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Abstract

Long intergenic non-coding RNAs (lincRNAs) represent one of the most mysterious RNA
species encoded by the human genome. Thanks to next generation sequencing (NGS)
technology and its applications, we have recently witnessed a surge in non-coding RNA
research, including lincRNA research. Here, we summarize the recent advancement in
genomics studies of lincRNAs. We review the emerging characteristics of lincRNAs,
the experimental and computational approaches to identify lincRNAs, their known
mechanisms of regulation, the computational methods and resources for lincRNA
functional predictions, and discuss the challenges to understanding lincRNA
comprehensively.

Introduction
The mainstream focus of biomedical research has been in elucidating the functions and

interactions among proteins within the cell. In line with the central dogma of molecular

biology, RNAs were once perceived as the intermediary for protein production and the

archaic precursor molecule of DNA. However, RNAs are transcribed from more than

85 % of genomic regions [1], whereas proteins are only encoded in less than 3 % of

human genome sequences [2]. This leaves a mysterious knowledge gap in either the

efficiency of cellular transcription to translation or a foundational misunderstanding in

gene expression regulation and RNA function. It was thought that RNAs had limited but

essential and evolutionarily common roles of basic cell machinery such as tRNA, rRNA,

and mRNA. The few examples of functional RNAs or RNAs with enzymatic-like activity,

were considered as evolutionary remnants [3]. For a long period of time, non-coding

RNA (ncRNA) transcripts were believed to be by-products derived from mRNA degrad-

ation or nonspecific polymerase activity, and therefore termed “transcriptional noise” [4].

It is now becoming evident that ncRNAs are responsible for many aspects of gene

regulation. Some small non-coding RNAs, such as microRNAs, siRNAs, snRNAs,

snoRNAs, exRNAs and piRNAs, have been well categorized over the past decade.

However, long noncoding RNAs (lncRNAs) remained relatively unexplored due to the

challenges of computational prediction under poor sequence conservation and low hom-

ology within the set of lncRNAs. Some of these challenges have been addressed by the

revolutionary inventions of next generation sequencing (NGS) and its applications, such

as RNA-Seq, which captures whole transcriptome data, including lncRNAs. Among the

human lncRNAs, tens of thousands of long intergenetic noncoding RNAs (lincRNAs)
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have been discovered in the genomic regions outside of the well-studied coding genomic

regions, and they show many intriguing properties, such as associations with various

human diseases, tissue-specific expression, and expression changes during development.

Consequently, attributing organism complexity to the hidden regulation of lincRNAs is a

fascinating new area of research. Here, we review the emerging characteristics of

lincRNAs; the experimental and computational approaches to identifying lincRNAs and

their mechanisms of regulation; the challenges in computational predictions; and the re-

sources still required to advance our understanding of lincRNA-related genomic regulation.

Review
Emerging characteristics of lincRNAs

LincRNAs are a putatively heterogeneous group, conventionally defined as ncRNA

transcripts of more than 200 bp located in regions with no overlap to any known protein-

coding genes. According to Lncipedia, a comprehensive lncRNA database, high-throughput

studies of transcriptome data have catalogued over 111,000 lncRNA transcripts, with roughly

50 % coming from intergenic regions [5]. The majority of lincRNAs are thought to be tran-

scribed from RNA polymerase II, and are therefore usually modified by post-transcriptional

5′ capping and 3′ polyadenylation [6]. Surprisingly, lincRNAs show ribosome occupancy

similar to the 5′UTRs of protein coding genes [7]. What differentiates lincRNAs from

protein coding genes seems to be the lack of release upon encountering a stop codon in the

lincRNA sequences [7]. Therefore, polyadenlyation and 5′ capping are not necessarily

markers of protein coding functionality. However, lincRNAs show a markedly higher degree

of tissue-specific [8] and disease specific expression [9], suggesting some biological function.

LincRNA expression is generally much lower than protein coding genes, with a few

exceptions such as the XIST lincRNA [10]. For some lincRNAs, even just a few or a single

transcript exist in a cell, determined by RNA-Seq data [10]. However, rather than being

spurious by-products of non-specific RNA transcription, the expression levels of lincRNAs

in any given cell are precisely coordinated throughout the tissue, and dynamic through the

course of development [11]. Researchers have detected differential expression of lincRNA

in a range of tissues, diseases, and specific cellular responses. Efforts have been made to

take advantage of these properties of lincRNAs for translational and clinical applications,

such as disease biomarkers [12].

Another unique feature of lincRNAs is the low sequence conservation. LincRNAs exhibit

22–25 % of conserved bases under purifying selection, compared to 77 % in protein coding

sequences. However, they are considerably more conserved than introns, which have 7 %

conservation [13]. Under the assumption that sequence conservation reflects biological

significance, the high genomic sequence variability in lincRNAs was the initial basis to call

them “junk RNAs”. Unlike proteins, where evolutionary conservation correlates highly with

functional importance, lincRNAs seem to be under different selective pressures. Many

lincRNA are predicted to have secondary structure and may therefore act in a sequence

independent manner [14]. Consequently, there may be a greater functional importance on

molecular 3D conformation over the primary sequence. This is supported by a recent

global study of genetic variants in human lincRNAs in association with diseases, where

single nucleotide polymorphisms (SNPs) in evolutionarily conserved regions of lincRNAs

had significant effects on predicted secondary structure [15].
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Genome-wide detection of lincRNAs

Chromatin immunoprecipitation sequencing (ChIP-Seq) is an NGS method that has

allowed the discovery of global genomic binding sites of DNA-interacting proteins, such as

transcription factors and histones. Using ChIP-Seq signatures of histone 3 lysine 4

tri-methylation (H3K4me3) and histone 3 lysine 36 tri-methylation (HK36me3), or so

called “K4-K36” clusters, Guttman et al. detected approximately 1700 transcriptional units

>5 kb among four mouse cell lines, which were confirmed by tiling microarrays, PCR and

northern blots [16]. This type of chromatin signature was later applied to human cell lines

to identify lincRNAs and was shown that along with HOTAIR, 20 % of lincRNAs were

associated with the Polycomb repressive complexes 2 (PRC2) [4]. ChIP-Seq has also been

applied to the detection of RNA pol II occupancy to identify lincRNAs in mouse macro-

phages upon endotoxin stimulation [17]. The authors found that 70 % of extragenic

polymerase II peaks were associated with genomic regions with a canonical chromatin

signature of enhancers.

Clearly, decisions made during the library preparation phase of an RNA-seq experi-

ment will affect lincRNA measurements. Since many but not all lincRNA transcripts

are poly-adenylated [18], the decision to select poly-adenylated RNAs or to use ribode-

pletion methods should be made with care. Yang et al. [19] state that approximately

20 % of transcripts are non-poly adenylated, suggesting that ribo-depletion methods are

necessary to gain a more comprehensive picture of the transcriptome. In addition, Yang

et al. find that some transcripts, such as the Malat1 lincRNA are bimorphic, meaning

they exist in poly-A(+) and poly-A(−) configurations. Thus, ribo-depletion and poly-A

selection methods could provide complementary information on the relative propor-

tions of poly-adenylation of transcripts. Moreover, the adoption of strand-specific

sequencing protocols provides a means of making more detailed annotations of

lncRNAs, especially the antisense lncRNAs [20]. Nevertheless, even without strand

information, RNA-seq has proven useful for the identification of lincRNAs. For

example, Cabili et al. analysed lincRNAs in 24 tissues and mapped out nearly 9000

lincRNAs coupled to expression profile information [8].

Not all NGS methods are ideal for identifying the precise boundaries of lincRNAs.

ChIP-Seq using antibodies against RNA polymerases can only provide a rough estimation

of transcription location but not the precise boundaries of transcripts [17]. RNA-Seq may

also have trouble to detect isoforms and their exact start and end sites, as the cDNA is

randomly fragmented, and accumulated from all isoforms within a given genomic loci

[21]. Moreover, if RNA-Seq is conducted by a poly-A enriched approach, the internal bias

against 5′ ends make it difficult to map out the exact start sites of a transcript. However,

some other NGS methods have been adopted to overcome this problem. For example,

cap analysis gene expression (CAGE) tag sequencing has been used to aid the identifica-

tion of transcription start sites in human cells [18], and 3′-end sequencing (3SEQ) has

also been used in a zebrafish model to aid the determination of the 3′ bounds of lincRNA

transcripts [22]. Additionally, tiling arrays that enable direct observation of lincRNAs

transcript exons have been used to detect gene boundaries and alternative splicing. For

example, Tahira et al. sampled intergenic and intronic ESTs from over one million ESTs

from The Cancer Genome Project to develop a custom microarray, and subsequently

identified lincRNAs differentially expressed between primary and metastatic pancreatic

cancers [23].
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Computational methods to predict lincRNAs

Most computational studies of lincRNAs rely on RNA-Seq results initially, with

quality-control filtering steps to remove reads arising from spurious background noise

[24]. Additional steps should be taken involving the removal of protein coding genes

and small non-coding RNAs such as microRNAs. Methods to do such removals include

ORF detection [1, 9, 16, 25], BLAST to identify homologs of protein coding genes [25],

domain based searches such as Pfam [9, 25], and predictions of coding potential based

on nucleotide substitution frequencies given sequences from multiple species. The

Coding Potential Calculator (CPC) [26] and iSeeRNA [27] programs are popular

choices in determining coding potential. However, the extent to which some lincRNAs

may be hosts of smaller RNA species such as microRNAs requires further study [28].

Another selection criterion is the number of exons in a transcript. Most of the exons

(about 80 % in human) are less than 200 bp [29], the minimum length requirement of

lincRNA by definition. Transcripts with only one exon are less likely to be lincRNAs.

Additionally, the number of exons can be used as an indicator of transcript quality.

Multi-exonic transcripts are less likely to result from spurious transcription and

genomic noise. The presence of introns is also indicative of robust and consistent

transcription boundaries. Introns have less frequent terminal repeats and transposable

elements in comparison to intergenic regions, suggesting that lincRNAs have additional

conservation in splicing [30]. Finally, the axiomatic length-based filter, 200 bp,

eliminates any non-coding sequences that fall into the current small RNA categories

[31]. The filtering steps described above are often implemented through a pipeline with

a series of cut-offs or a decision tree to interrogate multiple features involved in

classifying lincRNAs [24].

In recent years, machine learning based classification approaches have been used to

detect lincRNAs [17, 27, 32–34]. For example, iSeeRNA interrogated coding potential

based on a variety of factors mentioned above, in addition to nucleotide composition. It

was trained to differentiate protein coding genes and lncRNAs with an area under the

curve (AUC) of 0.99 [27]. LncRNA-MFDL is another tool that uses a deep learning

method and the fusion of multiple features to classify lincRNAs with an accuracy of

97.1 % [34].

lincRNA databases

LincRNAs identified from exploratory studies are a valuable resource for accumulating

information about these relatively unknown transcripts. Information such as location,

splice junction, and tissue specificity are important features. There are quite a few spe-

cialized databases that provide comprehensive annotations for lincRNAs or lncRNAs.

These include The Broad Institute’s Human Body Map project [4], NONCODE [35]

and Lncipedia [5]. Other large gene annotation sets such as GENCODE [36, 37],

UCSC’s known genes [38] or Rfam [39] RNA family databases are not specific to

non-coding RNAs, but nevertheless contain large sets of annotations and information

on lincRNAs.

The UCSC ENCODE project provides a feature-rich resource to describe the

transcriptional landscape in a variety of tissues from the GENCODE database [40]. The

Ensembl Geneome Browser is another resource that identifies and annotates transcripts
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within their large database using transcriptional evidence as well as chromatin mark-

ups [36]. The Ensembl project uses the GENCODE database, and contributes multiple

sources to GENCODE through an automated annotation pipeline in combination with

the large Havana annotation by the Sanger Institute [36]. While GENCODE is one of

the most comprehensive databases for mammalian species, it does not include

lincRNAs found by RNA-Seq ab initio alignment methods, such as those in the Human

Body Map. Neither is it as comprehensive as specialized databases.

More specialized lncRNA databases, such as NONCODE and Lncipedia, enumerate a

much larger number of lncRNAs (Table 1). These databases have been created to facilitate

functional analyses by integrating multiple data sources such as expression, chromatin

markups, microRNA binding sites and mutational data with known lncRNAs. Not

surprisingly, the overlap of those data sets can differ greatly, largely due to the selection

criteria of particular lncRNAs or the tissue origins where lincRNAs were initially detected.

Table 1 Summary of lncRNA/lincRNA databases

Project Name Species Purpose

Human Body Map Human A reference set of lincRNAs

ChIPBase Various (incl. Human
and Mouse)

A resource for lncRNA transcriptional regulation and expression
profiles of ncRNA (lncRNA, microRNAs, etc.)

NONCODE Various (incl. Human
and Mouse)

A large lncRNA database integrating various databases and
references

lncRNAdb Various (incl. Human
and Mouse)

A database of lncRNAs having biological function or regulatory
roles

ncRNA expression
database (NRED)

Human and Mouse Expression database for human and mouse lncRNAs

LNCipedia Various (incl. Human
and Mouse)

A large database of lncRNA transcripts and annotation

LncRNADisease Human A database of lncRNAs associated with human diseases

DIANA-LncBase Human and Mouse A database of experimentally verified and predicted microRNA
targets on lncRNAs

lncRNA2Target Human and Mouse A collection of lncRNA knockout experiments and
downstream regulation

starBase 2.0 Human, Mouse and
C. elegans

A collection of lncRNA and predicted microRNA targets; lncRNA
expression profiles from TCGA data

lncRNAMap Human A resource for exploring lncRNA expression profiles and
interaction with small RNAs (siRNA, microRNAs, etc.)

lncRNAWiki Human An open wiki style lncRNA database

MONOCLdb Mouse A mouse noncoding database detailing functional
enrichment of lncRNA in response to respiratory
disease caused by influenza and SARS-CoV

lncRNome Human A searchable database for long noncoding RNAs in humans
and various properties, such as predicted structure, SNPs
and epigenetic modifications

PLncDB Arabidopsis thaliana A database dedicated to A. thaliana plant lncRNA transcriptome,
including information on epigenetic modification

Functional lncRNA
Database

Human, Mouse and
Rat

A database of experimentally validated functional lncRNAs

lnCeDB Human A database of lncRNA acting as ceRNA

Linc2GO Human A database of lncRNA acting as ceRNA and biological processes
based on GO annotation

lncRNASNP Human and Mouse A database cataloging micro-RNA interactions and SNPs in
lncRNAs and their impact on secondary structure
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Genomic assays to study lincRNA regulations

Methods to elucidate the functions of individual lincRNAs have made much slower pro-

gress compared to large-scale genomic assays. In this section we survey the increasing

number of genome-scale molecular interaction studies to investigate the cellular functions

of lincRNAs.

Several genomic approaches have been reported to identify specific functions of lincR-

NAs. One popular technique is the protein-centric RNA immunoprecipitation (RIP), which

selects a particular protein or a group of proteins to co-precipitate RNAs and determines

functional relationships based on physical interactions [41]. This allows one to ascribe

functions of the protein(s) with co-precipitated lincRNAs. For example, Shi et al. used RIP

to identify novel functional lincRNAs involved in the regulation of TNF expression through

binding to PRC2 [42], and found that PRC2 binds to thousands of RNA species. Thus,

protein-centric methods focusing on PRC2 have provided us critical insights into the

genome-wide regulation by lincRNAs [43].

Conversely, another approach is to purify certain RNA molecules and then capture

the associated proteins (RNA-centric methods); the associated proteins can then be

identified via mass-spectroscopy [41]. This approach works by complementary base

pairing of the RNA sequence to oligonucleotide probes labelled with streptavidin or

biotin [44]. However, in comparison to protein-centric methods where the RNA targets

can be amplified by PCR, RNA-centric methods do not have a means of amplifying the

protein targets. Therefore, RNA-centric methods work best when large quantities of

protein are available [41].

Additionally, there have also been a handful of “DNA-centric” methods for studying

lincRNAs. Methods that investigate DNA modification or the 3D structure of chromosomes

have greatly advanced our understanding of gene regulation [45]. For example, Ma et al.

developed a novel method called Dnase Hi-C that determines the interactions of lincRNA

promoters with DNA enhancer regions [45]. Their method involves cross-linking nearby

DNA strands, followed by DNAse I digestion, proximity ligation between the cross-linked

strands and DNA sequencing. Rather than using restrictive enzyme (RE) as done in conven-

tional Hi-C, which generates predictable and consistent fragment ends, DNase I produces a

heterogeneous mixture of fragment ends that greatly improves the efficiency and resolution.

They were able to fine-map cell specific 3D organization of 998 lincRNA promoters. They

demonstrated that lincRNA expression is tightly controlled by complex mechanisms

including super-enhancers and PRCs.

Known functions and mechanisms of lincRNAs

Historically, lincRNAs have been shown to have a greater likelihood to be functionally

associated with their nearest neighboring protein-coding genes. However, more recent

analyses show that the expression correlation between a lincRNA and its closest coding

gene is not statistically significant when compared to the correlation between two

neighboring protein-coding genes [8, 46]. While complementary base pairing may be the

mechanism of action for some small RNAs such as microRNAs, lincRNAs by their nature

are unlikely to exert their regulatory function solely through sequence pairing. Instead,

lincRNAs have been shown to mediate the interplay between many molecular species

simultaneously [47]. LincRNAs affect gene expression by many different mechanisms -
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from chromatin remodelling and epigenetic regulation, to transcriptional, post-

transcriptional, and protein-level control. So far, no unifying genome-wide theme

has been found to explain all the complexities of lincRNA regulation. We review

the handful of competing theories that attempt to address this problem.

LincRNAs involved in chromatin remodelling

Epigenetics is a vital means of DNA patterning to regulate gene expression [48]. PRCs

exert gene silencing epigenetically by histone modifications and DNA chemical alterations

such as methylation [43]. Recruitment of PRCs to certain genomic locations is mediated

by specific lincRNAs. Thus, the differential expression of certain lincRNAs (such as

HOTAIR) can lead to activation or deactivation of transcription on the genome [49]. The

vital role of gene suppression due to lincRNAs has been implicated in the pathology of

cancers, where dysregulation of individual lincRNAs release cell cycle control resulting in

an increase in cell proliferation [50]. Complicating matters, thousands of lincRNAs were

found bound by PRC2 within various cell types [4], suggesting the widespread interaction

of lincRNAs with the epigenetic modification machinery.

LincRNAs as transcription co-factors

Many lincRNAs are known to act as transcription co-factors. In some cases, the act of

transcription of a lincRNA may positively or negatively affect expression of nearby genes

[51]. Dimitrova et al. showed that lincRNA-p21 acts as a transcriptional coactivator and

was required for recruitment of ribonucleoproteins to promoter elements associated with

pre-mRNA [52]. MALAT1 is also known to act as a transcription co-factor. This lincRNA

is well characterized as one of the most highly expressed mammalian lincRNAs. It is also

known to significantly affect the metastasic process in lung adenocarcinoma, by enhancing

the expression of cell motility genes [53]. It was found that MALAT1 acts as a molecular

scaffold to allow gene expression by promoting the interaction among unmethylated

PRC2, E2F1 transcription factor, histone markers, and the other transcriptional co-

activator complexes [54]. Interestingly, this protein sequestration mechanism of ncRNA is

not unique to eukaryotes, and it also occurs in bacteria [55].

Competing endogenous RNA hypothesis of lincRNAs

The competing endogenous RNA (ceRNA) hypothesis is a theory that lncRNAs (including

lincRNAs) regulate gene expression by acting as microRNA sponges [56]. The inhibition

of specific mRNA translation is modulated by microRNA depletion through lncRNAs

harboring microRNA binding sites. By effectively competing for the same microRNA,

these lncRNAs exert a level of competitive inhibition. Based on this hypothesis, Liu et al.

developed a database of lincRNAs that were predicted to have functional associations with

protein-coding genes [57]. Some exemplary lincRNAs that function as ceRNAs are the

HULC [58] and LINC-ROR [59]. HULC was shown to be the molecular sponge of a series

of microRNAs including miR-372, which induces phosphorylation of CREB in liver cancer

[60], and LINC-ROR shares the microRNA response elements with core transcription

factors Oct4, Sox2, and Nanog and thus increases expression of these genes by competing

for microRNAs [61]. Although some lincRNAs act as ceRNAs, it is unclear how prevalent

this mechanism is among all lincRNAs.
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LincRNAs as evolutionary reservoirs

While lincRNAs have less sequence conservation than protein-coding genes, they have a

greater degree of secondary motif conservation compared to mRNAs [62]. These elements

may explain the origins of lincRNAs, which provide a reservoir of evolutionarily

constrained RNA motifs [62, 63] to supply extra genetic modules for evolutionary tinker-

ing. It is also known that Retrotransposon and tandem repeat sequences are more common

within lincRNAs compared to protein-coding genes [64]. Embedded microRNAs and the

hypothesized ceRNA mechanism mentioned earlier may be accounted for by such duplica-

tion events, as modulating copy number of an embedded microRNA or target site would

allow for fine-tuned regulation [56, 65].

Computational methods for lincRNA target prediction

There have been many attempts to computationally identify the function of lincRNAs.

Given the length of lincRNA sequences and the complexity of their potential 3D

structures along with the RNA and protein partners, this is a very challenging task. We

review the different computational approaches in the following.

Correlation with protein coding genes and biological processes

One of the simplest approaches to determine the function of lincRNAs is to examine their

correlations with protein coding genes [66]. However, this is a “black box” approach that

identifies neither causality nor lincRNA functions at the molecular level. Another naïve

approach is to relate the function of lincRNAs to the nearby protein coding genes [67].

Many lincRNAs have been found to exert regulatory activity on protein coding genes in

cis [45, 52]. However, Khalil et al. found that knockdown of six different lincRNAs did not

affect the expression of level of nearby genes [4]. This suggests that lincRNAs can work in

trans as well, and that the correlation between a lincRNA and its nearby protein coding

genes may not necessarily be a causative relationship, but rather a result of sharing a

region of active transcription.

Relation between lincRNAs with microRNAs and other small non-coding RNAs

Other more sophisticated tools have been developed to identify more succinct functions.

Boerner and McGinnis constructed a pipeline to seek functions of lncRNAs in Zea Mays

[33]. Using BLAST search, they found that the majority of lncRNAs have strong homology

to small RNA molecules. They hypothesized that many lncRNAs are simply unprocessed

pre-cursors to small non-coding RNAs, such as microRNA, shRNA and siRNA [33].

Based on the “ceRNA hypothesis” mentioned earlier, Liu et al. developed “linc2GO”, a

software for identifying mRNA and lincRNA pairs [57]. Using predicted microRNA tar-

gets from miRanda, TargetScan and PITA software, they predicted microRNA targets on

both mRNAs and lincRNAs; The mRNAs and lincRNAs that had statistically significant

target sites for a particular microRNA were proposed to have a “competing endogenous”

relationship.

Machine learning approaches to target and functional prediction

Machine learning methods have been used successfully to classify whether transcripts

are coding or non-coding. However, machine learning methods to identify the targets

of lincRNAs have not seen much success. Comparatively, there has been much more
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success in using supervised learning approaches to identify microRNA targets, such as

TargetScan [68], SvMicrO [69] and mirMark [70]. Still progress is being made towards

lincRNA functional prediction. Glazko et al. used support vector machines (SVM) to

predict lncRNA and PRC2 binding using human lincRNA associated with PRC2 as

training data. With the classification model, they were able to predict 59.4 % of lncRNAs

which bind to PRC2 in mice [71]. The model was based off of the dataset by Khalil et al.

[4, 72] which found roughly 20 % of lincRNAs to associate with PRC2. However, it re-

mains unclear whether the associations were spurious or led to sequence specific chroma-

tin regulation.

LincRNA functional prediction through the higher-order structure

Perhaps the least explored lincRNA prediction approach is functional prediction through

tertiary and quaternary structure. As the structure of RNA molecules are related to their

functions, predicting the structure of complexes between RNA-RNA, and RNA-protein

interactions could elucidate functional properties. Several RNA-RNA interaction prediction

tools are available, usually based on free-energy, such as RNAhybrid [73] and RNADuplex

[74]. RNA-protein interaction prediction tools exist as well, such as RPIseq which uses a

Random Forest classification approach [75] or RNApred, which uses an SVM approach

[76]. However, there have not been many attempts for lincRNA functional prediction.

Many of the protein complexes interacting with lincRNAs do not fall into common binding

motifs [41]. Furthermore, functional prediction is complicated by the “n-body problem”,

since protein, RNA and DNA can be complexed with lincRNAs simultaneously.

Downstream target prediction through directed graphs

Reverse engineering of gene regulatory networks has been an area of research before the

explosion of next generation sequencing and lincRNA research [77]. Approaches such as

Bayesian networks, information-theoretic approaches and ordinary differential equations

have shown strong performance [78]. Generally, a perturbation of the system (such as gene

knockout, overexpression or drug treatment) is performed which forces a node (i.e., a gene)

on a regulatory network graph to be forcibly turned on or turned off. This perturbation

produces direct causative (rather than correlative) downstream effects that can be captured

through microarrays and quantitative methods. Recently, Jiang et al. published a database

(lncRNA2Target) describing lncRNA knockdown and overexpression experiments,

followed by gene quantification by microarray or qPCR [79]. These types of experiments

can be a valuable resource for elucidating a lincRNA’s targets and pathways.

Conclusion
Statistical evaluation studies for lincRNAs are urgently needed, as datasets produced by

these various methods have thus far shown only modest overlaps in their identified

lincRNAs [14]. Besides lack of sequence conservation among lincRNAs, another major

issue hindering functional prediction is the lack of validated data. While there are many

well-studied lincRNAs, there are massively more unannotated lincRNAs. Machine learning

methods often require a large training dataset to produce accurate results. Several func-

tional lincRNA/lncRNA databases exist (such as lncrnaDB), however the number of entries

are very low and do not categorize the function of the lncRNAs in a systematic manner

[80]. As more and more lincRNAs become functionally validated, comprehensive and
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regularly updated databases would be a great source to build good prediction methods.

Perhaps even more important is the advancement of experimental techniques to provide

quality data required for the prediction. Currently, most experimental techniques focus on

a single protein or a small number of proteins (protein-centric) or a single lincRNA or

family of lincRNAs (RNA-centric) [41]. New methods are required that can provide

high-throughput protein and RNA targets of thousands of lincRNAs in parallel.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LXG planned the work. TC, JM, JW and LXG all wrote parts of the manuscript. TC and LXG designed and finalized the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by grants K01ES025434 awarded by NIEHS through funds provided by the trans-NIH Big Data to
Knowledge (BD2K) initiative (www.bd2k.nih.gov), P20 COBRE GM103457 awarded by NIH/NIGMS, and Medical Research
Grant 14ADVC-64566 from Hawaii Community Foundation to L.X. Garmire.

Author details
1Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
2Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA. 3Laboratory of Immunology and
Signal Transduction, Chaminade University of Honolulu, Honolulu, HI 96816, USA. 4Department of Internal Medicine,
University of Iowa, Iowa City, IA 52242, USA.

Received: 27 June 2015 Accepted: 4 December 2015

References
1. Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of

previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9(6):e1003569.
2. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, et al. Multiple evidence strands suggest that

there may be as few as 19 000 human protein-coding genes. Hum Mol Genet. 2014.
3. Joyce GF. The antiquity of RNA-based evolution. Nature. 2002;418(6894):214–21.
4. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding

RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;
106(28):11667–72.

5. Volders P-J, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele J, et al. An update on
LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res. 2015;43(D1):D174–80.

6. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46.
7. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large

noncoding RNAs do not encode proteins. Cell. 2013;154(1):240–51.
8. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large

intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.
9. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the

human transcriptome. Nat Genet. 2015.
10. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, et al. Targeted RNA sequencing reveals

the deep complexity of the human transcriptome. Nat Biotechnol. 2012;30(1):99–104.
11. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, et al. Multiple knockout mouse models reveal

lincRNAs are required for life and brain development. Elife. 2013;2:e01749.
12. Ge X, Chen Y, Liao X, Liu D, Li F, Ruan H, et al. Overexpression of long noncoding RNA PCAT-1 is a novel

biomarker of poor prognosis in patients with colorectal cancer. Med Oncol. 2013;30(2):1–6.
13. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, et al. Ab initio reconstruction of cell type-specific

transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol. 2010;28(5):503–U166.
14. Marques AC, Ponting CP. Catalogues of mammalian long noncoding RNAs: modest conservation and

incompleteness. Genome Biol. 2009;10(11):R124.
15. Ning S, Wang P, Ye J, Li X, Li R, Zhao Z, et al. A global map for dissecting phenotypic variants in human lincRNAs.

Eur J Hum Genet. 2013;21(10):1128–33.
16. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand

highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.
17. Garmire LX, Garmire DG, Huang W, Yao J, Glass CK, Subramaniam S. A global clustering algorithm to identify long

intergenic non-coding RNA–with applications in mouse macrophages. PLoS One. 2011;6(9):e24051.
18. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells.

Nature. 2012;489(7414):101–8.
19. Yang L, Duff MO, Graveley BR, Carmichael GG, Chen L-L. Genomewide characterization of non-polyadenylated

RNAs. Genome Biol. 2011;12(2):R16.
20. He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW. The antisense transcriptomes of human cells.

Science. 2008;322(5909):1855–7.

Ching et al. BioData Mining  (2015) 8:44 Page 10 of 12

http://www.bd2k.nih.gov


21. Kawaji H, Lizio M, Itoh M, Kanamori-Katayama M, Kaiho A, Nishiyori-Sueki H, et al. Comparison of CAGE and RNA-seq
transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. Genome Res. 2014;
24(4):708–17.

22. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic
development despite rapid sequence evolution. Cell. 2011;147(7):1537–50.

23. Tahira AC, Kubrusly MS, Faria MF, Dazzani B, Fonseca RS, Maracaja-Coutinho V, et al. Long noncoding intronic
RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol Cancer. 2011;10:141.

24. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome sequencing across a
prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat
Biotechnol. 2011;29(8):742–9.

25. Madden T. The BLAST sequence analysis tool. 2013.
26. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the protein-coding potential of

transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server
issue):W345–349.

27. Sun K, Chen X, Jiang P, Song X, Wang H, Sun H. iSeeRNA: identification of long intergenic non-coding RNA
transcripts from transcriptome sequencing data. BMC Genomics. 2013;14 Suppl 2:S7.

28. Jalali S, Jayaraj GG, Scaria V. Integrative transcriptome analysis suggest processing of a subset of long non-coding
RNAs to small RNAs. Biol Direct. 2012;7:25.

29. Sakharkar MK, Chow VT, Kangueane P. Distributions of exons and introns in the human genome. In Silico Biol.
2004;4(4):387–93.

30. Semon M, Duret L. Evidence that functional transcription units cover at least half of the human genome.
Trends Genet. 2004;20(5):229–32.

31. Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol. 2013;
34(2):613–20.

32. Wang Y, Li Y, Wang Q, Lv Y, Wang S, Chen X, et al. Computational identification of human long intergenic non-coding
RNAs using a GA–SVM algorithm. Gene. 2014;533(1):94–9.

33. Boerner S, McGinnis KM. Computational identification and functional predictions of long noncoding RNA in
Zea mays. PLoS One. 2012;7(8):e43047.

34. Fan X-N, Zhang S-W. lncRNA-MFDL: identification of human long non-coding RNAs by fusing multiple features
and using deep learning. Mol Biosyst. 2015. 11.3 (2015):892-897.

35. Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, et al. NONCODEv4: exploring the world of long non-coding RNA genes.
Nucleic Acids Res. 2014;42(D1):D98–D103.

36. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, et al. Ensembl 2012. Nucleic Acids Res. 2012;
40(Database issue):D84–90.

37. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human
genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760–74.

38. Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D. The UCSC known genes. Bioinformatics. 2006;22(9):
1036–46.

39. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in
complete genomes. Nucleic Acids Res. 2005;33 suppl 1:D121–4.

40. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements
in the human genome. Nature. 2012;489(7414):57–74.

41. McHugh CA, Russell P, Guttman M. Methods for comprehensive experimental identification of RNA–protein
interactions. Genome Biol. 2014;15:203.

42. Shi L, Song L, Fitzgerald M, Maurer K, Bagashev A, Sullivan KE. Noncoding RNAs and LRRFIP1 regulate TNF
expression. J Immunol. 2014;192(7):3057–67.

43. Goff LA, Rinn JL. Poly-combing the genome for RNA. Nat Struct Mol Biol. 2013;20(12):1344–6.
44. Gong C, Maquat LE. Affinity Purification of Long Noncoding RNA–Protein Complexes from Formaldehyde Cross-Linked

Mammalian Cells. In: Regulatory Non-Coding RNAs. edn.: Springer; New York. 2015: 81–86.
45. Ma W, Ay F, Lee C, Gulsoy G, Deng X, Cook S, et al. Fine-scale chromatin interaction maps reveal the cis-

regulatory landscape of human lincRNA genes. Nat Methods. 2014.
46. Wright MW. A short guide to long non-coding RNA gene nomenclature. Hum Genomics. 2014;8:7.
47. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.
48. Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20(10):1147–55.
49. Loewen G, Zhuo Y, Zhuang Y, Jayawickramarajah J, Shan B. lincRNA HOTAIR as a novel promoter of cancer

progression. J Can Res Updates. 2014;3(3):134–40.
50. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19.
51. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev.

2009;23(13):1494–504.
52. Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, et al. LincRNA-p21 activates p21 in cis to

promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90.
53. Wang KC, Chang HY. Molecular Mechanisms of Long Noncoding RNAs. Mol Cell. 2011;43(6):904–14.
54. Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, et al. ncRNA- and Pc2 methylation-dependent gene

relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773–88.
55. Duss O, Michel E, Yulikov M, Schubert M, Jeschke G, Allain FHT. Structural basis of the non-coding RNA RsmZ

acting as a protein sponge. Nature. 2014;509(7502):588−+.
56. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA

language? Cell. 2011;146(3):353–8.
57. Liu K, Yan Z, Li Y, Sun Z. Linc2GO: a human LincRNA function annotation resource based on ceRNA hypothesis.

Bioinformatics. 2013;29(17):2221–2.

Ching et al. BioData Mining  (2015) 8:44 Page 11 of 12



58. Xie H, Ma H, Zhou D. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma.
BioMed research international 2013. 2013.

59. Zhou X, Gao Q, Wang J, Zhang X, Liu K, Duan Z. Linc-RNA-RoR acts as a “sponge” against mediation of the
differentiation of endometrial cancer stem cells by microRNA-145. Gynecologic oncology. 2014; 133(2):333–339.

60. Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. CREB up-regulates long non-coding RNA, HULC expression through
interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38(16):5366–83.

61. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog,
and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25(1):69–80.

62. Kapusta A, Feschotte C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological
implications. Trends Genet. 2014;30(10):439–52.

63. Smith MA, Gesell T, Stadler PF, Mattick JS. Widespread purifying selection on RNA structure in mammals. Nucleic
Acids Res. 2013;41(17):8220–36.

64. Kelley D, Rinn J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol.
2012;13(11):R107.

65. Labialle S, Cavaillé J. Do repeated arrays of regulatory small‐RNA genes elicit genomic imprinting? Bioessays. 2011;
33(8):565–73.

66. Guo X, Gao L, Liao Q, Xiao H, Ma X, Yang X, et al. Long non-coding RNAs function annotation: a global prediction
method based on bi-colored networks. Nucleic Acids Res. 2013;41(2):e35.

67. Ma H, Hao Y, Dong X, Gong Q, Chen J, Zhang J, et al. Molecular mechanisms and function prediction of long
noncoding RNA. Sci World J. 2012;2012.

68. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of
human genes are microRNA targets. Cell. 2005;120(1):15–20.

69. Liu H, Yue D, Chen Y, Gao S-J, Huang Y. Improving performance of mammalian microRNA target prediction.
BMC Bioinformatics. 2010;11(1):476.

70. Menor M, Ching T, Zhu X, Garmire D, Garmire LX. mirMark: a site-level and UTR-level classifier for miRNA target
prediction. Genome Biol. 2014;15(10):500.

71. Glazko GV, Zybailov BL, Rogozin IB. Computational prediction of polycomb-associated long non-coding RNAs.
PLoS One. 2012;7(9):e44878.

72. Felekkis K, Voskarides K. Genomic Elements in Health, Disease and Evolution. 2015.
73. Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34

suppl 2:W451–4.
74. Hofacker, Ivo L. "Fast folding and comparison of RNA secondary structures." Monatshefte für Chemie/Chemical

Monthly 125.2 (1994): 167-188.
75. Muppirala U, Lewis BA, Dobbs D. Computational tools for investigating RNA-protein interaction partners. J Comput Sci

Syst Biol. 2013;6:182–7.
76. Kumar M, Gromiha MM, Raghava GP. SVM based prediction of RNA‐binding proteins using binding residues and

evolutionary information. J Mol Recognit. 2011;24(2):303–13.
77. Murphy K, Mian S. Modelling gene expression data using dynamic Bayesian networks, In.: Technical report,

Computer Science Division. Berkeley: University of California; 1999.
78. Bansal M, Belcastro V, Ambesi‐Impiombato A, Di Bernardo D. How to infer gene networks from expression

profiles. Mol Syst Biol. 2007;3(1):78.
79. Jiang Q, Wang J, Wu X, Ma R, Zhang T, Jin S, et al. LncRNA2Target: a database for differentially expressed genes

after lncRNA knockdown or overexpression. Nucleic Acids Res. 2015;43(D1):D193–6.
80. Galperin MY, Rigden DJ, Fernández-Suárez XM. The 2015 Nucleic Acids Research Database Issue and Molecular

Biology Database Collection. Nucleic Acids Res. 2015;43(D1):D1–5.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Ching et al. BioData Mining  (2015) 8:44 Page 12 of 12


	Abstract
	Introduction
	Review
	Emerging characteristics of lincRNAs
	Genome-wide detection of lincRNAs
	Computational methods to predict lincRNAs
	lincRNA databases
	Genomic assays to study lincRNA regulations
	Known functions and mechanisms of lincRNAs
	LincRNAs involved in chromatin remodelling
	LincRNAs as transcription co-factors
	Competing endogenous RNA hypothesis of lincRNAs
	LincRNAs as evolutionary reservoirs

	Computational methods for lincRNA target prediction
	Correlation with protein coding genes and biological processes
	Relation between lincRNAs with microRNAs and other small non-coding RNAs
	Machine learning approaches to target and functional prediction
	LincRNA functional prediction through the higher-order structure
	Downstream target prediction through directed graphs


	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



