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Abstract
Background: Multi-gene lists and single sample predictor models have been
currently used to reduce the multidimensional complexity of breast cancers, and to
identify intrinsic subtypes. The perceived inability of some models to deal with the
challenges of processing high-dimensional data, however, limits the accurate
characterisation of these subtypes. Towards the development of robust strategies, we
designed an iterative approach to consistently discriminate intrinsic subtypes and
improve class prediction in the METABRIC dataset.

Findings: In this study, we employed the CM1 score to identify the most
discriminative probes for each group, and an ensemble learning technique to assess
the ability of these probes on assigning subtype labels using 24 different classifiers. Our
analysis is comprised of an iterative computation of these methods and statistical
measures performed on a set of over 2000 samples. The refined labels assigned using
this iterative approach revealed to be more consistent and in better agreement with
clinicopathological markers and patients’ overall survival than those originally provided
by the PAM50 method.

Conclusions: The assignment of intrinsic subtypes has a significant impact in
translational research for both understanding and managing breast cancer. The refined
labelling, therefore, provides more accurate and reliable information by improving the
source of fundamental science prior to clinical applications in medicine.
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Findings
Translational research aims at bringing basic scientific discoveries into outcomes that
help improve clinical decision-making. The PAM50 Breast Cancer Intrinsic Classifier
[1] has lately been used to assign the molecular subtypes (luminal A, luminal B, HER2-
enriched, basal-like and normal-like [2–5]) based on shrunken centroids of gene expres-
sion profiles [6]. It uses a Single Sample Predictor (SSP) model with an embedded 50-gene
assay. In spite of the relevance of this method for clinical management, there are limited
investigations in the literature that support this classification approach. Comparison with
other methods showed only moderate agreement between subtype labels assigned, as well
as independent clinical prognostic information [7–9].
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Other multi-gene signatures have also been reported within the molecular patterns
strongly correlated to clinical prognosis [10, 11], disease progression [12, 13], and
patient survival [14]. Different methods, however, highlight a variety of gene lists
of distinct size due the analysis of diverse microarray data and platform technolo-
gies. Additionally, the methods currently applied bring a pragmatic concern of using
SSP models for predicting disease subtypes. Multiple classifiers or ensemble learn-
ing model, on the other hand, have compensated for poor learning algorithms by
performing extra computation [15]. Therefore, there is an urgent need for translat-
ing these novel strategy to provide more accurate predictions of clinicopathological
outcome.
In 2012, The Molecular Taxonomy of Breast Cancer International Consortium

(METABRIC) [16] disclosed a rich gene expression cohort widely used for investigating
breast cancer diseases. In spite of the quality of this dataset, there are some incon-
sistencies with regards to the subtype labels assigned in the original cohort [17]. In
our previous study [17], a thorough review of the intrinsic subtypes was suggested
and is, therefore, mandatory given the importance of this dataset to breast cancer
research. For this report, we then propose a more robust approach to iteratively refine
the labels in the METABRIC dataset based on ensemble learning. The new labels
are yet correlated to well-established clinicopathological markers and patient overall
survival.

Methods
Transcriptomic datasets

The breast cancer dataset disclosed by the METABRIC study (EGAS00000000083) con-
tains cDNAmicroarray profiling of about 2000 samples performed on the Illumina HT-12
v3 platform (Illumina_Human_WG-v3) [16]. The samples were originally partitioned
into two subsets: Discovery (997 samples) and Validation (989 samples), respectively
used as training and test sets in our analysis. In this cohort, tumour samples were
assigned on the five intrinsic subtypes (luminal A, luminal B, HER2-enriched, basal-
like and normal-like) according to the PAM50 method [1]. The METABRIC study was
approved by the Institutional Review Board [16] and our research was authorized
by the Human Ethics Research Committee at The University of Newcastle, Australia
(H-2013-0277).

Refinement method

The overview of the refinement method applied on the METABRIC dataset is shown
in Fig. 1. The process is initialized with the discovery set and the original PAM50
labels as defined in Curtis et al. [16]. After computing the CM1 score, the top
ten highly discriminative probes (five with the greatest positive CM1 score val-
ues - indicating up-regulated probes relative to the other subtypes, and five with
the smallest negative values – representing down-regulation) are chosen for each
class. The set of new features is used to train the 24 classifiers from the Weka
software suite [18], where a ten-fold cross-validation is performed. If the majority
of the classifiers agree on the same label, the sample is assigned with the corre-
sponding subtype; otherwise it is marked as inconsistent and not further consid-
ered in the process. The stopping criterion is reached when there are no more
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Fig. 1 Refinement process. The process is initialized with labels assigned using the PAM50 method. After
computing the CM1 score, the top 10 highly discriminative probes are selected for each subtype. This set of
features is used to train the 24 distinct classifiers for a 10-fold cross-validation classification. Samples are
relabelled (eventually with the same label) if the classifiers agree in at least 50 % of the cases; otherwise they
are marked as inconsistent and not further considered in the iteration process. The stopping criterion is
reached when there are no more changes in the sample labels or selected feature set, or when the desired
Fleiss’ kappa is achieved. After stopping, the final feature set and sample labels are used to classify the
samples previously marked as inconsistent or from the validation dataset. These samples are run through the
same refinement procedure; inconsistent samples are reclassified and labels are refined

changes in the sample labels and feature set, or when the desired Fleiss’ kappa
value (κ ≥ 0.92) is achieved between the previous and the current iteration
steps (see Section Statistics below for definitions). Values between 0.81 and one are
considered to be almost perfect agreement, thus 0.92 is above the average for this
interval.



Milioli et al. BioDataMining  (2016) 9:2 Page 4 of 8

When the stopping condition is fulfilled, the new list of features and sample
labels are used for the training-test setting. Samples from the validation dataset or
previously marked as inconsistent are then classified by training the classifiers in
the refined discovery set. However, in the training-test setting, at least two thirds of
classifiers in the ensemble must agree on the same label for it to be assigned
to a sample. As a larger dataset is expected to provide more robustness, all
the reclassified samples are run through the same refinement procedure again.
The final outcome of this process is the set of refined features and the new
labels.
Since many classifiers tend to perform best when trained on classes of equal

sample size, we adjusted the number of patients in each subtype by looking at
the minimum number of samples in one of the subgroups. The normal-like sub-
type is represented by only 58 samples; thus, the total number of samples used in
the training is 290. For each other subtype, 58 samples are randomly chosen from
the dataset. The whole process is run ten times due to the interchangeable sam-
ple selection that weigh the different gene expression information used for training
purposes.

The CM1 score

The CM1 score is a supervised method used to rank the variation of gene expres-
sion levels across samples from two different classes (more details in [17, 19]).
The measure helps to identify the most discriminative features for each of the
five breast cancer intrinsic subtypes: luminal A, luminal B, HER2-enriched, basal-
like and normal-like. For a given subtype, we compute the CM1 score for each of
the 48,803 probes and select the ten most discriminative ones. This happens itera-
tively in the refinement process each time the classifiers attribute a new label to a
sample.

Statistics

Several measures have been computed in order to assess the quality of our results. We
created a contingency table r × c comparing the predicted labels (rows) and labels from
the previous refinement step (columns).
Cramer’s V [20] is used to measure the level of association between sample original and

predicted labels. The statistic ranges from zero (no association between the two variables)
to one (complete association).
Fleiss’ kappa [21, 22] is a popular interrater reliability metric used to gauge the agree-

ment between the original PAM50 labels and the labels assigned by the majority of
classifiers. Kappa values range from≤ 0 to 1, where: (1) values≤ 0 show a poor agreement;
(2) 0 ≤ κ ≤ 0.2, slight agreement; (3) 0.21 ≤ κ ≤ 0.40, fair agreement; (4) 0.41 ≤ κ ≤ 0.60,
moderate agreement; (5) 0.61 ≤ κ ≤ 0.80 substantial agreement; and (6) 0.81 ≤ κ ≤ 1,
almost perfect agreement.
Adjusted Rand Index (ARI) [23, 24] measures the agreement between pairs of sam-

ples that are labelled either in the same class or in different classes. Results range from
zero (complete discordance between two partitions) to one (perfect concordance between
them).
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Clinical data and survival analysis

The clinical markers oestrogen and progesterone receptors (ER and PR) and the
human epidermal growth factor receptor two (HER2) are compared between original
METABRIC labels and refined labels. Survival analysis was also performed, using Cox
proportional hazardsmodel from the package survival in the R software [25]. The p-value,
used to test the null hypothesis that the curves stratified by subtype are identical in the
overall population, is calculated using the log-rank test.

Results and Discussion
Discriminative probes used to assign the intrinsic subtype labels in the refinement process

Samples were assigned into the five intrinsic subtypes based on the majority voting
of classifiers (Additional file 1: Table S1), supported by their consistent perfor-
mance across the ten runs (Additional file 2). During this procedure, 74 dis-
criminative probes appeared (Additional file 1: Table S2) and, among them, 35
were recurrently selected (Fig. 2). Overall, the association between the initial labels
and those predicted using the ensemble learning (Table 1) was 0.95 according to
Cramer’s V. The consensus of sample labelling across different classifiers measured
using Fleiss’ kappa was 0.924. The ARI (1.00) also showed a maximum agreement
between pairs of samples that are labelled either in the same class or in different
classes.

Fig. 2 The heat map of refined intrinsic features selected using CM1 score in the refinement process. The
heat map diagram exhibit 35 probes (rows) and 1992 samples (columns) from the discovery and validation
sets ordered according to gene expression similarity. For visualisation, the expression values are normalised
across the probes using a two-sided threshold of 1 % (for under- and over-expression). The bars on the
bottom show the sample distribution according to the refined and original labels assigned to the METABRIC
cohort. The subtypes are defined as follow: luminal A (blue), luminal B (green), HER2-enriched (yellow),
normal-like (purple), basal-like (red), and inconsistent (grey)
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Table 1 Contingency table for predicted labels vs. initial subtypes (rows and columns, respectively)

Subtypes Lum A Lum B HER2 Basal Normal Summary

Lum A 563 94 11 2 58 728

Lum B 102 383 77 19 19 600

HER2 7 1 149 59 18 234

Basal 0 0 0 230 3 233

Normal 33 0 1 15 95 144

Inconsistent 16 14 2 6 9 47

Summary 721 492 240 331 202 1986

New subtype labels reveal more reliable distribution of clinical markers and survival curves

We correlated the METABRIC and predicted labels with the current clinical markers
ER, PR and HER2. Table 2 shows the changes in number of samples across subtypes,
labelled with the PAM50 method and refined labels, respectively. The refinement process
improved the overall distribution to what is expected for each class: luminal A (ER+, PR+,
HER2–), luminal B (ER+, PR±, HER2±), HER2-enriched (ER–, PR–, HER2+) and basal-
like (ER–, PR–, HER2–); especially for HER2-enriched and basal-like subtypes. Samples
labelled as inconsistent in our study may also reflect the heterogeneity of the disease and
a hint to as-yet improperly characterized molecular subtypes.
Furthermore, the patient’s overall survival significantly improved across subtypes when

the original and refined labels are used to plot the curves for the METABRIC discovery
and validation sets (Fig. 3). The groups have a well defined separation after the refinement
process (p value 2.8× 10−26) compared to the original labels (p value 5.4× 10−18). These
results also support a better characterization of the intrgroups after the iterative approach.

Conclusion
The iterative approach using CM1 score and ensemble learning has shown a great poten-
tial for predicting more accurate sample subtypes in the METABRIC breast cancer
dataset. The refined labels are of great value to breast cancer research and future clinical

Table 2 Number of samples for each clinical marker in the PAM50 subtypes and refined labels

PAM50 subtypes

Class\Marker PR+ PR- ER+ ER- HER2+ HER2-

Luminal A 550 171 717 4 23 698

Luminal B 309 183 492 0 45 447

Her2-enriched 51 189 98 142 135 105

Basal-like 29 302 41 290 30 301

Normal-like 106 96 164 38 16 186

Refined labels

Class\Marker PR+ PR- ER+ ER- HER2+ HER2-

Luminal A 558 170 726 2 14 714

Luminal B 358 242 599 1 83 517

Her2-enriched 11 223 19 215 139 95

Basal-like 7 226 9 224 4 229

Normal-like 85 59 115 29 4 140

Inconsistent 26 21 44 3 5 42
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Fig. 3 The survival curves for original and refined labels in the METABRIC discovery and validation sets. Each
curve represents the survival probability at a certain time after the diagnosis. Drops in the curve indicate
death. The probability of the last ten observations are plotted in dash

translational science. Given the relevance of accurate subtype assignments, we encour-
age researchers to consider the proposed refined labels when analysing the METABRIC
dataset.

Additional files

Additional file 1: Refined subtype labels and intrinsic probes. The refined breast cancer subtype labels defined
for each sample in the METABRIC dataset are listed in Table S1. Table S2 shows the annotated probes selected in the
CM1 list and the average occurrence of each probe. (XLSX 58 kb)

Additional file 2: Classifiers Performance. The document contains information on the ensemble learning
approach with regards to the performance of each classifier. (PDF 1280 kb)
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