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Abstract

Background: Inducible transcription factors (TFs) mediate transcriptional responses to
environmental cues. In response to multiple inflammatory signals active NF-κB dimers
enter the nucleus and trigger cell-type-, and stimulus-specific transcriptional programs.
Although much is known about NF-κB inducing pathways and about locus-specific
mechanisms of transcriptional control, it is poorly understood how the pre-existing
chromatin landscape determines NF-κB target selection and activation. Specifically,
it is not known which epigenetic marks and pre-bound TFs serve genome-wide as
positive (negative) cues for active NF-κB.
Results: We applied multivariate and combinatorial data mining techniques on a
comprehensive dataset of DNA methylation, DNase I hypersensitivity, eight epigenetic
marks, and 34 TFs to arrive at genome-wide patterns that predict NF-κB binding.
Strikingly, we observed NF-κB recruitment to accessible and nucleosome-bound
sites. Within nucleosomal DNA NF-κB binding was primed by H3K4me1 and H2A.Z, but
also hyper-methylated DNA outside of promoters and CpG-islands. Many of these
predictors showed combinatorial cooperativity and statistically significant interactions.
Recruitment to pre-accessible sites was more frequent and influenced by
chromatin-associated TFs. We observed that specific TF-combinations are greatly
enriched for (or depleted of) NF-κB binding events.

Conclusions: We provide evidence of NF-κB binding within genomic regions that lack
classical marks of activity. These pioneer binding events are relatively often associated
with transcriptional regulation. Further, our predictive models indicate that specific
combinations of epigenetic marks and transcription factors predetermine the NF-κB
cistrome, supporting the feasibility of using statistical approaches to identify “histone
codes”.

Background
Complex mechanisms have evolved to control gene expression in response to stimuli

[1]. Signaling pathways bridge environmental signals with changes in gene expression

patterns. The terminal transcription factors (TFs) of these pathways bind to specific

regulatory regions and modulate gene expression through interactions with co-

activators and co-repressors [2]. TFs need to locate their target sites within more than

3 billion base pairs of the human genome. The specificity of motif binding, accessibility

of recognition sites, and expression of cell-type restricted cooperative binding partners,

is believed to determine the fidelity of the transcriptional response (e.g. [3–5]). The ca-

nonical role of some TFs is to mediate responses to environmental cues (e.g. [6–8]),

© 2015 Cieślik and Bekiranov. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Cieślik and Bekiranov BioData Mining  (2015) 8:37 
DOI 10.1186/s13040-015-0071-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-015-0071-3&domain=pdf
mailto:sb3de@virginia.edu
mailto:sb3de@virginia.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


which converges on a relatively small number of TFs including CREB1 and the AP-1

and NF-κB families [9, 10]. The goal of this study was to computationally dissect the

biological signals that pre-determine recruitment and transcriptional activation by NF-

κB using logistic regression, non-negative matrix factorization, combinatorial enrich-

ment analysis and statistical enrichment analysis.

The NF-κB-mediated response depends on the translocation of NF-κB proteins to

the nucleus [11]. Selectivity of the transcriptional program is in part due to the speci-

ficity of different NF-κB homo- and hetero-dimers to distinct subsets of targets and

cognate sequences [12–14], but also depends on the availability of tissue-restricted

DNase I hypersensitive (DHS) sites [15]. These differences are among the primary de-

terminants of cell-type identity, but can change in response to the environment and

in pathologies [16–18].

Mechanisms of chromatin-mediated TF recruitment are well understood for the

ligand-induced nuclear glucocorticoid receptor (GR) [19]. GR target-genes are often in-

duced (or repressed) rapidly in response to hormone treatment [20]. It has been shown

that GR binding at target promoters is almost exclusively associated with chromatin

that is hypersensitive prior to hormone treatment [21]. These regions of accessible

chromatin have been shown to be maintained by AP-1, which was required for GR-

mediated response [22, 23].

In stark contrast to GR, “pioneer” transcription factors, such as PU.1 or FOXA1, are

typically lineage-restricted and transcriptionally regulated [24]. They have the ability to

bind nucleosomal DNA and to reduce nucleosome occupancy [25–27]. The functional

consequence of this is the transcriptional activation of enhancers and promoters [28].

FOXA1 has been shown to be recruited to locally hypo-methylated sites within broader

hyper-methylated regions [29]. These unmethylated CpG windows have been reported

to complement bivalent domains in defining tissue-specific enhancers [30]. Importantly,

it was recently shown that the pluripotency TFs OCT4, SOX2, and KLF4, have

chromatin-binding characteristics very similar to classic pioneers [31, 32]. These studies

highlighted that pioneer TFs have a similar role in chromatin remodeling, during devel-

opment, cellular reprogramming, and transcriptional activation [33–37].

Transcriptional activation by NF-κB and its recruitment to chromatin appears to

involve multiple mechanisms and results in a complex chromatin binding pattern

and multiphasic transcriptional kinetics [38, 39]. According to the current model,

differences in NF-κB binding are largely determined by the chromatin state [40], but

specific targeting signals are unknown. Some target sites are bound immediately,

whereas binding to others is delayed and ostensibly depends on prior chromatin

remodeling [41–43]. It has been proposed that immediate binding sites are constitu-

tive i.e. associated with genes induced in response to a broad range of stimuli. On

the other hand, delayed binding is thought to be regulated through the cell type specific

immediate response and induction of pathways that result in the remodeling of chromatin

[9, 40, 44].

TNF-induced p65 (RELA or NFKB3, an NF-κB subunit) binding has been mapped

genome-wide in a number of cells lines (THP-1, HeLa, A549, dendritic cells [15, 45, 46]).

These data provided evidence that p65 is recruited to tens of thousands of cell-type spe-

cific loci [35, 47, 48]. Strikingly, a substantial number (~17 %) of p65 binding events

occurred outside of pre-accessible chromatin [15, 49–52].
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Despite these advances, much work remains to be done in order to better understand

how inducible TFs including p65 are recruited to their eventual binding sites [40]. Here,

we leveraged statistical machine learning on large integrated functional genomic data sets

generated by ENCODE and other groups in A549 cells (a non-small cell lung cancer cell

line and model for the study of inflammatory signaling in cancer) to assess the extent to

which the majority of observed binding events are opportunistic or guided by specific sig-

nals [53–56]. Specifically, we analyzed binding sites for 34 TFs and two control tracks,

digital genomic foot-printing (DGF) [57], DNA methylation (RRBS) [58], ChIP-seq [59]

for 8 epigenetic marks, and RNA-seq [60] data. To arrive at predictive rules that deter-

mine which sites are likely to recruit p65, we statistically evaluated the individual and co-

operative impact of NF-κB motifs, DNA methylation, DNase I hypersensitivity, histone

modifications, and pre-bound TFs on p65 binding. However, genome-wide patterns of

epigenetic features are noisy, complex, and highly correlated. Different approaches are re-

quired for chromatin marks and TFs due to their continuous (quantitative signals) and

discrete (sites along the genome) nature, respectively. We found that TF binding was suf-

ficiently well captured through binary variables (i.e., site present or absent), whereas epi-

genetic marks require quantitative features. To discover rules that govern the p65

cistrome (i.e., factors and states of the chromatin that recruit p65) diverse computational

and statistical techniques had to be applied and developed including logistic regression

based approaches—presence or absence of p65 binding as a function of quantitative fea-

tures including histone modification levels. However, the identification of factors that

cooperate to recruit p65 using regression-based approaches is particularly challenging due

to the co-linearity of many of the input variables, leading to potentially meaningless

regression coefficients. Consequently, we developed and applied a matrix factorization

approach and applied it to histone modification data, which identifies “codes” of co-

occurring marks which tend to be less correlated and yield more meaningful, interpretable

regression coefficients. Moreover, while we analyzed the ability of TFs to recruit p65 one

at a time (univariate statistical enrichment analysis), TFs are known to co-recruit other

factors and likely work in a cooperative, combinatorial fashion in further recruitment of

factors like p65 upon TNF stimulation. Consequently, we developed and applied com-

binatorial enrichment/association methods that uncovered combinations of TFs that re-

cruit p65. Predictive clusters of TFs and synergistic patterns of histone marks, were

indeed captured through “greedy” association rules and matrix factorization, respectively,

indicating the existence of a strong combinatorial epigenetic code. The codes were often

context dependent, which suggests that datasets with higher temporal and spatial reso-

lution will enable their further refinement. Our computational approach reveals that p65

binding occurs within accessible and inaccessible chromatin regions, hence suggesting

that p65 may function as a pioneer TF. Within accessible regions p65 recruitment is sig-

nificantly predicted by a number of chromatin features and their combinatorial interac-

tions, revealing an intricate yet specific set of p65-targeting epigenetic codes.

Methods
Peak calling

TF peaks were called using PeakRanger [61] version 1.16, which has been shown to

yield above average spatial accuracy compared to other peak callers, using the A549
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ChIP-seq control track provided by ENCODE. Due to the large number of processed

data sets we used the tool consistently with all default parameters. DNase I hypersensi-

tive (DHS) [62] sites from DGF sequencing were also called using PeakRanger and the

suitability of this method was visually inspected.

Motif analysis

De novo motif discovery was done within p65 peaks (see Peak Calling) that did not

overlap another TF peak or DHS site using MEME-chip with all default settings [63].

The recovered NF-κB motif, which closely matches the canonical sequence, was used

to scan all genomic sites using tomtom [64] (see Regulatory sites definition).

Site conservation

We probed evolutionary conservation of regulatory sites via PhastCons [65] conserva-

tion scores for placental mammals, which limited our focus to conservation across

mammalian vertebrates and were obtained from the UCSC genome browser track:

phastCons46way.placental.

Known NF-κB targets

Refseq ids of known targets were retrieved from: http://www.bu.edu/nf-kb/gene-re-

sources/target-genes/. Accessed 23 Nov 2015.

CpG islands

To classify genomic sites into CpG-islands (CGI) and non-CGI, we used two complimentary

CGI definitions. The first set of CGIs was obtained from http://rafalab.jhsph.edu/CGI/–

model-based-cpg-islands-hg19.txt[66]. The second set was from the UCSC genome browser

cpgIslandExt.gz [67]. We defined a site as CGI or non-CGI if both CGI definitions were in

agreement.

DNA methylation

Experimental methylation levels at CpG sites were provided by ENCODE. The data

was generated using the reduced representation bisulfite sequencing technique (RRBS)

(HAIB Methyl RRBS Track Protocol). Two replicates were available probing methyla-

tion at over 1.5 M sites. These sites are biased towards MspI cleavage sites, and high

GC content, but cover the majority of promoters and CGIs. We kept only sites that

were present in both replicates and had ten reads coverage. We classified them depend-

ing on methylation range (0 % < 25 % < 75 % < 100 %) as “low”, “medium”, “high” [68].

Regulatory sites definition

For statistical analyses and significance tests we exclude parts of the genome that ap-

pear to have no regulatory activity in either TNF-stimulated or unstimualted A549

cells. This allows us to evaluate statistical enrichments more stringently since we are

omitting a large portion of the genome that had low a priori likelihood of being bound

by p65. We base our definition of “regulatory sites” conservatively on TF-binding and

DNase I hypersensitivity in unstimulated cells. We merge overlapping peaks of TFs into

sites. Consequently, each site contains one or more TF peaks which overlap or are
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directly adjacent (no gap). Specifically, we use the cluster tree implementation from

bx.python (https://bitbucket.org/james_taylor/bx-python/) to find the set of all “regula-

tory sites”.

Regulatory sites classification

We defined several sub-types (classes) of regulatory sites. First, we identified “inaccess-

ible sites” as occupied by p65 in TNF-stimulated cells but not other TFs or DNase I

hypersensitive sites in unstimulated cells. All remaining, regulatory sites were termed

“accessible” as they were either occupied by a TF in unstimulated cells or DNase I

hypersensitive. First, regulatory sites were classified as TSS-proximal or TSS-distal. If a

site overlapped any TSS known to GENCODE v14 it was defined as TSS-proximal.

Next we sub-classified proximal or distal sites based on number of TFs bound (occu-

pancy): stage 1 TSS-proximal bound 1–2 TFs; stage 1 TSS-distal - bound by exactly

one TF; stage 2 TSS-distal - bound by 2 to 4 TFs. The following marks: CTCF, DNase I

hypersensitivity, and RAD21 (cohesin) did not contribute to the occupancy count.

Enrichment profiles

Positional enrichment profiles for epigenetic marks and PhastCons scores were gener-

ated using a modified version of the ACT.py using the tool’s default setting at 20 bp

resolution [69].

ChIP-seq data scaling

Within regulatory sites reads counts have been obtained using: genomic_overlaps count -i,

or bedtools intersect -c from the aligned ChIP-seq datasets. These raw read-counts were

normalized by region length. And scaled to the 0 to 1 range using a sigmoid function, such

that the scaling is approximately linear up to the 95th percentile [70].

Logistic regression

All models predicted binary p65 occupancy from levels of scaled epigenetic marks, epi-

genetic combinatorial patterns (see Combinatorial NMF “codes”), and binary p65 motif

occurrence. The individual models differed in the number of included independent var-

iables as described in the text. All models were trained according to the same scheme

using scikits-learn [71]. 20 % of the observations were withheld as a test set. On the

80 % training set we used 10-fold cross-validation to select the best prior regularization

parameters (L1 or L2 and C) using the Matthews correlation coefficient (MCC) as a bal-

anced performance measure [72], and the prediction cut-off pc = 0.5. The best cross-

validated model was further tuned by scanning for a pc that maximized the model’s

MCC on the training set. The tuned model was benchmarked against the test set; we

report both area under curve (AUC) and MCC.

Epigenetic mark correlations

Correlations between scaled epigenetic marks were calculated as Spearman’s rank cor-

relation coefficient.
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Epigenetic mark interactions

We have chosen the geometric mean (GM) to represent the joint magnitude of two

marks. It is the square root transformation of the product of two magnitudes and scales

the data to resemble a normal distribution.

Association between continuous levels and binary response

To assess the strength of association between epigenetic marks (or mark interactions)

with p65 binding we calculated enrichment p-values via the random set (RS) statistical

test [73]. The RS test statistic has a large magnitude, and corresponding small p-value,

only if sites occupied by p65 have higher levels of marks, codes, expression, etc. than

sites selected at random.

Combinatorial NMF “codes” of epigenetic marks

We used the NMF algorithm [74, 75] to decompose “chromatin patterns” at sub-classes

of regulatory sites (see Regulatory sites classification) into small combinatorial “codes”

of epigenetic marks [76]. Intuitively, codes capture correlations between histone modifi-

cations that are either global or local (valid for a subset of sites). Within each code

values of individual histone modifications are tied, which is a proxy for their average

relative abundance. Each regulatory site is associated with a weight for each code, the

complete “chromatin pattern” (see ChIP-seq data scaling) is reconstructed by summing

over codes multiplied by their weights. We validate that regression on code weights has

desirable properties over regression on all scaled levels of all individual marks (see

Additional file 1: Methods).

Combinatorial chromatin clusters of transcription factors

We used two approaches to discover chromatin-based combinatorial clusters of tran-

scription factors; “TF-clusters” that are associated with p65 recruitment. This is a

combinatorial optimization problem as the number of possible combinations of 30+

TFs is large. The first approach (TGC) directly relied on the significance of the statis-

tical enrichment, Fisher’s exact test (FET), and greedily “expanded” TF-clusters if they

improved the p-value (association strength) by 0.2 (log2-odds), but were also rela-

tively frequently observed genome-wide (at least 40 instances). The second approach,

called “top-k non-redundant association rule” (TNR, [77]) was less biased in that it

found the most “important” non-redundant associations between combinations of

TFs, from which we selected those that predicted p65 binding (see Additional file 1:

Methods).

Linking genes, TSS-proximal and TSS-distal sites

To assign TSS-distal to TSS-proximal regulatory sites we followed a probabilistic ap-

proach that involves both distance restraints (100 kb) and the similarity of TF binding

patterns (based on [37]). To assign regulatory sites to protein-coding genes we use a

simple overlap criterion for TSS-proximal sites, and a 100 kb distance limit for en-

hancers (see Additional file 1: Methods).

Cieślik and Bekiranov BioData Mining  (2015) 8:37 Page 6 of 27



Differential expression

We used the DESeq [78] algorithm to identify differentially expressed (up- or down-

regulated) GENCODE genes. We obtained raw exon-based expression estimates using

the htseq-count defaults (see Additional file 1: Methods).

Statistical analysis of proportions

Ninety five percent confidence intervals for the proportion of upregulated genes and

statistical significance of the difference between two proportions have been estimated

using the methods suggested by [79] as implemented in the R-package binom.

Results
p65 is recruited to “latent” and “primed” enhancers

According to the current model, p65 (RELA) is rapidly recruited to mostly constitu-

tively accessible sites [15, 40]. To assess this on a genome-wide scale we determined

the overlap between DNase I hypersensitive (DHS) sites and post-induction p65 peaks

(Fig. 1a–b). DHS regions are reliable indicators of DNA binding by the majority of TFs

[57, 80–82]. We find a total of 70,146 p65 peaks at a 1 % FDR, which reduce to 65,253

after collapsing into larger regulatory sites (Methods). We have chosen to include all

peaks which cannot be explained by experimental noise [53, 83]. Notably, of the

approximately 400 known, well-annotated NF-κB target genes (see Methods) we find

150 contain a peak in their promoter-proximal region (see Additional file 2: Data). We

find a surprisingly large number (21,103) of p65 binding events outside of pre-existing

DHS sites, mostly outside (20,591) of promoter-proximal regions (Fig. 1a; Fig. 1a and b

are similar to Venn diagrams and show the total overlaps between p65, promoters,

DHS and NF-κB motifs). In total, 32 % off all p65 peaks are outside DHS sites, while

33 % of all (132,236) DHS sites show enrichment of p65. To rule-out the possibility that

the majority of p65 binding is non-specific and opportunistic due to saturation [53, 83,

84], we assessed the overlap of experimental peaks with occurrences of the NF-κB

motif (Fig. 1b). Overall, of the 65,253 p65-positive regions 36,464 (56 %) have an NF-

κB motif (Methods). Strikingly, this proportion was significantly higher for p65 peaks

outside DHS sites 73 %, compared to 48 % in nucleosome-free regions. Next, we

attempted to identify other proteins that are co-recruited with p65 to the nucleosome-

bound sites by applying de novo motif discovery. However, the only detectable motif

was the canonical NF-κB sequence (Additional file 1: Figure S1A). To test whether p65

binding outside of nucleosome-depleted regions is likely “functional” we probed for

evolutionary conservation (Methods). We found evidence for purifying selection at p65

summits within and outside DHS sites (Fig. 1c). We observed significantly stronger

conservation at summits within constitutive DHS sites. Which is expected since

lineage-specific regulatory sequences are not well conserved across mammals [85].

Recruitment to hyper-methylated distal regulatory sites (statistical enrichment analysis)

Next, since TFs differ markedly in their ability to bind methylated DNA, we asked

whether CpG-methylation influences p65 recruitment propensities. We assessed the

overlap between p65 peaks and CpG methylation status at promoter and putative

enhancer regions divided into CpG-islands (CGIs) and non-CpG-islands (non-CGIs)
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(Fig. 1d). In normal cells most CGIs are constitutively hypo-methylated. Conversely,

non-CGIs, which include gene body and enhancer CpGs, have dynamic methylation

levels [86]. Cancer cells in general are characterized by global losses of non-CGI methy-

lation and focal increases in CGI methylation [87]. Importantly, LPS primary response

genes tend to have CpG-rich constitutively accessible promoters [44]. We found that

p65 recruitment is sensitive to methylation status both at promoter-proximal and distal

regulatory regions and depends on the CGI context. As expected, hypo-methylated

CGI sites showed an increased propensity for p65 binding, whereas methylated CGIs

were depleted of p65. The effect was more pronounced at TSS-proximal sites. Hypo-

methylated non-CGI promoters were likewise enriched for p65, however we also ob-

served a modest but significant (2.5-fold, (Fisher’s Exact Test) FET p-value 8.38e-73)

enrichment (over that expected by chance) for p65 binding at hyper-methylated, non-

CpG, TSS-distal regions. This is unexpected given that, genome-wide, p65 preferen-

tially binds to promoters (11-fold enrichment), CpG-islands, and hypo-methylated

sites (16-fold). Why would DNA methylation at a class of non-CpG, promoter-distal

regions increase p65 binding propensity? In stark contrast to CGIs, at CpG-poor sites

hyper-methylation is correlated with DNase I hypersensitivity (2-fold, p 7.28e-64).

However, even after controlling for DHS status hyper-methylated regions are still

Fig. 1 General characterization of genome-wide p65 binding. a Recruitment of p65 relative to transcription
start sites (TSS) and DNase I hypersensitive (DHS) sites. Numbers in parentheses are totals of sites of a given
class. b Likewise, recruitment of p65 relative to DHS and NF-κB motif (MOT) occurrence. c PhastCons placental
mammals conservation scores at p65 summits within accessible and inaccessible regulatory sites (see Methods).
d Role of CpG methylation in p65 binding. Significant enrichment (red) or depletion (blue) of p65 binding
depending on localization (TSS-proximal, TSS-distal), CpG-island (CGI) status (CGI, non-CGI), methylation
level (low, medium, high) (see Methods). All shown log-odds are significant (FET p-value < 1e-4)
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enriched for p65 peaks in DHS-positive (1.65-fold, p 5.91e-13) and DHS-negative

(3-fold, p 2.25e-42) subsets of non-CpG, promoter-distal sites.

Rapid recruitment to inaccessible heterochromatic regions

We hypothesized that p65 recruitment to both DHS-positive and DHS-negative re-

gions is guided, to some extent, by epigenetic marks [26, 88]. We used DHS sites and

TF peaks to identify all genomic “regulatory sites” in TNF-stimulated and unstimu-

lated A549 cells (Methods) and classified them as either “accessible” or “inaccessible”.

The accessible sites were either, strictly DNase I hypersensitive, or enriched for any of

the 34 TFs for which data was available (Methods). Surprisingly, we found that 16,065

p65 summits were within inaccessible regions. One concern is that these sites are

possibly non-functional. We again found evidence for sequence conservation at p65

summits within inaccessible sites (Fig. 1c). We also find a large fraction of the 16,065

sites contain one or more NF-κB motifs (Fig. 1b). As we discuss below, we find p65-

dependent transcriptional induction displays a strong monotonic downward trend as

a function of the number of TFs bound at promoters (see Fig. 5). Promoters with no

TFs bound showed the strongest induction consistent with this trend. Importantly,

many of these promoters do not contain a DHS, further arguing that these inaccess-

ible sites are functional. Finally, we compared chromatin enrichment profiles between

the two classes of sites and found that accessible sites were enriched for epigenetic

marks typically associated with permissive or active chromatin, while inaccessible

sites showed no significant enrichment (Fig. 2a).

Differences in histone modification levels at distinct classes of p65 binding sites (comparison

of distributions)

To investigate this in more detail we compared histone modification levels between

p65-bound and unbound sites. For this and all subsequent analyses we focus on three

classes of accessible regulatory sites. (1) TSS-proximal sites with at most 2 TFs pre-

bound; (2) DHS-negative TSS-distal sites with at most 1 TF pre-bound; and (3) DHS-

positive TSS-distal sites with 2 to 4 TFs pre-bound. We will refer to these classes as

stage 1 promoters, stage 1 enhancers, and stage 2 enhancers, respectively. The rationale

behind this classification is to separate the earliest detectable high-confidence regula-

tory regions (single TF), from enhancers that recruited co-factors (up to 4 TFs) and

from fully assembled enhancers.

We found that sites that recruit p65 have higher levels of several histone modifica-

tions, H3K4me1 in particular (stage 1 Fig. 2b, stage 2 Additional file 1: Figure S2).

However, the differences were pronounced only at stage 2 enhancers, which are al-

most exclusively accessible sites (Additional file 1: Figure S2). Within inaccessible re-

gions p65 site selection was weakly correlated with H3K4me1 and H3K4me2, but

almost fully independent of H3K27ac (Fig. 2b). At accessible sites enrichment profiles

for several marks have a bimodal shape around the peak summit, which is the most

likely location of the NF-κB motif (Additional file 1: Figure S1B) [47, 89]. On the

other hand, H2A.Z, a histone variant associated with regulatory regions [90], has a

single peak over the p65 summit. This suggests that the H2A.Z-containing nucleo-

some is centered on the NF-κB element.
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Pioneering recruitment of p65 to latent and epigenetically silent enhancers

Together, these results suggest that within 30 min of induction (i.e., 30 min after initial

TNF treatment; see [46] for experimental details), p65 is being recruited to both,

DNase I hypersensitive and nucleosome-bound sites. Although the recruitment to DHS

sites is qualitatively stronger (Additional file 1: Figure S3) and occurs more frequently

(7.1-fold, p 0), p65 binding to nucleosome-bound DNA appears to be more specific as

judged by the occurrence of the NF-κB motif. Constitutively accessible sites typically

harbor clusters of multiple TF recognition elements [53, 81], which might suggest that

Fig. 2 Distribution of epigenetic marks at p65 summits and p65 recruitment by combinations of frequently
co-occurring epigenetic marks. a Enrichment profiles of all 8 epigenetic marks around p65 peak summits
at accessible and inaccessible sites. Enrichment levels should be compared for a single mark between the two
classes of sites, but not between different marks for a single class, as magnitudes of ChIP-seq peaks are, in general,
not comparable. b Densities of epigenetic marks at p65 peaks within inaccessible regions compared to accessible
stage 1 (S2) TSS-distal regulatory sites, bound by p65 (+) or not (−) (see Methods). We applied non-negative matrix
factorization (NMF) to matrices of scaled levels of epigenetic marks separately for the three classes of
regulatory sites (TSS-proximal, TSS-distal stage 1, TSS-distal stage 2). For each class the method returned
four combinations (codes) of strongly associated epigenetic marks. Next, we trained logistic regression models to
predict p65 binding from locus-specific weights for each code and NF-κB motif occurrence (mot). c Within each
code, the loadings of marks are tied, which reflects their most frequent relative abundances, and is also a
measure of relative mark importance. Equivalent codes between classes of sites show differences in mark
loadings. d Heatmap of standardized regression slopes for the models’ parameters, which include the
four codes and motif presence (mot). Mean and standard deviation of slopes obtained from dropping
each of the other covariates from the model is indicated in brackets, and is a measure of the robustness
of the estimate to model specification (see Methods and Additional file 1: Methods)
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the higher conservation of accessible sites is due to purifying selection on motifs of

other TFs. Most strikingly, outside of promoters and CpG islands, p65 binds preferen-

tially to methylated sites; which brings to mind the methyl-DNA binding capabilities of

FOXA1, a “pioneer” transcription factor [29, 91, 92]. In summary, we found that p65

binding within inaccessible regions occurred both at epigenetically silent “latent” (i.e.,

H3K4me1 low) and epigenetically “primed” enhancers (i.e., H3K4me1 high, and/or

DNase I hyper-sensitive) [48, 93].

Epigenetic marks are quantitative predictors of p65 recruitment

When transcription factor binding and histone modification levels are mapped in the

same state (cell line, condition) they appear highly correlated. However, whether epi-

genetic marks are truly useful predictors of TF-binding is disputed (e.g. [94–96]). In

particular it is not well established, whether histone modifications confer binding spe-

cificity, and if TFs prefer sites with a specific chromatin pattern [88]. We decided to

test this hypothesis by using histone modification levels prior to stimulation to predict

which sites will recruit p65. Since there is no consensus regarding how to define en-

hancers from epigenetic marks (e.g. [89]) we favored a conservative approach and

identified cis-regulatory regions based on the presence of at least one TF and/or

DNase susceptibility. Only a small fraction of all sites (~5 %, 10,625) will recruit p65

on stimulation.

Univariate predictive modeling of p65 recruitment (logistic regression analysis)

We tested whether p65 binding can be predicted from histone modification levels,

either on their own, or together with occurrences of the κB recognition element

(Table 1). We modeled the probability of p65 recruitment using a logistic function

using histone modifications and motif occurrences as predictors (see Methods). We

found that motif-based prediction was universally improved by the inclusion of any his-

tone modification, with a substantial average gain of Δ0.055 area under ROC (AUC).

The improvement was highest at promoters, on average by Δ0.072 AUC with six of the

eight histone modifications reaching Δ0.10 AUC. It is remarkable that at TSS-proximal

sites H2A.Z and H3K4me2 are better predictors of p65 recruitment than the occur-

rence of the p65 motif – 0.72 vs 0.69 AUC, respectively. The binding of p65 at stage 1

enhancers sites is most strongly determined by the presence of the NF-κB motif (0.79

AUC). This score is most significantly improved by H3K4me1 to 0.86 AUC, which

along with H3K4me2 and the p65 motif yield the best-performing models overall. At

enhancers with several cofactors, neither motif-occurrence, nor histone modifications

were individually sufficient to model p65 binding (max 0.63 AUC) and even the best-

performing combined model barely exceeded 0.70 AUC. The predictive performance

of histone acetylations was low but similar at stage 1 and stage 2 enhancers. Con-

versely, lysine methylations, which significantly determined p65 binding at stage 1 en-

hancers, were less relevant at stage 2 enhancers (Table 1).

We have shown that even after controlling for DNase I hypersensitivity, TF occu-

pancy, and motif occurrence, specific epigenetic marks determine p65 recruitment. It

was previously shown that H3K4me1 is involved in the priming of enhancers for activa-

tion in multiple lineages [97]. H3K4me1 depositions are relatively stable [89], and their

presence is thought to be determined by lineage-restricted “pioneer” transcription factors,
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such as PU.1 [29, 35, 47]. It has been postulated that this defines lineage-restricted en-

hancers and creates binding sites for additional inducible TFs [37, 98]. The finding that

p65 recruitment to stage 1 enhancers was correlated with H3K4me1 levels is consistent

with the current interpretation of H3K4me1 as a mark of regulatory regions primed for ac-

tivation [97, 99–101]. Histone acetylations are associated with active enhancers [100, 102],

but are also highly correlated with DNase I hypersensitivity and other permissive histone

marks [103]. In line with previous findings which determined an important role of H2A.Z

in the regulation of transcription [104–106], our results suggest that H2A.Z-marked pro-

moters are poised for increased TF binding (Additional file 1: Figure S4).

Context-dependent roles of epigenetic marks in p65 recruitment

It has been argued that the co-occurrence of multiple epigenetic marks is necessary

for specific chromatin-triggered processes [107, 108] and that combinations of mul-

tiple marks are required to reliably identify tissue-specific enhancers and direct TFs

to specific chromatin regions [88]. We reasoned that p65 site selection could be fur-

ther refined by cooperative action between multiple marks. To discover these syner-

gistic effects we built a predictive model of synergistic p65 recruitment. This model

was augmented by more standard correlative descriptions of genome-wide associa-

tions (Additional file 1: Figure S5).

Synergism and correlation between predictive chromatin features

Through correlative analyses (Additional file 1: Text) we found that canonical active

marks (H3K9ac, H3K27ac, H3K4me3) were involved in synergistic interactions with

H3K4me1 at promoters and H2A.Z at enhancers (Additional file 1: Figure S5). At

Table 1 Performance of epigenetic marks in the prediction of p65 binding

Prox Dist S1 Dist S2 mean Δmot

h2az 0.72 0.61 0.60 0.64

h2az + mot 0.80 0.83 0.69 0.77 0.13

h3k27ac 0.70 0.64 0.61 0.65

h3k27ac + mot 0.80 0.84 0.69 0.78 0.13

h3k27me3 0.52 0.53 0.54 0.53

h3k27me3 + mot 0.70 0.80 0.66 0.72 0.19

h3k4me1 0.59 0.70 0.59 0.63

h3k4me1 + mot 0.74 0.86 0.68 0.76 0.14

h3k4me2 0.72 0.70 0.61 0.67

h3k4me2 + mot 0.80 0.86 0.70 0.79 0.11

h3k4me3 0.70 0.64 0.58 0.64

h3k4me3 + mot 0.80 0.84 0.68 0.77 0.13

h3k79me2 0.50 0.53 0.53 0.52

h3k79me2 + mot 0.69 0.80 0.65 0.71 0.20

h3k9ac 0.69 0.64 0.63 0.65

h3k9ac + mot 0.79 0.84 0.71 0.78 0.13

mot 0.69 0.79 0.63 0.71

Predictive performance (AUC – area under curve) of single-mark logistic regression models, with optional inclusion of binary
NF-κB motif presence (+mot), on the binding of p65 at three classes of sites: Prox – TSS-proximal; Dist S1 – TSS-distal
(stage 1); Dist S2 – TSS-distal (stage 2); mean – arithmetic average performance for all classes; Δmot – arithmetic
average improvement of the (+mot) models
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promoters, high levels of H3K4me1 and active marks were mutually exclusive (Additional

file 1: Figure S5A), and H3K4me1 was unable to recruit p65 on its own. This suggests that

mono-methylation is only an intermediate in the further activation of promoters [109].

Conversely, at enhancers H3K4me1 has an independent role in p65 recruitment and

appears to be required for H3K9ac enrichment (Additional file 1: Figure S5B). Al-

though, p65 recruitment was weakly associated with H2A.Z [110] on its own (Table 1)

we observed strong synergism between H2A.Z and other active marks at nucleosome-

bound, but not nucleosome-free, enhancers (Additional file 1: Figure S5B).

Multivariate predictive modeling using non-negative matrix factorization (NMF)

To construct the predictive model we used non-negative matrix factorization (NMF)

[111] to decompose “chromatin patterns” at TSS-proximal and TSS-distal regulatory

regions into fundamental additive parts we refer to as “codes”. The method is explained

in detail in the (Additional file 1: Methods) [76]. Briefly, we construct an “epigenetic

matrix” V, which is factored via NMF into matrices W and H. V has rows which are

regulatory sites and columns which are epigenetic marks. Elements of V are normalized

levels of a specific mark at a certain site. When multiplied, matrices W and H result in

an approximation of V. Matrix H contains a small number of rows, each row represents

a combination of marks that frequently co-occur in subsets of genomic regions (codes).

Matrix W contains weights on how to reconstruct each row of V using the codes in H.

We applied the algorithm separately on each of the three classes of regulatory sites

and discovered four, largely equivalent, combinatorial patterns (Fig. 2c). The equivalent

codes from different regions showed quantitative differences in mark values, which re-

flect differences in the relative levels and importance of marks within a pattern [76].

The first code subsumes the permissive epigenetic marks (H3K9ac, H3K27ac,

H3K4me2, H3K4me3) (Additional file 1: Figure S6A). The remaining three codes cap-

ture context-dependent patterns, which is a particular strength of NMF [111, 112]. Glo-

bally H2A.Z and H3K4me1 are only weakly correlated (Additional file 1: Figure S6A),

but they were hypothesized to co-occur at a subset of primed enhancers [101] and this

exact pattern is captured through code 3. Another subclass of enhancers is silenced by

the presence of the repressive H3K27me3 mark [99, 100]. Code 2 has positive values

for H3K27me3 and H2A.Z, which captures their dependence at both promoters and

enhancers. The last pattern is related to H3K79me2. At TSS-proximal regions this mark

is associated with transcription elongation by RNAPII [113] and is relatively independent

of other histone modifications (Additional file 1: Figure S6A). Conversely, within TSS-

distal regulatory regions H3K79me2 is tied to the enhancer mark H3K4me1, which sug-

gests that the code is largely specific to enhancers within introns of actively transcribed

genes.

Signals of p65-targeting “histone codes” (logistic regression analysis using NMF “code”

weights as predictors)

The unique “chromatin pattern” at each locus is reconstructed from prototypical codes

and locus-specific weights. The codes are simply tied levels of specific mark combina-

tions, the weights reflect the importance of a code at a locus. Together, this allows us

to quantitatively link combinatorial epigenetic patterns to p65 recruitment using logis-

tic regression (Methods). We modeled the probability of p65 binding as a function of

the code weights and motif occurrence. The recruitment of p65 is most easily predicted

at promoters (AUC = 0.82, MCC = 0.42) followed by stage 1 (AUC = 0.85, MCC = 0.32),
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and stage 2 (AUC = 0.71, MCC = 0.31) enhancers. We found that some codes were ro-

bust predictors of p65 binding (Fig. 2d, Additional file 1: Methods). Motif presence has

the largest standardized coefficient (log-odds ratio, LOR). However, as few as 7.4 % of

stage 1 TSS-distal sites contain a p65 motif, which means that the large 0.86 LOR (2.4

fold) applies only to a rare subset of the population of sites [114]. We found that code

3 (Fig. 2c), was an important predictor at stage 1 enhancers (Fig. 2d). Code 4 showed

opposite roles in the recruitment of p65 to promoter and enhancer sites. This counter-

intuitive observation is largely explained by differences in the code itself. At stage 1

distal sites the code ties levels of H3K79me2 and H3K4me1, whereas at proximal sites

it is driven by H3K79me2 alone. Still, it appears that promoters that have successfully

recruited RNAPII and engaged in elongation – as judged by higher levels of

H3K79me2 – are less likely to recruit the transcriptional activator p65. The “repres-

sive” code 2 had only a weakly negative effect on p65 binding. This suggests that the

repressive role of H3K27me3 can be mostly attributed to the inverse correlation with

H3K27ac and other “active” marks (Additional file 1: Figure S6A), but not H3K27me3

itself (code 1).

Together, these results reveal context-dependent roles of histone modifications in

p65 recruitment Further, we found that H2A.Z in the context of H3K4me1 (code 3) is

the strongest epigenetic predictor of p65 recruitment to TSS-distal sites, whereas in the

context of H3K27me3 (code 2) it is slightly impeding. H3K27me3 deposition has been

shown to be dependent on H2A.Z [115], whereas the mechanism that lead to

H3K4me1 and H2A.Z co-occurrence are poorly understood. Co-operativity of H2A.Z

with other “active” marks (code 1) (Additional file 1: Figure S5B), agrees with the obser-

vation that codes 1 and 3 are relatively uncorrelated (Additional file 1: Figure S6B). The

co-occurrence of H2A.Z and H3K4me1 at a relatively large subset of enhancers (code

2) further supports the emerging interpretation of the H2A.Z/H3K4me1 enhancer pat-

tern as priming enhancers for activation [101].

p65 site selection is guided by the presence of specific TFs and overall occupancy

While the predictive performance of the code-based models is considerably better than

relying just on one mark and motif presence, the predictions are far from perfect

(Table 1). The models’ sensitivity (i.e., percentage of correctly predicted p65 binding

events) with respect to p65-bound sites is low (20 %) at stage 1 enhancers, and modest

at stage 2 enhancers (34 %). This is still remarkable given that less than 2 % of stage 1

sites are bound by p65. It has been widely accepted that tissue specific gene expression

is achieved through combinatorial interactions among transcription factors [116, 117].

We reasoned that the presence or absence of chromatin-associated proteins, transcrip-

tion factors, and their combinations could provide an independent set of cues for p65

site selection.

Our first goal was to understand the general trend by which chromatin-bound pro-

teins influence p65 recruitment. Recent findings suggest that following stimulus the

induced transcription factors frequently localize at “pre-coded” sites with a high-

occupancy of other TFs (HOT regions) [37, 118]. We observed that the probability of

p65 binding increases monotonically with the number of proteins present at a site

(Fig. 3a). For example, sites which are bound by 12 proteins have a 75 % chance of
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recruiting p65 after stimulation. The presence of specific TFs can increase or decrease

binding frequency. We found, among others, that sites bound by GATA3 and BCL3

are overall less likely to recruit p65, while sites bound by CREB1 have an increased

propensity for p65 (Fig. 3a). Importantly, BCL3 is a nuclear IκB protein with strikingly

opposite and poorly understood roles in the regulation of NF-κB binding and activity

[119, 120].

Pre-bound TFs recruit p65 to specific regulatory regions (association analysis)

To quantify the strength of association we calculated the odds of p65-recruitment

contingent on the presence of chromatin-associated proteins at TSS-distal regulatory

regions (Fig. 3b). To control for occupancy we analyzed single-factor stage 1 and

medium-occupancy (2–4 pre-bound TFs) stage 2 sites individually and evaluated

statistical-significance using the Fisher’s exact test (see Methods). We found that

BCL3, RAD21 (cohesin), and MAX, were most significantly associated with p65 re-

cruitment at both classes of sites. Together, these observations show that pre-bound

transcription factors influence the propensity of a site to recruit p65 after induction.

More importantly, they suggest that sites co-occupied by several transcription factors

can have markedly different propensities for p65 binding than the individual proteins,

which provides indirect support for combinatorial regulation of transcription by spe-

cific TF recruitment [4, 88].

Cooperative p65 recruitment by clusters of TFs

Use of a “cooperativity matrix” for the identification of recruitment synergism

We decided to test this hypothesis computationally, with regard to p65 binding, by de-

termining whether combinatorial interactions of proteins at the chromatin-level lead to

cooperative recruitment of p65. We focused on stage 2 enhancers, as these sample

Fig. 3 Role of pre-bound transcription factors in p65 recruitment. a Probability of p65 recruitment plotted
as a function of the number of transcription factors (TFs) pre-bound at regulatory sites (occupancy). CTCF
and RAD21 (cohesin) do not contribute to the occupancy count. b Enrichment of p65 binding events at two
classes of regulatory sites. TSS-distal stage 1 sites have a single TF pre-bound. TSS-distal stage 2 sites have TF oc-
cupancy from 2 to 4. Log-odds of p65 recruitment reported for each protein with all stage 1 and stage 2
sites as background, respectively. Significance estimated by the Fisher’s exact test. TFs are ordered based on
log-odds at stage 1 TSS-distal sites
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pairwise interactions exhaustively, while controlling for DNase I accessibility and occu-

pancy number (see Methods). Importantly, less than 10 % of stage 2 TSS-distal sites re-

cruit p65 (see “all” TF curve with occupancy ranging from 2 to 4 in Fig. 3a), which

suggests a relatively large degree of binding specificity. We calculated a “cooperativity

matrix” (Methods), which shows whether sites co-occupied by pairs of TFs have in-

creased (positive cooperativity) or decreased (negative cooperativity) propensity for p65

binding (Fig. 4a). A similar matrix was calculated for low-occupancy promoters (i.e.

stage 1 TSS-proximal sites). These results are similar, and support most of the coopera-

tive interactions observed at stage 2 enhancers (not shown).

Strong synergism between BCL3 and MAX in p65 recruitment

We found that the majority of interactions shows positive cooperativity; some of

which are surprisingly strong. For example, sites occupied by both BCL3 and MAX

show 37-fold higher propensity (log-odds 5.22) for p65 over sites bound by two ran-

dom proteins (Methods). The synergism of this pair improves over the already strong

enrichment of BCL3 on average (log-odds 1.77) (Fig. 3b). Several TFs participate in

multiple synergistic interactions, most notably SP1, MAX, JUND, and YY1. Import-

antly, all of these TFs show individually a strong propensity for p65 (Fig. 3b). Several

TFs appeared to form “cooperativity cliques”. For example, all pairwise interactions

between MAX, RAD21, and JUND show positive cooperativity in p65 binding

(Fig. 4a). Together, this suggests that p65 is recruited by clusters of chromatin-

associated proteins with strong affinity for p65.

Fig. 4 Cooperativity of transcription factors in p65 recruitment. a Matrix of positive (red) and negative (blue)
cooperativity between transcription factors (TFs) in p65 recruitment. Positive (negative) cooperativity means
that sites co-occupied by the two TFs have higher (lower) propensity for p65 than sites occupied by any of the
TF alone. Only significant enrichments are shown p < 0.05. Enrichments that do not meet a stringent significance
level p < 1e-5 are capped at log-odds 2 or −1, respectively. b–d Each diagrams represents a single “TF-cluster”
obtained using the TGC algorithm (Methods). Each box represents TSS-distal stage 2 sites co-occupied by the
indicated transcription factors (TFs). Log-odds enrichment scores are indicated below the TF symbols and are all
significant (p< 0.05). Arrows represent the intersection operation. Successive intersections within a single TF-cluster
monotonously improve enrichment. b TF-cluster with the highest positive propensity for p65 recruitment
c Context dependent role of TCF12. Together with GATA3 and USF1 TCF12 forms the only TF-cluster which is
depleted of p65 binding events. Together with CREB1 and RAD21 it forms a TF-cluster with moderate positive
cooperativity. d FOXA2 has weak propensity for p65 recruitment on its own, but boosts the propensity of some
combinations of TFs
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Association rules for the identification of cooperative TF clusters (optimization of combinations

of TFs that recruit p65)

Our next goal was to identify combinatorial clusters of TFs that are predictive of p65

site selection [121, 122]. Intuitively, such “TF-clusters” should show the highest pro-

pensity for p65 when they are fully assembled on the chromatin. We used two heuris-

tics that attempted to find orthogonal solutions to this combinatorial problem. The

first method (TGC) was “greedy”, but optimized the statistical association (enrichment

p-value) directly. The second technique (TNR [77]) attempted to identify all associa-

tions (strictly association rules [123]) with strong statistical support, which we next

filtered for those that predict p65 binding (see Methods and Additional file 1:

Methods). We ran both algorithms on TF occupancy data at stage 2 enhancers and re-

port on the most significant TGC clusters as these were a high-confidence subset of

the TNR clusters.

Sites occupied by CREB1, RAD21, JUND, and FOXA2 are preferentially bound by p65

We found a total of 21 TF-clusters with a high propensity for p65, and one which was

significantly depleted of p65 binding (Table 2). Stage 2 enhancers occupied by any of

these TF-clusters were on average 4-fold enriched for p65 and predicted p65 recruit-

ment with genome-wide confidence (i.e. probability of p65 recruitment) over 60 % .

Combinatorial clusters with the strongest enrichment had confidence over 70 %

(Fig. 4b-d, Table 2). The TF-cluster with the highest propensity for p65 binding in-

volved CREB1, RAD21, JUND, and FOXA2 (Fig. 4b). The only cluster with negative

cooperativity in p65 recruitment comprised GATA3, TCF12, and USF1 (Fig. 4c left).

Strikingly, TCF12 was also found in a positively cooperative TF-cluster with CREB1

and RAD21 (Fig. 4d right). Consistently, TCF12 was the only context-dependent TF

involved in both negatively and positively cooperative pairwise interactions (Fig. 4a).

On the contrary MAX and BCL3, which have high individual propensity did not appear

to form cooperative clusters among the included TFs.

Cooperative clusters are consistent with the pioneer-constitutive-inducible sequence of

enhancer assembly

According to the current model of sequential enhanceosome assembly [35, 37, 124],

lineage-determining TFs, such as PU.1 (SPI1) initiate remodeling at tissue-specific

enhancers and act as pioneer TFs, which have the ability to “open” closed chromatin,

particularly at H2A.Z-containing nucleosomes [110]. These accessible sites are then

bound by ubiquitous TFs, which facilitate selective access for stress-inducible TFs. Our

results are consistent with this model. First, we observed that the “pioneer” TF FOXA2

was positively associated with p65 recruitment only at sites, which were further co-

occupied by additional TFs. FOXA2’s ability to markedly increase p65 binding fre-

quency appeared to require at least two other proteins (Fig. 4d). Conversely, ubiqui-

tously expressed TFs – SP1, MAX, YY1, JUND – had intrinsic individual propensities

for p65, which were boosted through their frequent pairwise and higher-order interac-

tions (Fig. 3b, Fig. 4, Table 2). For example, the TF-cluster with the largest p65 binding

odds contained the transcription factors FOXA2 and JUND, together with RAD21 and

CREB1 (Fig. 4b). In agreement with the enhanceosome model FOXA2 is the pioneer,

while JUND unlike other AP-1 family members is constitutively expressed [125]. AP-1

(JUND/FOSL1) and NF-κB (p65/p50) have been shown to be required for the induction

of the IL6 gene [126]. Consistently, we found that IL6 is among the most up-regulated
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genes (23-fold). We found that the majority of TF-clusters, including the top FOXA2-

JUND pair, further included CREB1, RAD21, or both (Table 2). It has been recently re-

ported that both, RAD21 (cohesin) and CREB1, have a constitutive role in the

stabilization of large protein complexes at tissue-specific loci [127, 128]. Together, these

observations suggest that the layered TF-network (pioneer, ubiquitous, induced) [37]

involves CREB1 and RAD21 as scaffolding components. Strikingly, SP1, YY1, and

JUND, have been shown to physically interact with each other or NF-κB [129–131],

and thus might confer specificity for p65.

We observe a similar TF-network at the negatively cooperative TF-cluster (GATA3,

TCF12, USF1). Analogously, GATA3 is a pioneer TF [132], USF1 is an ubiquitously

expressed basic helix-loop-helix (bHLH) transcription factor [133], while TCF12 (HEB)

is a bHLH required specifically for T-cell development [134]. Further, all three proteins

show negative cooperativity with ETS1, a pioneer factor from the same family as PU.1.

Consistently, several pairwise interactions within a small subset of proteins, most not-

ably ETS1 and GATA3, showed moderate negative cooperativity in p65 recruitment

(Fig. 4a). Interestingly, ETS1 is also also typically restricted to the T-cell lineage, which

when compared to PU.1, shows a remarkable difference in sequence specificity, and

was shown to interact with NFKB1 (p50) [40, 135, 136].

Table 2 Combinatorial clusters of chromatin-bound TFs most significantly associated with p65
recruitment

cluster log-odds p-value supp. conf.

creb1-foxa2-jund-rad21 3.20 1.4E-11 7890 0.76

creb1-rad21-usf1-yy1 2.56 1.4E-09 5815 0.67

foxa2-rad21-usf1-yy1 2.03 9.1E-07 5672 0.59

gata3-tcf12-usf1 −4.66 1.1E-08 12907 0.01

creb1-rad21-sp1 2.90 1.4E-26 9415 0.72

max-rad21-sp1 2.74 4.6E-15 10061 0.70

creb1-foxa2-yy1 2.52 1.7E-14 11814 0.67

creb1-max-rad21 2.49 3.6E-87 11088 0.65

creb1-rad21-tcf12 2.49 1.1E-11 8507 0.66

max-rad21-tcf12 2.44 2.6E-09 9096 0.65

creb1-foxa2-sp1 2.35 4.8E-10 18956 0.64

jund-max-rad21 2.24 6.3E-10 9186 0.62

foxa2-max-sp1 2.13 1.8E-06 20425 0.60

gr-max-rad21 2.11 2.8E-12 9346 0.60

jund-pol2-rad21 2.08 7.6E-06 6302 0.60

cebpb-jund-rad21 2.01 6.5E-07 6442 0.58

max-pol2-rad21 2.00 4.5E-17 7741 0.58

cebpb-foxa2-yy1 1.95 2.9E-05 7025 0.58

elf1-foxa2-rad21 1.71 1.9E-08 4304 0.53

foxa2-max-yy1 1.62 4.2E-05 11994 0.52

cebpb-foxa2-usf1 0.90 6.6E-05 12804 0.39

TF-clusters obtained by the TGC algorithm at stage 2 TSS-distal sites. Each cluster is significantly enriched (or depleted)
for p65 binding events. The enrichment log-odds and significance are from the Fisher’s exact test. Support (supp.) and
confidence (conf.) are calculated genome-wide for all regulatory sites. Support is the number of sites occupied by all TFs
from a TF-cluster, confidence is the percentage of these sites that will recruit p65
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p65-mediated induction of pre-assembled promoters

We attempted to identify TSS-proximal and TSS-distal sites that are most frequently

associated with p65-upregulated genes [137]. We find that the probability of a p65-

bound site to be associated with an up-regulated gene depends, not surprisingly, on

whether the site is a promoter or enhancer (Fig. 5). Reassuringly, we observed, that

among all profiled TFs, sites bound by p65 are up-regulated most frequently (propor-

tion difference p-value: 0.001 [79]). This confirms the role of p65 as a transcriptional

activator. In addition, of the 415 known NF-κB target genes (see Methods), 102 are

differentially expressed with 89 upregulated. Moreover, 51 of these known NF-κB target

genes are differentially expressed and contain a p65 peak in their promoter (Additional file

2: Data). Strikingly, we found that the ability of p65 to induce gene expression is much

higher at low-occupancy p65-recruiting promoters (low-occupancy vs high-occupancy p-

value: < 1e-4), whereas no strong influence of occupancy on p65-induction was seen at

TSS-distal sites (Fig. 5). This re-affirms that p65 binding to inaccessible sites (Fig. 1),

is “functional” and has on average the same impact on transcriptional activation as

p65 recruitment to pre-accessible sites (approx. 6 %). It also suggests that a rela-

tively large subset (approx. 16 %) of low-occupancy promoters are particularly sus-

ceptible to transcriptional activation. As a corollary genes with high-occupancy

promoters are not easily inducible (< 5 %). We observed that low-occupancy pro-

moters bound by TAF1 had the highest chance of being up-regulated (Additional

file 1: Discussion, Additional file 1: Figures S7-9), which raises the possibility that

Fig. 5 p65-mediated transcriptional activation. Each gene was linked to 1 TSS-proximal and at most 3 TSS-distal
regulatory sites. The plot shows the fraction of sites linked to genes that will be up-regulated after p65
activation as a function of occupancy (see Fig. 3). Sites bound by (p65) are compared to (all) other sites
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specific TFs loaded at TSS-proximal or TSS-distal sites would bias genes towards p65-

mediated activation.

Discussion
After treatment of A549 with TNF and subsequent NF-κB activation we observed

65,253 p65 (RELA) binding sites genome-wide (Fig. 1). We tried to determine genome-

wide cues that guide p65 to select accessible sites or alternatively bind at ostensibly in-

accessible regions. Paradoxically, p65 binding was so ubiquitous that the majority of

genes had a p65 peak in their proximity (not shown), which is in stark contrast to the

relatively small number of 716 genes that were differentially expressed.

Our goal was to understand the regulatory logic of the NF-κB transcriptional net-

work. Through large-scale data-mining and the development of sensu stricto predict-

ive models we identified a number of testable hypotheses regarding which genomic

features influence p65 binding site selection, and which promote p65-mediated tran-

scriptional activation. We have found evidence of rapid p65 binding outside accessible

chromatin; importantly this type of remodeling activity is typically attributed to pion-

eer transcription factors. Further, we identified combinatorial patterns of epigenetic

marks and transcription factors that predict p65 recruitment. This type of association,

although not strictly causal, shows to what extent the induced p65 cistrome is prede-

termined by the extant chromatin landscape.

NF-κB is recruited to chromatin like a pioneer TF

NF-κB dimers are believed to fall into the category of “signal sensors” inducible tran-

scription factors (TF) that opportunistically exploit a pre-existing enhancer landscape

[15, 40]. Our analyses suggest that p65 is recruited to all types of enhancers including

“latent”, “primed”, and “active” ones [48, 93, 97, 102]. Our results suggests that within

30 min of TNF stimulation p65 is already, albeit at a relatively low level (Additional

file 1: Figure S3), recruited to 16,032 putative latent enhancers in A549 cells, which

represent 24.5 % of all p65 binding. This is similar to the time frame required for the

“pioneer” transcription factor PU.1 to bind latent enhancers in macrophages (Fig. 4 in

[93]). Consistently, Jin et al. have shown that in HeLa cells 17 % of p65 binding occurs

outside accessible chromatin (Fig. 2d in [15]). These numbers should be contrasted

with, for example, GR and FOXP3, which have, 5 and 2 % sites outside DHS regions,

respectively [138, 139]. On the other hand, it has been previously shown that cytokine

induced TFs have the ability to activate lineage-specific enhancers. A recent report

suggests that gains in H3K4me1 and p300 at a subset of enhancers in Th2 cells are

mediated by STAT6 [48].

Strikingly, we observed that p65 binding outside of CpG islands (CGI) occurs both at

hyper- and hypo-methylated CpG sites (Fig. 1d). It has been recently shown that a simi-

lar subset of non-CGI regions switch from DNA methylation to H3K27me3 during

early embryonic differentiation [92]. This process appeared to be associated with

FOXA1 and its quite unique ability to bind methylated DNA and initiate chromatin re-

modeling [29, 91]. What is more, FOXA1 and FOXA2 have been shown to bind

nucleosome-wrapped DNA [27, 110], and similarly, NF-κB dimers have a demonstrated

ability to recognize nucleosome-occluded κB elements [140]. Pioneer TFs have the
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unique capability to trigger cellular reprogramming while chromatin remodeling was

shown to be an early bottleneck of this process [31–33] (reviewed in [24, 34, 141]).

Likewise, induction of NF-κB activity has been shown to accelerate epigenetic repro-

gramming, the epithelial-mesenchymal transition, and dedifferentiation [49, 51, 142].

Interestingly NF-κB activity is also required for B-cell and T-cell development and

maturation [8, 143]. Since there is no evidence that NF-κB has the ability to initiate

chromatin remodeling (reviewed in [40]) it is likely that the the above analogies re-

flect synergism between NF-κB and some unknown constitutive or induced pioneer

transcription TF(s); possibly from the Stat or Irf families, which have overlapping tar-

gets and similar roles in development and cancer (e.g. [144, 145]).

NF-κB induces expression from enhancers and low-occupancy promoters

Further, our results highlight that p65 recruitment to latent enhancers has similar influ-

ence on the induction of putative late response (not simply binding) to primed and ac-

tive regulatory regions (Fig. 5), which suggest that during the course of TNF treatment

some of the latent sites ultimately develop into high-occupancy enhancers, recruit add-

itional co-activators, and enhance transcription. Strikingly, we have found that pro-

moters of the most upregulated putative late response genes had low-occupancy

promoters with a RNAPII positioned immediately downstream of the TSS (Additional

file 1: Figure S8), and conversely that at high-occupancy promoters p65 binding had

less impact on transcription. Genes with a fully “loaded” preinitiation complex (PIC) in-

cluding TFIID (TAF1) and other co-activators were modestly upregulated [146]. Why

the majority of p65-bound promoters are inefficiently or transiently induced is, how-

ever, still an open question.

Epigenetic codes predict p65 recruitment

We observed that within accessible sites epigenetic marks and their combinatorial pat-

terns are quantitative predictors of p65 recruitment. Building on initial results from

previous reports [94, 147, 148] we found that marks influence the selection of binding

sites even after controlling for DNase I hypersensitivity (DHS). Importantly, in the pre-

vious studies TF peaks and DHS sites were mapped in the same cellular state and pro-

vide limited independent information as they are expected to correlate almost perfectly

[81]. We also found that overall H3K4me1 and H2A.Z, a histone variant associated

with high nucleosome-turnover [149], are most significantly associated with p65 bind-

ing at enhancers and promoters (Fig. 2c–d). Importantly, H3K4me1 deposition has

been shown to be triggered by lineage-specifying TFs [47], and not to change in re-

sponse to stimulus [35, 89] (but see [48, 93]), and interpreted to mark enhancers

“primed” for activation [97]. Our results suggest that H3K4me1 strongly influences p65

binding probability (Table 1) and provide evidence for synergism and context-

dependent roles of select combinations of histone modifications in the recruitment of

p65 judging by the uninterpretable results of simple additive models (Additional file 1:

Figure S10). We find, for example, that H2A.Z is involved with other histone modifica-

tions in the cooperative recruitment of p65 (Fig. 2, Additional file 1: Figure S3) and that

the co-occurrence of H3K4me1 and H2A.Z is the strongest predictor of p65 binding to

TSS-distal enhancers and hence a de facto signature of “primed” enhancers [101].
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Strikingly, we found that H2A.Z can have the opposite effect on p65 binding when it is

in another context with the repressive H3K27me3 methylation (Fig. 2c). These findings

are in agreement with a recent study which showed that recruitment of PRC2, the com-

plex that deposits H3K27me3, is dependent on H2A.Z [115]. Interestingly, H2A.Z re-

moval can be triggered by the pioneer TF FOXA2 [110].

Recruitment of p65 by pre-bound transcription factors

Current models of stimulus-dependent transcriptional activation describe the sequential

recruitment of increasingly specialized TFs which leads to gene expression [35]. In general

terms, competence for induction by the most specialized TF (including NF-κB) was pro-

posed to depend on the combination of previously recruited proteins [37]. Implications

from this model prompted us to explore whether pre-bound TFs influence p65 binding,

and whether sites co-occupied by clusters of several TFs showed cooperativity in p65 re-

cruitment. We found that sites occupied by BCL3 showed the largest propensity for p65.

BCL3 is a nuclear IκB protein, but its role in the regulation of NF-κB binding and activity

is context-dependent and poorly understood [150–152]. Importantly, it has been shown

that BCL3 and IRF3 might play complementary roles as co-activators, at a subset of NF-

κB targets, in TNF- and LPS-induced cells, respectively [5], which could mean that BCL3

can initiate chromatin remodeling.

Enhanceosome assembly, p65 recruitment and clusters of cooperative TFs

Strikingly, we found that the role of multiple TFs is context-dependent. For example,

CREB1 is negatively associated with p65 binding when present at a site where no other

TF is bound, but shows positive cooperativity with several other TFs at co-occupied

sites (Fig. 4a). One of the roles of CREB1 is to recruit CBP, which is both a histone ace-

tyltransferase and protein scaffold [153]. Interestingly, several of the TFs engaged in co-

operative p65 recruitment are known to physically interact with CBP, but not with each

other. This observation, together with recent reports on the role of CREB1 and RAD21

(cohesin) in the stabilization of large protein complexes [127, 128], suggest that p65

binding at tissue-specific loci is stabilized by RAD21 or CREB1.

Finally, we have found that sites occupied by specific clusters of TFs have very large

positive or negative propensities for p65 recruitment. In line with other studies we

interpret this as traces of cooperative binding [117, 154]. However, direct interaction

between the pre-bound proteins and/or p65 might not be strictly necessary as co-

operative binding has been observed in vivo within larger and more complex regula-

tory sites [80, 154] and can arise from competition with nucleosomes [155, 156].

Importantly, the hierarchy of both TF-clusters is consistent with the current models

of sequential enhanceosome assembly and combinatorial regulation of gene expres-

sion [116]. Sites occupied by (CREB1, RAD21, JUND, FOXA2), were most enriched

for p65 binding, whereas those occupied by (GATA3, TCF12, USF1), were most

depleted. Interestingly, AP-1 (JUN/FOS) is also involved in the maintenance of gluco-

corticoid receptor (GR) accessible sites [22]. GR has an important anti-inflammatory

role and acts via the inhibition of NF-κB-mediated gene induction [157, 158]. This

suggests that NF-κB and GR have overlapping sets of target sites. A striking example

is the transcriptional regulation of the IL6 promoter. Induction of IL6 has been shown
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to depend on p65 and JUND recruitment, whereas silencing required GR binding,

which was mediated by FOXA2 [159].
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