} is the area under the negative control curve between 0 to t hours. Using

Fig. 10 Tree-structure for Four-cluster classification
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Table 7 SVM SR for four-cluster classification

Two-level approach Three-level approach

C* [C1+C3]& [C1+C∗] [(C1+C∗)+C3] [(C1+C3)+C∗]
&[C∗+C10] &[C3+C10] &[C10] &[C10]

C4 0.807 0.750 0.856 0.838

C2 0.839 0.805 0.847 0.825

TEt(k), we can construct a sequence of TE at time t. For example, using the 11 concentra-
tions TCRCs of the tested 63-chemicals data, the DRC can be computed at time T such
that

DRC(T) = [TET (1) TET (2) · · · TET (11)] . (5)

From (5), and using the TEt defined by (3), we can define DRC at any given time t in our
data set. Taking the compound 5-FU in cluster 1 as an example, we construct the DRC at
24 h, 48 h and 72 h as shown in Fig. 11.
According to the definition of DRCs in (5), DRC contains information regarding the

reaction of the cell growth to the increment of the chemical concentrations. It is thus
reasonable to assume that the compounds having different MOA may trigger different
concentration-related reactions. Consequently, using DRCs data as training set may offer
a way to improve the classification SR for those data that are not easy to be classified
using TCRCs as input. Based on this approach, we carry out a SVM binary classification
for C1 and C10 using DRC as input at a specified time point, and then linking the results
at different time points together. The SVM results for clustering C1 and C10 are reported
in Fig. 12. Different from using 803 data in TCRC(11), only 11 data are taken as input
using DRC at a given time. The computational time is faster than that required based on
TCRC as input data, but the overall SR is obviously not as good as those using TCRC.

Fig. 11 DRC of 5-FU from TCRCs
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Fig. 12 SVM SR distribution for two-cluster C1 and C10 using DRC(t)

Fig. 13 SR distribution for (a) (C1, C2), (b) (C1, C6), (c) (C1, C8) and (d) (C4, C10)
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Table 8 Selected time interval for TCRCs

Two-cluster (C1,C2) (C1,C6) (C1,C8) (C4,C10)

Selected interval 30–72 h 1–30 h 25–72 h 1–40 h

However, the plot in Fig. 12 reveals useful information, namely the time interval leading
to a better SR can be determined. Thus, the methodology may offer a possible way to
improve the performance of machine learning algorithm for imbalanced data set, since
the time interval corresponding to low SR can be discarded in the input data.
Figure 13 displays the SR for binary clustering (C1, C2), (C1, C6), (C1, C8), (C4,C10).

Recall that the four cases represent typical imbalanced data, and poor SR is observed
using TCRC(11) as input as reported in Table 5. In Table 8, appropriate time intervals
are selected by ignoring the time intervals corresponding to low SR. Using the TCRC(11)
selected at the specified time intervals, the SR using SVM applied to RCRC(11) andW5(4)
are reported in Table 9. Using the selected TCRC at certain time interval for cases with
imbalanced data, the SVM SR is clearly improved for all cases as shown in Table 9. How-
ever, more work is needed to investigate the best way to utilize the information from DRC
to further enhance the performance of SVM.

Conclusion
In this paper, we present an innovative approach using machine learning for toxicity
assessment. The computational tools are developed based on ANN and SVM, which are
capable of learning data from given TCRCs with knownMOA clustering information and
then making MOA classification for untested chemical compounds. There are two chal-
lenges and difficulties of this work. First the input data arising from the time-series TCRC
data contains more than 850 data, and secondly, only limited data set are available for
some clusters. A novel data processing technique using wavelet transform is introduced,
so that not only a great reduction in input data is achieved but the MOA classification
is more accurate due to wavelet coefficients have the ability to extract important fea-
tures from the original TCRC data. Instead of using more than 850 data from the TCRCs
with 11 concentrations, we only require 229 and 157 wavelet coefficients as input data to
the developed data mining tools. In this study, it is also revealed that taking account the
information from the negative control curve enhances the performance of the MOA clas-
sification. It has been illustrated that the machine learning algorithm can be improved
by utilizing information from DRC, so that a time interval leading to higher classifica-
tion success rate can be selected as input. From the computational simulations, SVM is
more effective compared to ANN for MOA classification. The developed SVM classi-
fier has been tested for multi-cluster MOA classification, and impressive SR in the range

Table 9 Improvement of SR by using TCRCs at selected time points from DRC distribution

Time for 1–72 h Selected time

TCRC W5(4) TCRC W5(4)

(C1, C2) 0.734 0.742 0.736 0.797

(C1, C6) 0.809 0.779 0.830 0.857

(C1, C8) 0.699 0.720 0.803 0.766

(C4, C10) 0.695 0.795 0.716 0.832



Zhang et al. BioDataMining  (2016) 9:19 Page 20 of 21

of 85 to 95 % is obtained for m-cluster classification where 2 ≤ m ≤ 4. The present
work concludes that SVM is an effective and powerful machine learning tool for toxicity
profiling.
It is noted that the proposed SVM is tested on the limited training and testing data, to

perform a reliable validation of the proposed machine learning approach, it is desirable if
more testing data are available. Even though the present study focuses on a MOA classifi-
cation, the approach could be extended to other type of classifications such as a Globally
Harmonized System (GHS) classification in toxicology investigation. Instead of a super-
vised learning approach, it is of great interest to consider an unsupervised methodology.
Moreover, to better handle a multi-cluster classification and to enhance the robustness of
a machine learning approach, it is useful to develop an expert system consisting of vari-
ous classifiers, so that reliable classification results can be determined by incorporating a
validation procedure.

Additional file

Additional file 1: 63 chemicals in 10 MOA clusters. This file includes the 63 compounds used for in the MOA
classification. Details including the used solvent and concentrations are also provided. (PDF 19 kb)
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