
RESEARCH Open Access

Building a glaucoma interaction network
using a text mining approach
Maha Soliman1*, Olfa Nasraoui2 and Nigel G. F. Cooper1

* Correspondence:
maha.soliman@louisville.edu
1Department of Anatomical
Sciences and Neurobiology,
University of Louisville, School of
Medicine, Louisville, KY, USA
Full list of author information is
available at the end of the article

Abstract

Background: The volume of biomedical literature and its underlying knowledge base
is rapidly expanding, making it beyond the ability of a single human being to read
through all the literature. Several automated methods have been developed to help
make sense of this dilemma. The present study reports on the results of a text mining
approach to extract gene interactions from the data warehouse of published
experimental results which are then used to benchmark an interaction network
associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma
interaction network derived solely from text mining approaches. The presence of such a
network could provide a useful summative knowledge base to complement other forms
of clinical information related to this disease.

Results: A glaucoma corpus was constructed from PubMed Central and a text mining
approach was applied to extract genes and their relations from this corpus. The extracted
relations between genes were checked using reference interaction databases and
classified generally as known or new relations. The extracted genes and relations
were then used to construct a glaucoma interaction network. Analysis of the resulting
network indicated that it bears the characteristics of a small world interaction network.
Our analysis showed the presence of seven glaucoma linked genes that defined the
network modularity. A web-based system for browsing and visualizing the extracted
glaucoma related interaction networks is made available at http://neurogene.spd.louis
ville.edu/GlaucomaINViewer/Form1.aspx.

Conclusions: This study has reported the first version of a glaucoma interaction network
using a text mining approach. The power of such an approach is in its ability to cover a
wide range of glaucoma related studies published over many years. Hence, a bigger
picture of the disease can be established. To the best of our knowledge, this is the first
glaucoma interaction network to summarize the known literature. The major findings
were a set of relations that could not be found in existing interaction databases and that
were found to be new, in addition to a smaller subnetwork consisting of interconnected
clusters of seven glaucoma genes. Future improvements can be applied towards
obtaining a better version of this network.

Keywords: Text mining, Interaction network, Glaucoma, Relation extraction

Background
Extraction of biological networks, related to specific diseases or conditions from the sci-

entific literature, is an emerging problem which may be solved with the aid of text mining

approaches. Biological networks are important features used for modelling, analysis and

simulation of biological systems [1], and for the development of hypotheses from data-
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sets [2–6]. In general, the inference of an interaction network from text can be sub-tasked

as: 1) determination of the source of the text to be searched, 2) identification of the

entities to be extracted (genes, proteins, metabolites, diseases), and 3) inference of poten-

tial relationships between selected entities. Once these subtasks are resolved, the entities

and their relationships can be mapped to the nodes and edges of a biological network. A

common aspect for subtasks two and three is their amenability to the use of text mining

methods for their resolution.

As for the first subtask, the source of text to be mined can be abstracts or full text ar-

ticles in collections of scientific publications. While the use of abstracts would be more

advantageous due to their concise information content [7–9], an increasing number of

text mining approaches make use of full text journals [10]. However, in trying to deal

with full text publications, there are technical challenges due to the existence of differ-

ent formats (pdf, HTML) as well as non-uniform substructure across journals. In terms

of the second subtask, there are many examples in the literature in which text mining

approaches have been used to infer a relationship between biomarker genes and dis-

eases/disorders, including for example, insulin-resistance [11], Alzheimer disease [12],

breast cancer [13], prostate cancer [14], and respiratory disease [15]. Therefore, it is

possible to develop putative associations between biomarkers and glaucoma with a text

mining approach. The third sub-task is to develop a relation extraction (RE) process to

reliably infer binary relationships between the entities previously derived from subtask

one. Relationships depend on the type of entities we are dealing with. For example, if

an entity is a transcription factor, then the textual terms that reflect regulation (up/

down-regulate…, etc.) can be sought in the relation extraction process. If an entity is a

protein, then textual terms that reflect activation or binding are sought in the relation

extraction process [16, 17]. RE can be a closed or an open process. It is closed when

there is a set of relations determined a priori such as, (“activate”, “up-regulate”, “ex-

press”) and the extractor predicts one of a finite and fixed set of relations. It is open

when no relations are specified in advance [18]. For example, an open RE system that

runs over the sentence “HSPA6 is a potential target gene of FOXC1”, will list the fol-

lowing binary relation:

HSPA6; is a target gene; FOXC1ð Þ

On the other hand, if a closed RE is used, this relation will not be extracted unless

the relation “target” was included in the set of relations determined a priori. In general,

a closed RE is useful when extracting relations from scientific literature, while an open

RE is suitable when extracting relations from the web [19].

Text mining services have evolved rapidly to become an important component of in-

ference pipelines. The next generation of text mining approaches have to deal with the

construction of complete text mining systems to aid the inference of interactions or as-

sociations between bio entities. OntoGene [20], Anni [21], RLISM [22], and CRAB [23]

are examples of such next generation systems. In terms of usage, OntoGene is consid-

ered the most integrative because it allows the detection of entities and relationships

from selected categories of entities, such as proteins, genes, drugs, diseases, and chemi-

cals. On the other hand, Anni has the advantage of introducing an ontology based inter-

face to MEDLINE, and it is capable of retrieving documents for several classes of

biomedical concepts. In addition, RLIMS-P and CRAB 2.0 are topic specific approaches.
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For example, RLIMS-P targets protein phosphorylation and CRAB 2.0 targets cancer risk

assessment.

The goal of this study is to initiate the development of a glaucoma interaction net-

work with the aid of text mining the open access scientific literature housed in PubMed

Central (PMC). According to the Glaucoma Research Foundation (GRF), glaucoma is

the second leading cause of blindness [24]. It is an invisible disease and gradually steals

sight without warning. Generally, it cannot be cured, but it can be controlled [25].

Some reported glaucoma interaction networks were based on genome wide association

studies (GWAS) [26, 27] while others focused on interaction networks from genome

wide expression studies (GWES) [28, 29] but none have yet been based solely on text

mining of the vast swath of PMC literature, where all types of glaucoma studies are

covered. Such a network is expected to have a wider coverage than prior efforts because

it will not be inferred from a particular type of study but rather from all types of studies

related to glaucoma.

Methods
Text mining enables the discovery of useful knowledge from unstructured or semi-

structured text [30, 31] which fits the goal of this study. Figure 1 is the flow diagram that

shows how the results in this study are generated. The text mining pipeline (Fig. 2), which

was used in step 3 of the flow diagram, starts from each article containing some informa-

tion to be extracted. The article is first segmented into its constituent sentences using a

segmenter. Each sentence is then sub-segmented into its constituent words, called tokens,

using a tokenizer. Subsequently, part of speech (POS) tagging is applied to each of the to-

kens to identify the role of each word within the sentence. Additionally, a name entity rec-

ognition (NER) is used to identify target entities, which are gene names. Finally, a relation

extraction (RE) routine is applied to extract existing relations within each sentence. The

relations are then validated, where possible, against an existing reference knowledgebase.

Finally, entities and relations are translated into an interaction network. The main tasks in

our methodology are:

Text selection and retrieval

Unlike PubMed, all articles in PubMed Central (PMC) are full text and open access.

This makes PMC a suitable repository of the literature for mining full text articles. We

used a PubMed medical subject headings (MeSH) terms query to collect all possible

glaucoma related articles. PMC Open Access was queried for eight types of key terms

related to glaucoma including: “open-angle glaucoma”,”angle-closure glaucoma”,”se-

condary glaucoma”, “congenital glaucoma”, “hyper glaucoma”, “neovascular glaucoma”,

“pigmentary dispersion glaucoma” and”open access”. The resulting data set composed a

corpus of 8,660 full length articles ready for mining. Articles were downloaded from

PMC Open Access according to the PMC OAI service [32].

Entity selection and extraction

This study targets the extraction of gene associations which have been previously linked

to glaucoma in the open access literature. Our target entities, broadly speaking, are

“gene/gene products”. In our approach, we did not make any distinction between
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Fig. 1 (See legend on next page.)
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mentions of gene, mRNA, or protein in the text. For simplicity, we will reference gene/

gene products as “gene”. Association can cover direct protein-protein interaction (PPI)

type; predicted or found experimentally, bimolecular events such as expression and

localization, and/or static relations. Our definition for association is a loose biological

definition that covers any relation that holds between genes or related entities, that is

of biological/biomedical or health-related interest, without necessarily implying change

[33, 42]. It is for this reason that we have opted for an open RE strategy.

(See figure on previous page.)
Fig. 1 The workflow pipeline followed to build the glaucoma interaction network. Step 1: PubMed Central
is queried for glaucoma related articles. Step 2: all glaucoma articles are collected and a glaucoma collection is
constructed. Step 3: each document in the resulting collection is processed using the text mining pipeline
detailed in Fig. 2 and a set of relations is obtained. Step 4: relations are stored into a database and filtered using
SQL queries. Step 5: Filtered relations are subjected to manual inspection to identify meaningful relations worthy
of validation. Step 6: inspected relations are then validated and evaluated against external reference databases.
Step 7: validated relations are mapped to nodes and edges to form a potential glaucoma network. Step 8:
network analysis of the resulting network is performed. The left panel contains external databases needed by
each step of the workflow. See Table 1 for definition of BD, and BO

Articles

Interactions

Es, Rs, Es

Article
Segmenter
(LingPipe)

S1 S2 S3 Sn

w1, w2, w3, w4....wn
Tokenizer
(LingPipe)

S

subject, verb, adverb, preposition, objectS POS
(ReVerb)

S NER
(LingPipe)

E1, E2,  E3,....En

S RE (ReVerb) R1, R2, R3,....Rn

Fig. 2 The Text Mining Pipeline. The text mining pipeline that corresponds to step 3 in Fig. 1. First, the
segmenter module segments each article into its constituent sentences denoted s1 to sn. Second, the
sentence tokenizer module tokenizes each sentence into a bag of words denoted w1 to wn. Third, the part
of Speech POS module identifies the role of each word in a sentence. Fourth, the name entity recognition
module NER extracts gene mentions E1, E2, En from the words of the sentence. Finally the relation extraction
module (RE) extracts relations R1, R2, Rn from the words of the sentence. The output interaction from applying
this sequence of modules is in the form: “Es, Rs, Es” and is saved in a database of interactions
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Our glaucoma corpus was segmented into 1,398,475 sentences with the LingPipe sen-

tence segmenter [34]. Genes within sentences were annotated using the LingPipe taggers

CharLmHmmChunker and TokenShapeChunker. The performance of any tagger can be

evaluated by testing the tagger on an annotated corpus. GenTag [35], and GENIA [36] are

well known biomedical annotated corpuses for performance evaluation of taggers.

CharLmHmmChunker is trained on GenTag while TokenShapeChunker is trained on

GENIA. Compared to GENIA, GenTag is more generic and less specific while GENIA has

annotations for 36 biomedical named entities, and therefore provides a breadth classifica-

tion. Our motivation for using both taggers is to maximize the number of extracted genes

[37]. Both taggers accept full length articles as text files and provide an output of anno-

tated files, formatted in Standard Generalized Mark-up Language (SGML) for gene men-

tions. SGML uses XML tags to describe a mentioned gene but the user will need to

specify an encoding system for both input and output files, as well as the desired type of

input/output files. For our particular study, we have used the”UTF-8” encoding system,

and plain text format for our input/output files.

Benchmarking genes

A total of 305 glaucoma benchmark genes (BG) were used in this study. Of this num-

ber, 155 come from the Online Mendelian Inheritance in the Man database, OMIM®

[38] (BO), while the 180 remaining genes come from the Disease Gene Network data-

base DisGeNET release 2.1.0 (July 2014) [39–41] (BD). There were 30 benchmark genes

(BC) common to both OMIM and DisGeNET databases (Table 1) indicating their likely

importance to glaucoma. The union of OMIM and DisGeNET genes were used as bench-

mark genes for our intended glaucoma interaction network (Additional File 3). Table 1

lists the benchmark gene types and their abbreviations. Any gene in the literature, which

was co-listed in one sentence with one of these BG, is considered a putative association.

Sentences, that contain one gene, were filtered out from the tagged sentences to focus our

search on sentences that have two or more genes, provided that one of the genes was a

BG. If the sentence does not contain a BG, then it is excluded. The idea of the filtering

step was to ensure the existence of interacting genes with some BG. The next task is to

capture associations between the BG and other non-benchmark genes (NBG), thus con-

structing a glaucoma interaction network capturing potentially novel relations. The

Table 1 Glaucoma benchmark and non-benchmark genes used in building the network

Abbreviation Definition Number Percent

BO Benchmark glaucoma genes from OMIM database queried with
“Glaucoma”

155 51 %

BD Benchmark glaucoma genes from DisGeNET database queried with
“Glaucoma”

180 59 %

BC Benchmark glaucoma genes from the intersection of OMIM and
DisGeNET databases

30 (BO∩BD) 10 %

BG Benchmark glaucoma genes from union of BO and BD 305
(BO⋃BD)

100 %

NBG Non-benchmark genes from PubMed Central 150 N/A

For simplicity, benchmark genes used to build the interaction network are abbreviated as BG. If BG are obtained from
OMIM, then we call them BO. If BG are obtained from DisGeNET, then we call them BD. Benchmark genes, common to
OMIM and DisGeNET, are called BC. Genes that are not benchmark genes are called NBG. The definition, number and
percentages of all benchmark genes are listed in columns 2 to 4
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output of this step is a list of associated genes. Some genes were found to be a gene name,

a gene synonym, or a previous gene symbol and all of these aliases were mapped to their

HUGO approved gene symbol [42].

Relation extraction

Sentences that contain putative pairs were subjected to the open source relation extractor

ReVerb [43] to extract binary relationships between gene mentions. ReVerb parses each

sentence and identifies its main verb. It then starts identifying the subject and object of

the sentence. It outputs triplets of “E, Rel, E”, where E is an entity and Rel is a relationship

(the main verb of the sentence). In addition to extracted relations, ReVerb also outputs a

confidence score associated with the relation that reflects how much ReVerb is certain of

its extraction mechanism. Application of ReVerb identified 33,339 binary relations. Ex-

tracted relations were verified using the interaction databases GeneMANIA [44] and the

Biological General Repository for Interaction Datasets database (BioGRID release 3.4.129)

[45]. If the reference databases could not recognize a particular gene in a relation, the

gene’s different aliases are first retrieved from GeneCards [46] and the relation is verified

using GeneMANIA or BioGRID.

Network construction

Extracted entities and relations were manually inspected and mapped to nodes and

edges. The Gephi open source graph visualization software tool [47] was used to de-

velop a graphic representation of the extracted interaction network (Fig. 7). Analysis of

the generated network was carried out with the Cytoscape network analyzer [48]. En-

richment analysis for the extracted genes was conducted through the PANTHER classi-

fication system version 10.0 (release May 2015) [49], as well as the Database for

Annotation, Visualization and Integrated Discovery (DAVID) [50, 51], and the gene an-

notations co-occurrence discovery database (GeneCodis) [52–54].

Results
The output from ReVerb may contain incorrect triplets. Therefore, all triplets were saved

into a database and were subjected to a filtering process, in which a query is constructed

to extract triplets that contained any biological entity name. Filtering ReVerb relations re-

sulted in a total of 550 triplets of “E, Rel, E”, where E is an entity (gene), and Rel is a verb

associating the two entities. Some relations from the filtered list of the 550 relations in-

volved “POAG” (Primary Open Angle Glaucoma), while others involve “XFS” (Exfoliation

syndrome), a developmental variant of glaucoma (Table 2). The relations included known

relations, new relations, disconnected relations, redundant relations, misinterpreted rela-

tions, and unverified relations. A known relation is a previously published relation, for ex-

ample, the relation between OPTN and MYOC. A relation is defined as new when no

direct link between its entities is reported by GeneMANIA or BioGRID. If an indirect link

can be established between relation entities through an intervening gene(s), then it is evi-

dence for the possibility of the relation. If no indirect link can be established between rela-

tion entities, then it is a disconnected relation, in other words, a relation involving nodes

that are currently considered to be disconnected. A redundant relation is a known or new

relation, but is repeated many times. A misinterpreted relation is a relation involving an
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acronym that is identical to a gene symbol, for example ECD is an acronym for the endo-

thelial cell density, but was captured as a gene symbol for ecdysoneless homolog gene. An

unverified relation is a known or new relation, involving a gene that is not identified by

HUGO, GeneCards, or GeneMANIA. Filtering out redundant and misinterpreted rela-

tions resulted in a total of 257 unique triplets (E REL E), that include 74 genes from the

combined DisGeNet and OMIM databases (BG), 17 of which were common (BC) to

both databases (BO, BD), and 150 related genes (NBG) uncovered from the PubMed

Central literature database. In terms of the classification of the extracted relations

(Fig. 3), 76 were previously known relations, 149 were new relations, 21 were unveri-

fied and yet interpretable relations (Table 3) and 11 relations involved disconnected

Table 2 Genes related to Primary Open Angle Glaucoma (POAG) and Exfoliation syndrome (XFS)

Gene Disease Confidence Support

MYOC POAG 0.98 30

LOXL1 XFS 0.98 12

TG XFS 0.98 1

CYP1B1 POAG 0.97 12

GSTT1 POAG 0.97 4

CAV1 POAG 0.97 2

SPARC POAG 0.96 2

CPE POAG 0.96 1

APOE POAG 0.94 7

CDKN2B-AS1 POAG 0.94 3

OPTN POAG 0.93 17

NOS3 POAG 0.93 5

WDR36 POAG 0.92 13

GLC1A POAG 0.92 2

GLC1N POAG 0.92 2

GSTM1 POAG 0.91 4

PDIA5 POAG 0.89 2

GC XFS 0.88 1

T XFS 0.88 2

TTR POAG 0.87 2

LOXL1 POAG 0.86 3

CDKN2B POAG 0.86 2

SIX1 POAG 0.85 2

NTF4 POAG 0.83 4

CNTNAP2 XFS 0.83 1

GLC3A POAG 0.82 2

OPA1 POAG 0.81 2

TBK1 POAG 0.78 2

MMP1 XFS 0.67 1

MMP3 XFS 0.67 1

TP53 POAG 0.66 1

ELN XFS 0.24 1

The gene and its related disease are listed under the “Gene” and “Disease” columns respectively. The confidence column
is the maximum of all confidence values reported by ReVerb for the same relation, extracted from multiple articles.
Relations with low confidence are bolded. The support column is the count of articles listing the same gene relation
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nodes, which linkage could not be confirmed at this time (Table 4) and yet some con-

textual evidence (Column 5 in Table 4) may suggest some plausible linkage. Both of

the 550 and the 257 relations can be found in the Additional files 1 and 2

respectively.

Analysis and validation
The associations between the pair of entities within the 257 extracted triplets (E,Rel,E)

were validated against both the GenMANIA database and BioGRID. Validation using

BioGRID showed an agreement in only 24 previously known relations with GeneMA-

NIA. Unlike GeneMANIA, BioGRID does not consider the entire gene network for a

pair of genes to identify indirect relations as in GeneMANIA. Therefore, all relations,

except the 24 known ones, are new according to BioGRID. Most of the 21 unverified

relations were due to unrecognized entity symbols in GeneMANIA at the time of writ-

ing this paper, such as antisense of a gene (BDNF-AS, CDKN2B-AS) or small interfering

RNA for a particular gene (siPITX2, siCSTA), microRNA, general protein family name

(M-opsin), and gene variants or mutation (OPTN variants: Glu50Lys or E50K). How-

ever contextual evidence (text) from PMC-ID papers (col. 7 in Table 4) suggests some

evidence based on the experiments reported in the mined literature. A summary of the

different extracted relations and their percentages is listed in Table 5 and the top fifty

most frequent relations are depicted in Fig. 4.

As mentioned in the results section, the results included 150 NBG in relation with the

74 BG. The 150 NBG were subjected to enrichment analysis through the PANTHER,

257 Extracted 
Relations

New

149

Unverified

21

Disconnected

11

Known

76

?

Fig. 3 Illustration of the three types of extracted relations found by GeneMANIA in the glaucoma corpus.
The total number of extracted relations from the workflow were 257 and they were distributed into 76
known, 149 new, 11 disconnected, and 21 were unverifiable relations. Each type of relation is represented
by a picture below it. A known relation is illustrated by three circles directly linked to each other, where a
circle represents a gene. A new relation is illustrated by a dotted line between blue and black genes, because
an indirect path could be established from the blue to the black gene through the red gene. An unverified
relation is illustrated by a question mark in the black gene and a dotted line between the blue and black gene.
A disconnected relation is illustrated by the disconnected black gene from the rest of the connected genes
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Table 3 Twenty one extracted relations with unverified links from GeneMANIA

Gene1 Gene2 Confidence Unverified node PMC Excerpt PMCID/Year Remark

CDKN2B-AS1 CDKN2B 0.93 CDKN2B-AS1 CDKN2B-AS1 has been shown to be involved in the
regulation of CDKN2B, CDKN2A and ARF expression.

PMC4132588/2014 CDKN2B-AS1 is a CDKN2B antisense.
GeneMANIA does not recognize gene
anti-sense.

CDKN2B-AS1 CDKN2A 0.93 CDKN2B-AS1 CDKN2B-AS1 has been shown to be involved in the
regulation of CDKN2B, CDKN2A and ARF expression.

PMC4132588/2014 CDKN2B-AS1 is CDKN2B antisense.
GeneMANIA does not recognize gene
anti-sense

CDKN2B-AS1 ARF 0.93 CDKN2B-AS1 CDKN2B-AS1 has been shown to be involved in the
regulation of CDKN2B, CDKN2A and ARF expression.

PMC4132588/2014 CDKN2B-AS1 is CDKN2B antisense.
GeneMANIA does not recognize gene
anti-sense

CDKN2BAS CDKN2A 0.92 CDKN2BAS CDKN2BAS also regulates the expression of CDKN2A,
a gene previously shown to be down-regulated in
other neurodegenerative disorders, including
Alzheimer’s disease, suggesting that regulation of
CDKN2A expression by CDKN2BAS could also
contribute to degeneration of the optic nerve in
glaucoma.

PMC3343074/2012 CDKN2BAS is CDKN2B antisense.
GeneMANIA does not recognize gene
anti-sense

CNTF LIFRß 0.90 LIFRß In mouse, human OSM activates the heterodimer of
LIF receptor ß (LIFRß and gp130, like CNTF.

PMC4171539/2014 LIFRB is a mouse gene that GeneMANIA
did not recognize

miR410 VEGFA 0.9 miR410 Protein levels of VEGFA were also down-regulated
with miR410 overexpression and up-regulated with
miR-410 interference.

PMC400246/2014 GeneMANIA does not recognize
microRNAs.

STAT1 ANRIL 0.89 STAT1 The binding of STAT1 induces the expression of
ANRIL, and represses CDKN2B in endothelial cells.

PMC3565320/2013 GeneMANIA does not recognize locus
ANRIL

siPITX2 DKK1 0.83 siPITX2 DKK1 and KCNJ2 which were shown to be affected
by PITX2 siRNAs by real time PCR experiments were
each previously reported in one study.

PMC2654047/2009 siPITX2 is short interfering PITX2.
GeneMANIA does not recognize short
interfering RNAs.

siPITX2 KCNJ2 0.83 siPITX2 DKK1 and KCNJ2 which were shown to be affected
by PITX2 siRNAs by real time PCR experiments were
each previously reported in one study.

PMC2654047/2009 siPITX2 is short interfering PITX2.
GeneMANIA does not recognize short
interfering RNAs.

XCPE1 LTBP2 0.82 XCPE1 LTBP2 was predicted to be regulated by KLF4 (at 10
promoters), SP1 (at eight promoters), GATA4 and TEAD

PMC4019825/2014 XCPE1 is X gene core promoter element
1 (DNA element).
GeneMANIA does not recognize XCPE1
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Table 3 Twenty one extracted relations with unverified links from GeneMANIA (Continued)

(at five promoters) and XCPE1 (at four promoters) was
associated with LTBP2.

GLC3A GLC3B 0.78 GLC3B To narrow down the potential candidate CNVs (genes)
and match the identified CNVs to target regions and/or
genes, we first focused on known chromosomal loci for
PCG, namely GLC3A (2p2-p21), which harbors CYP1B1,
GLC3B (1p36.2-p36.1), and GLC3C (14q23).

PMC3250374/2011 GeneMANIA does not recognize gene locus

GLC3A GLC3C 0.78 GLC3C To narrow down the potential candidate CNVs (genes)
and match the identified CNVs to target regions and/or
genes, we first focused on known chromosomal loci for
PCG, namely GLC3A (2p2-p21), which harbors CYP1B1,
GLC3B (1p36.2-p36.1), and GLC3C (14q23).

PMC3250374/2011 GeneMANIA does not recognize gene locus

E50K TBK1 0.74 E50K Recently, it was found that E50K mutant strongly
interacted with TBK1, which evoked intracellular
insolubility of OPTN, leading to improper OPTN
transition from the endoplasmic reticulum to the
Golgi body.

PMC4077773/2014 GeneMANIA recognizes OPTN not its mutated
form. E50K is a mutation in the OPTN gene

DCDC4 PAX6 0.74 DCDC4 The 3′ deletion identified in family 86 contained ELP4
and DCD4, which are located downstream of PAX6.

PMC3044699/2011 DCD4 (double cortin domain containing 4) is
not found in HUGO

MTMR2 NEFL 0.60 NEFL However, catalytically inactive CMT disease-related
MTMR2 mutants lead to NEFL assembly defects and
to pathologies similar to the one caused by NEFL
mutations, suggesting that MTMR2 and NEFL may
function in a common pathway in the development
and maintenance of peripheral axons.

PMC3514635/2012 GeneMANIA does not recognize NEFL.

TTRV30M EPO 0.50 TTRV30M It has been suggested that inhibition of EPO
production could be caused by the toxicity of
prefibrillar aggregates of TTR V30M.

PMC4087117/2014 GeneMANIA recognizes TTR not its mutated
form V30M. V30M is a point mutation within
TTR

BDNF-AS EZH2 0.40 BDNF-AS Further characterization of BDNF-AS indicates that
BDNF-AS recruits EZH2 and the PRC2 complex to
the BDNF promoter to repress BDNF transcription
through H3K27me3 histone modifications.

PMC4047558/2014 BDNF-AS is BDNF antisense.
GeneMANIA does not recognize anti-sense
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Table 3 Twenty one extracted relations with unverified links from GeneMANIA (Continued)

BDNF-AS PRC2 0.40 BDNF-AS Further characterization of BDNF-AS indicates that
BDNF-AS recruits EZH2 and the PRC2 complex to the
BDNF promoter to repress BDNF transcription through
H3K27me3 histone modifications.

PMC4047558/2014 BDNF-AS is BDNF antisense.
GeneMANIA does not recognize anti-sense

BDNF-AS BDNF 0.40 BDNF-AS Further characterization of BDNF-AS indicates that
BDNF-AS recruits EZH2 and the PRC2 complex to the
BDNF promoter to repress BDNF transcription through
H3K27me3 histone modifications.

PMC4047558/2014 BDNF-AS is BDNF antisense.
GeneMANIA does not recognize anti-sense

siCSTA MYOC 0.35 siCSTA It would be interesting to investigate whether the
application of an inhibitor to CSTA, such as its siRNA,
could restore the normal MYOC processing and affect
the outcome of the disease.

PMC3352898/2012 siCSTA is short interfering CSTA.
GenMANIA does not cover short interfering
RNAs.

Glu50Lys OPTN 0.3 Glu50Lys More, recently, Minegishi and coworkers reported that
the over-expression of a glaucoma causing-mutation
in OPTN, Glu50Lys, produces an accumulation of
insoluble OPTN protein that can be blocked with
chemical inhibition of TBK1 activity in HEK293 cells.

PMC4038935/2014 Glu50Lys is a mutation in the OPTN gene

The genes in each extracted relation are listed under the “Gene1” and the “Gene2” columns respectively. A measure of confidence, reported by ReVerb, is listed under the “Confidence” column, and relations with low
confidence (<0.5) are bolded. The unverified node is listed under the “Unverified node” column. The associated text that relates the two genes is listed under the “PMC Excerpt” column. Some genes were identified by
their synonyms found in either GeneCards or GeneMANIA. The PMCID of the original article coupled with the year of publication is given under”PMCID/Year” column. Important remarks and gene synonyms may be
listed under the “Remark” column

Solim
an

et
al.BioD

ata
M
ining

 (2016) 9:17 
Page

12
of

25



Table 4 Eleven extracted relations with disconnected gene nodes from GeneMANIA

Gene1 Gene2 Confidence Disconnected node PMC Excerpt PMCID/Year Remark

DCDC1 PAX6 0.96 DCDC1 ELP4 and DCDC1 are located downstream of PAX6. PMC2375324/2008

ALB ELP4 0.93 ELP4 ALB was used to normalize ELP4 and PAX6 values for the detection of
the relative copy number of the deletion region.

PMC3859656/2013

ATOH7 FBN1 0.88 ATOH7 We found 10 candidate POAG genes that were highly expressed in both
the CPE and NPE (AKAP13, C1QBP, CHSY1, COL8A2, CYP1B1, FBN1, IBTK,
MFN2, TMCO1, and TMEM248), three genes that were expressed significantly
higher in the CPE (CDH1, CDKN2B, and SIX1), and six genes that were expressed
significantly higher in the NPE (ATOH7, CYP1B1, FBN1, MYOC, PAX6, and SIX6).

PMC3909915/2014

FBN1 TMEM248 0.88 TMEM248 We found 10 candidate POAG genes that were highly expressed in both the CPE
and NPE (AKAP13, C1QBP, CHSY1, COL8A2, CYP1B1, FBN1, IBTK, MFN2, TMCO1,
and TMEM248), three genes that were expressed significantly higher in the CPE
(CDH1, CDKN2B, and SIX1), and six genes that were expressed significantly higher
in the NPE (ATOH7, CYP1B1, FBN1, MYOC, PAX6, and SIX6).

PMC3909915/2014

GSK3B MTHFR 0.85 MTHFR For example, GSK3B has a direct connection with IL4 and a secondary connection
with MTHFR.

PMC2653647/2009

GAPDH VSX1 0.85 VSX1 Each bar represents the relative expression of VSX1 normalized to GAPDH in a
different tissue/age; mean ± SD (Sc: sclera, Co: cornea, Ir: iris, CB: ciliary body,
Len: lens, Cho:

PMC2267740/2008

GLS2 HMGB1 0.80 GLS2 the HMGB1 inhibitor GA attenuated diabetes-induced upregulation of HMGB1 and
downregulation of BDNF

PMC3671668/2013 GLS2 is a synonym of GA

SHH ATOH7 0.78 ATOH7 Thus the SHH and GDF11 regulate ATOH7, which in turn regulates Brn3b. PMC2883590/2010

LMX1B COL3A1 0.45 LMX1B Recent immunohistological studies in NPS patients with severe glomerular disease
suggest a possible regulation of type III collagen by LMX1B, while the homozygous

PMC2669506/2007 COL3A1 is a synonym of
Type_III_collagen

NPS PAX6 0.05 NPS Research has demonstrated that retinal neurons and RGCs are mainly comprised of
anteriorized NPS that express PAX6 and OTX2.

PMC3747054/2013

NPS OTX2 0.05 NPS Research has demonstrated that retinal neurons and RGCs are mainly comprised
of anteriorized NPS that express PAX6 and OTX2

PMC3747054/2013

The genes in each extracted relation are listed under the “Gene1” and the “Gene2” columns, respectively. A measure of confidence, reported by ReVerb, is listed under the “Confidence” column and relations with low
confidence (<0.5) are bolded. The disconnected node in the relation is listed under the “Disconnected node” column. The associated text that relates the two genes is listed under the “PMC Excerpt” column. Some
genes were identified by their synonyms found in either GeneCards or GeneMANIA. The PMCID of the original article, coupled with the year of publication, is given under ”PMCID/Year” column. Important remarks and
gene synonyms may be listed under the “Remark” column
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DAVID, and GeneCodis databases. We excluded the 74 BG from the functional analysis

step to avoid intentionally enriching the results with biological processes and pathways

that are already known to be related to glaucoma. PANTHER ranked apoptosis at the top

of all biological processes associated with those genes (Fig. 5), which is in line with the evi-

dence that retinal ganglion cell death is a hallmark of glaucoma [55]. The most enriched

biological processes, associated false discovery rate (FDRs) and enrichment scores, re-

ported by PANTHER and DAVID clustering, are listed in Table 6. Furthermore, PAN-

THER identified gonadotropin-releasing hormone receptor (GnRHR) (involving 8.1 % of

the total genes on average) and Wnt signalling pathways (involving 4.5 % of the total

genes on average) with the highest gene associations. Interestingly, it was recently re-

ported that several Wnt signaling target genes have been identified as potential players in

glaucoma pathogenesis [56, 57]. The GnRHR pathway was proposed to control central

nervous physiology and pathophysiology modulating cognitive changes associated with

Table 5 Percentages of extracted relations

Finding Type Description Percentage

Known Verified 76/257 ~ 30 %

New Can be verified via one or more indirect paths from the known network 149/257 ~ 58 %

Disconnected Potential discovery that can be verified by lab experiment in the future 11/257 ~ 4 %

Unverified Gene symbols could not be found in GeneMANIA, HUGO or GeneCards 21/257 ~ 8 %

The Total number of unique and valid relations is 257, which are classified into known, new, disconnected, and
unverified relations, respectively. Description and percentage of each class is given under the “Description” and
“Percentage” columns
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aging and age-related neurodegenerative disorders [58]. Combined pathway analysis by

PANTHER and GeneCodis is shown with supporting literature (Fig. 6 and Table 7).

Our result is expected to be comprehensive, with partial resemblance to other studies

of glaucoma interaction networks. For example, our result shares only 5 and 29 genes

with two previous studies [28, 29] respectively. This emphasizes the fact that inter-

action networks from text mining approaches can be quite comprehensive because they

can incorporate and integrate information from all types of studies. Our enrichment

analysis also agreed with previously reported enrichments to glaucoma studies [29]

such as apoptosis and induction of apoptosis as underlying biological processes and

pathways such as PDGF signaling pathway, Ras pathway, and apoptosis signaling

pathway.

Network features

The resulting graph is a scale-free network that follows the Barabási–Albert (BA) net-

work model [59]. A scale-free network is a network with node links that follow a power

law distribution, i.e. the probability of linking to a given node is proportional to the

number of existing links, k, that node has. Our glaucoma network (Fig. 7) consists of

224 nodes and 255 edges. Network analysis shows that the network has a diameter of

13 and a path length distribution as shown in Fig. 8. While the diameter of the network

and path length distribution are quantitative measures that offer insight into how well

Fig. 5 Biological processes associated with extracted non benchmark genes. A pie chart, generated with
the aid of PANTHER, with a listing of biological processes associated with 150 extracted non benchmark genes

Table 6 Functional analysis of the 150 extracted non-benchmark genes

Biological Process Gene Count Corrected P-value

Regulation of apoptosis** 25 2.73E-06

Inflammatory Response* 12 0.002

Immune Response** 17 0.004

Regulation of response to stimulus** 9 0.01

Defense Response* 15 0.01

Biological processes, reported by DAVID, are suffixed by * and are associated with their genes count and corrected p-value.
Biological processes, that are common to both PANTHER and DAVID are suffixed by ** and are associated with their gene
count and corrected p-values, obtained from DAVID
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connected a network is, the clustering coefficient describes how clustered the network

is. The network diameter is the longest path between all possible pairs of nodes in the

network, while the path length distribution summarizes the number of steps along the

paths connecting all possible pairs of network nodes. The network has a relatively low

clustering coefficient of 0.11; a property which appears to characterize most metabolic

networks and protein interaction networks [60, 61], indicating that low degree nodes

tend to belong to highly connected neighborhoods, whereas high degree nodes tend to

have neighbors that are less connected to each other. The node degree is the number

of in-links and out-links for a particular node in the network. The network node degree

distribution follows a power law (Fig. 9), another property of scale free networks.

Table 8 lists the nodes with top ten degrees, indicating hub entities in the network. To

conclude, the current version of the extracted glaucoma interaction network is small

but informative. Future versions of the network are expected to evolve closer to a small

world network as more links between nodes get added.
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Gonadotropin releasing hormone receptor
pathway*

Wnt signalling pathway**

TGF-beta signalling pathway**

Jak-STAT signalling pathway**

PDGF signalling pathway*

Interleukin signalling pathway*

Apoptosis signalling pathway *

Fig. 6 Pathways associated with extracted non benchmark genes. Common pathways reported with the
aid of PANTHER and GeneCodis for the 150 extracted non- benchmark genes

Table 7 Pathway analysis of the 150 extracted NBG

Pathway name Count of genes
in pathway

FDR % of genes
in pathway

Supporting
References

Gonadotropin releasing hormone receptor pathwayb 9 8.1 [58]

Interleukin signaling pathwayb 6 5.4 [69]

Wnt signalling pathwaya 5 0.006 4.2 [56, 57]

Jak-STAT signaling pathwaya 5 0.001 1.8 [70]

PDGF signaling pathwayb 5 4.5 [71]

TGF-beta signaling pathwaya 4 0.01 3.6 [72]

Apoptosis signaling pathway b 2 1.8 [73, 74]

Common pathways, reported by both GeneCodis and PANTHER, are suffixed by a and the associated false discovery rate
(FDR) from GeneCodis is reported. Pathways, reported by PANTHER, are suffixed by b. The percentage of total genes in
the pathway is reported along supporting references that link glaucoma to the pathway
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Performance evaluation

As described in the “Methods” section, our text mining pipeline consists of three

steps: 1) Text retrieval, 2) Entity extraction, and 3) Relation extraction; each of which

has a different associated level of performance. Text retrieval performance is evalu-

ated based on the retrieval of relevant documents. Entity recognition performance is

evaluated by the fact that most, if not all genes, should be captured from the collec-

tion of glaucoma documents. Relation extraction performance is validated by the ex-

traction of relevant relations. Performance evaluation is usually based on precision

(P), recall (R) and F1-score metrics. P is defined as the proportion of retrieved in-

stances that are relevant, while R is the proportion of relevant instances that were re-

trieved. F1-score combines recall and precision. These metrics are given in Eq (1):

P¼# of relevant retrieved instances
# of retrieved instances

; R¼# of relevant retrieved instances
# of relevant instances

; F1¼ 2�P�R
PþR
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Fig. 7 Extracted glaucoma network. Glaucoma network laid with different node sizes. The node size reflects
the node degree of a gene where the degree is the total of the number of in-degree and out-degree links.
The nodes colored in cyan belong to the BC. The known relations are colored in black. The new extracted
relations are colored in blue. The relations with disconnected nodes are colored in green. The relations with
unverified nodes are colored in red
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The text retrieval step performance metrics and values are listed in Table 9 and

Table 10. For the entity extraction step performance, the GENIA tagger targets a

broader domain. Hence, it can be expected to tag varied entities (including localization,

cell type, DNA, etc.), but possibly less genes/proteins than the GenTag tagger. This is

because the latter is more focused towards genes and proteins. Indeed, in our particular

study, GENIA tagger tagged 2410 genes while GenTag tagged 3422 genes. Table 11 lists

the performance measures, reported in [62] for GENIA and the average performance

measures, reported in [63] and [64] for GenTag.

Because the relation extraction step depends on ReVerb, we report ReVerb’s perform-

ance from [43], which were 65 % precision and 52 % recall. Therefore, the F1 score as-

sociated with the relation extraction step is estimated at 58 %.

Discussion
While we have described an expansion of the known network of glaucoma related

genes, we were surprised that less than a quarter of the genes extracted from DisGeNet

and OMIM combined were connected to our network at this time (74/305 = 24 % BG).

Community detection with the Gephi’s Louvain modularity maximization algorithm

[65], partitioned the network into five distinct modular clusters (Fig. 10). The Louvain

modularity maximization algorithm measures the density of links, inside clusters as

compared to links between clusters and uses a resolution measure [66] that measures

the flows of probabilities in the network. The resulting five clusters formed a strongly

connected subnetwork that is 41 % of the size of the original network (96 nodes and
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148 edges), with only the giant influential components (nodes with high connectivity)

of the network. Examination of the clusters, showed that each has one or more of the

BC genes, making a total of 7 BC. Almost the same ratio is observed with the clusters,

where less than a quarter of the 30, genes present in both of OMIM and DisGeNET da-

tabases (7/30 = 23 %), are connected to the clusters. As to the BC genes, the green clus-

ter has CYP1B1 and MYOC, the purple cluster has OPTN, TBK1, and TNF, the red,

Table 8 Genes (nodes) with the top 10° in the extracted glaucoma interaction network

Gene(node) Degree

CYP1B1 17

FBN1 14

PAX6 13

MYOC 11

MFN2 10

OPTN 9

CKM 9

AKAP13 9

IBTK 9

TMCO1 9

The degree column represents the total number of a node’s ingoing and outgoing links. Note that CYP1B1 heads the list
with a total of 17 links
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yellow, and blue clusters have OPA1, FOXC1, and CMK respectively. Their representa-

tion here supports the notion that the 30 BC are most highly ranked among all of the

BG. Table 12 profiles the different properties of each of the five clusters and Fig. 11 de-

picts the clusters and their sizes.

The text mining approach, adopted in this study, relies heavily on natural language

processing (NLP) methods. We reported in this study, the first version of a glaucoma

interaction network, with the intention to report future refined versions when improve-

ments in the text mining pipeline become available. For example, more specificity could

likely be added to the results if a better tailored tagger was used. We relied on taggers

that were trained on general biological texts that are not specific to glaucoma. There-

fore, it is expected that not all entities will be captured from our article collection and

an in-house developed tagger, that is trained on literature related to eye diseases and

disorders, would likely improve our outcome. Additionally, we note that the currently

available glaucoma corpus has a relatively small size compared to other corpora associ-

ated with other diseases such as prostate cancer or breast cancer. Since the number of

extracted relations is proportional to the size of the corpus, it is desirable to increase

the corpus size to discover more relations. There are many possibilities to increase the

size of the available glaucoma corpus. For example, PubMed abstracts could be added

to the current corpus, or only PubMed abstracts could be considered instead of PMC

full text articles. Both options may significantly impact our future results.

Perhaps, the most sought improvement after enlarging the body of literature, would

be to reconsider the relation extraction step. ReVerb is designed for open relation ex-

traction, and has not been tweaked for closed relation extraction. In closed relation ex-

traction, the target includes verbs that are known a priori. However, considering our

small corpus, it would have negatively affected our extracted relations if we had been

confined to a closed set of predetermined verbs [67]. Another difficulty faced by Re-

Verb is handling complex sentence structures. Although many authors tend to use sim-

ple sentence structure such as: Subject-verb-Object, in describing a relationship

between two genes, it is not rare for authors to use more complex sentence structures

such as conjunctive structure sentences. The latter are sentences that bear multiple

verb based relationships or a single verb, to describe many-to-one or one-to-many

Table 9 Distribution of articles in the text retrieval step, depending on their accessibility and
relevance

Relevant Not Relevant Total

Retrieved open access articles 7425 1235 8660

Restricted access (not Retrieved) 22733 unknown __

Total 31393 __ __

Relevant articles are those that contain at least one occurrence of the word “glaucoma” in their text. The portion of
restricted access articles, are not relevant, is unknown to us at the time of writing this article

Table 10 Evaluation metrics for the retrieval step

Metric Value

Precision 7425/8660 = 85 %

Recall 7425/31393 = 23 %

F1 36 %

Evaluation metrics are computed based on Table 9. Note that recall is limited by the number of open access articles at
this time
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relationships in a single sentence, respectively. Due to its shallow syntactic analysis, Re-

Verb’s maximum recall is limited and therefore, it misses most of the conjunctive struc-

ture sentences. A better but probably time consuming alternative, is to use an NLP

parser such as the Stanford parser [68] to parse target sentences, then search the pars-

ing tree to capture all missing models of verbs.
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Fig. 10 A smaller glaucoma interconnected subnetwork resulting from applying the modularity algorithm
in Gephi on the original glaucoma network. The glaucoma network in Fig. 7 was subjected to the Gephi
modularity clustering algorithm to identify communities and classes within the network. Five distinct classes
colored in green, purple, red, yellow, and blue respectively, can be seen

Table 11 Performance measures of the used LingPipe NER tagger

Tagger Entity Type Recall (%) Precision (%) F-score (%)

GENIA Protein 81.41 65.82 72.79

DNA 66.76 65.64 66.2

RNA 68.64 60.45 64.29

Cell Line 59.6 56.12 57.81

Cell Type 70.54 78.51 74.31

Overall 75.78 67.45 71.37

GENTAG Gene/Protein 79 88 70.8

Reported measures for the GENIA tagger is based on the GENIA performance web site [62] while performance measures
of the GENTAG tagger is the average of the measures reported in [63, 64]
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Conclusions
In this study, we have constructed a glaucoma interaction network using a text mining

approach applied to open access PMC based literature. Our findings revealed 149 po-

tential new relations. These newly discovered relationships link 74 benchmark genes

(BG) present in the 2 databases, DisGeNet and OMIM, with 150 non-benchmark genes

(NBG) present in the PubMed Central database, in the form of a small world inter-

action network. These findings include 21 unverified relations and 11 disconnected re-

lations, which could be verified in the lab. The constructed network contains five

distinct gene clusters in association with 7 BC. The 5 clusters are interconnected

through 4 gene-gene associations which include: OPA1-MFN2, PITX2-PAX6, MYOC-

Table 12 Clusters extracted from the giant components in the glaucoma network and their
associated profiles

Cluster # Nodes BG NBG Node with
highest degree

Known
relations

New
relations

Unverified
relations

Disconnected
relations

Green 36 6 11 CYP1B1 = 17 10 14 8 4

Purple 23 1 9 OPTN = 10 7 15 0 1

Red 15 0 5 OPA1 = 5 2 12 0 1

Yellow 13 2 5 FOXC4 = 7 2 11 0 0

Blue 9 2 7 CKM = 9 4 5 0 0

The giant components in the glaucoma network depicted in Fig. 7 are clustered into five clusters. Clusters are ordered in
descending order of the number of nodes in each cluster. Cluster properties include number of BG, NBG, highest degree,
and the number of different types of relations contained within the cluster

Fig. 11 Modularity community classes and associated node sizes. The modularity classes are listed on the X
axis while the number of nodes is on the Y axis. The highest number of nodes is 36 in modularity class 3,
while the least is 9 in modularity cluster 0. The value of modularity, before and after applying the resolution, is
listed on the top left of the figure. A resolution value of 9.0, was used in association with the modularity algorithm
to obtain dense, well separated classes
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CKM and MYOC-OPTN. Thus the larger network is only possible because of these 4

bridges. It is important to note that 2 of these 4 gene-gene bridges, OPA1-MFN2 and

MYOC-OPTN, were discovered through this text mining approach which has associated

genes in the DisGeNet and OMIM databases with the PubMed Central database.

Finally, we have discussed several important issues with text mining approaches which

could aid future iterations of disease-based gene-interaction networks.
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