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Abstract

Background: Connectivity networks, which reflect multiple interactions between
genes and proteins, possess not only a descriptive but also a predictive value, as new
connections can be extrapolated and tested by means of computational analysis.
Integration of different types of connectivity data (such as co-expression and genetic
interactions) in one network has proven to benefit ‘guilt by association’ analysis.
However predictive values of connectives of different types, that had their specific
functional meaning and topological characteristics were not obvious, and have been
addressed in this analysis.

Methods: eQTL data for 3 experimental C.elegans age groups were retrieved from
WormQTL. WormNet has been used to obtain pair-wise gene interactions. The Shortest
Path Function (SPF) has been adopted for statistical validation of the co-expressed
gene clusters and for computational prediction of their potential gene expression
regulators from a network context. A new SPF-based algorithm has been applied to
genetic interactions sub-networks adjacent to the clusters of co-expressed genes for
ranking the most likely gene expression regulators causal to eQTLs.

Results: We have demonstrated that known co-expression and genetic interactions
between C. elegans genes can be complementary in predicting gene expression
regulators. Several algorithms were compared in respect to their predictive potential in
different network connectivity contexts. We found that genes associated with eQTLs are
highly clustered in a C. elegans co-expression sub-network, and their adjacent genetic
interactions provide the optimal functional connectivity environment for application of
the new SPF-based algorithm. It was successfully tested in the reverse-prediction
analysis on groups of genes with known regulators and applied to co-expressed genes
and experimentally observed expression quantitative trait loci (eQTLs).

Conclusions: This analysis demonstrates differences in topology and connectivity of
co-expression and genetic interactions sub-networks in WormNet. The modularity of
less continuous genetic interaction network does not correspond to modularity of the
dense network comprised by gene co-expression interactions. However the genetic
interaction network can be used much more efficiently with the SPF method in
prediction of potential regulators of gene expression. The developed method can be
used for validation of functional significance of suggested eQTLs and a discovery of
new regulatory modules.
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Background
Reconstruction of functional networks from the known pair-wise connectivity between
biological molecules offers systems level insights into complex biological processes [1].
The topology of such a network is determined by all types of interactions used for its
reconstruction and selected from: direct physical or regulatory protein interactions as
well as indirect indicators of functional links between proteins. The indirect indicators
such as genetic interactions, gene co-expression, co-occurrence, fusions are usually pre-
sented as probabilistic. Integrative analysis of different types of data is widely applied to
construct regulatory gene networks [2, 3], overall improving the predictive power of such
networks [4]. It has been shown that indirect indications of functional relevance between
genes such as gene co-expression and genome co-localization are largely complementary
and correlate well with ontology-based protein groupings [5, 6]. However, not all interac-
tions correlate well: genetic and protein interactions barely overlap [7], that causes some
obvious challenges in retrieving useful information from a reconstructed species-specific
network. Network-based investigations require an accurate choice of data and signifi-
cance thresholds to reflect a proper balance between the connectivity and the reliability
of a network. Pitfalls are that not all types of connectivity data have been investigated to
the same extent and the unequal availability of data for different organisms. Therefore a
prior understanding of the impact of the different available data types on the topology of
the generated networks is essential.
The gaps in experimentally-derived knowledge on regulatory and structural features of

biological systems can be filled to some extent by theoretical predictions. For this study we
propose a new application of a modified statistical algorithm [8], based on the “shortest
path function” (SPF) to rank the regulators by their potential involvement with the genes
in a co-expressed cluster. The suggested algorithm can also be applied to any explicitly
defined group of genes.
One of the efficient methods that allow reconstruction of the regulatory interactions

between genes is based on expression quantitative trait locus (eQTL) data derived from
genetical genomics experiments. eQTL data has been used in several ways for net-
work/pathway reconstruction [3, 9–11]. However these methods focused on a small
number of genes or only used eQTL data without consideration of other available infor-
mation on gene and protein connectivity. The advantage of using of eQTL related
co-expression clusters is an opportunity to filter potential candidates by their genomic
position. Here we present an algorithm which uses eQTL data in combination with pub-
lished functional interactions in C. elegans [1]. By application to age-specific eQTL data
for C. elegans [12] we show that it leads to reasonable predictions for the underlying reg-
ulatory genes. The suggested approach can refine interpretation of organism- specific
integral biological networks and used for prediction of protein complexes and genetic
regulators from a network context.

Methods
Data sets

Dataset for validation of gene clusters

For eQTL-hotspot gene selection we used previously published eQTL data [12], retrieved
from WormQTL [13]. This experiment was done on three C. elegance worm age groups.
In each of the 3 experimental age groups the genes with a shared regulatory locus were
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selected by taking all the genes having an eQTL with a log10(p)-value above 3 at the same
locus (see Table 1).
WormBase WS220 [14] has been used for retrieval of gene names and IDs, asso-

ciated functional annotations and ontological categories. WormNet [1] has been used
to obtain pair-wise interactions between genes. WormNet contains connectivity data
from C. elegans, Drosophila melanogaster, Homo sapiens, and Saccharomyces cerevisiae.
Among the different types of data there are: co-citation, co-expression, protein physical
interactions, protein complexes, genetic interactions. In our analysis we used complete
Wormnet, which was denoted as ’wWormnet’ and Wormnet sub networks, comprised of
the genetic interactions (’gWormnet’) or the gene co-expression connections in C. elegans
(’eWormNet’).

Data set for testing predictive algorithms

To test our algorithms for detection of potential regulators from the gWormNet we
used 3 groups of genes, each known to be regulated by 3 regulators highly ranked in
our eQTL analysis (see Table 2). These groups of genes were retrieved from WormBase
and complemented with their genetic interactions and co-expression data retrieved from
WormNet.

Application of the SPFmethod to a new data set

To test our algorithm on a larger set of highly interconnected and co-expressed genes we
selected a group of genes involved in translation that had a strong co-expression pattern
in two C.elegans strains [15–17]. The micro-array data [18] were retrieved from NCBI’s
Gene ExpressionOmnibus (GEO [19]) under GSE5395. Bymeans of theMev4 application
[20] we performed clustering of the gene expression profiles by absolute mRNA values. By
application of K-means clustering of the expression profiles we have produced a number
of gene cluster arrays and have chosen the most robust cluster of genes ( slightly changes
depending on the requested cluster number) from a 50-cluster K-means analysis where it
was composed by genes with highly homogenous expression values. This largest cluster
(Cluster K1) enriched for highly co-expressed genes relevant to translation was selected
for further analysis. String software [21, 22] has been used for visualization of graphical
networks reconstructed for sets of C. elegans genes.

Table 1 EQTL-hotspots associated with C. elegance age groups

EQTL-hotspot Chromosome Left marker Right marker Number of genes

Juvenile worms

1 I 4 6 261

2 V 98 100 183

Reproducing worms

3 IV 61 63 131

4 V 95 100 194

Old worms

5 II 37 40 144

6 IV 61 65 164

7 IV 68 68 92

8 V 95 100 215
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Table 2 The gene groups with known regulatory genes

Group Regulator The number of genes Genes

1 pop-1 14

egl-17, glr-1,

end-3, end-1,

sdz-23, ceh-22,

sdz-26, wrm-1,

psa-3, end-1,

sod-3, end-3,

sys-1, ceh-10

2 daf-2 8

daf-16, sgk-1,

daf-21, fkb-3,

dao-2, old-1,

dao-3, dao-4

3 lin-11 9

odr-7, syg-1,

cdh-3, ceh-2,

syg-2, ast-1,

egl-17, zmp-1,

cog-1

Methods

Statistical validation of the gene clusters

To investigate WormNet connectivity properties of the selected gene clusters we have
used quite a standard approach based on calculation of gene pairs (GP) connected in a
cluster (or a module) [2, 4]. But in contrast to common methods, where the fraction of
direct links among all links is defined, we calculate this fraction as dependent on a random
set of genes (nodes) with the same degree distribution in a network (further, we use the
notation referred to as “random cluster” for such a set). The respective values of statistical
significance (GP score) can be defined as

GPscore = GP− < GP >random
σ(< GP >random)

(1)

Where < GP >random and σ(< GP >random) are the mean and the deviation of GP
in ensemble of random clusters defined in a given network. Note that the use a set of
nodes of the same degree distribution is a quite natural “null model”, arising in the study
of motif ‘s distribution [23] or of the specificity and the stability in a topology of networks
[24]. Another approach to characterize the connectivity of a gene cluster is based on the
so-called the shortest path function (SPF): where the shortest path along the network
from a given vertex node i to some another vertex node j is denoted by di,j. The SPF for a
given cluster is determined by the following

kSPFcl =
N∑

i,j=1

1
di,j

(2)

Thus defined, the SPF has a very transparent meaning, since it defines the sum of
lengths of reciprocal paths between a pair of genes. If i and j are not linked within the net-
work, the contribution to the SPF from this pair (i, j) equals zero. Whereas, for a directly
linked node pair the contribution reaches its maximum (2). So, the SPF can be used to
quantitatively characterize the connectivity of a gene cluster within a given network (see
Fig. 1).



Valba et al. BioDataMining  (2015) 8:33 Page 5 of 16

Fig. 1 Candidate regulator prediction for natural variation in gene expression regulation using the SPF
method. Genetical genomics (eQTL mapping) identifies loci involved in the regulation of gene expression. In
these experiments eQTL-hotspots (trans-bands) can be identified, which indicate loci regulating the
expression of many genes. a An outcome of a genetical genomics experiment is represented schematically.
The genes for which the expression levels where measured in a recombinant inbred line population are
shown on the Y-axis. The x-axis shows the location of the eQTL peak position (potential regulatory loci). The
blue locus is an example of an eQTL-hotspot, corresponding to a position of a putative regulator of multiple
genes (shown in blue). b By eQTL mapping we have obtained two types of information which can be used to
identfy the regulatory gene. Firstly target genes are identified as having an eQTL at a particular genomic
location. Secondly, the locus harbouring many eQTL is likely to contain a gene affecting expression of
multiple targets. Therefore it is very likely that the candidate gene has a regulatory function, for example, a
transcription factor or a receptor. c In many cases eQTL hotspot loci contain > 100 genes [12] and validation
is important before pursuing the potential regulator. The SPF method can be used to validate eQTL hotspot
by investigating if the genes mapping to the eQTL hotspot share a relationship based on hundreds of
experiments categorised in WormNet [34]. A validated group of genes will have more connections in
WormNet compared to a random group. Thereby the SPF method can identify false-positive eQTL hotspots,
for example caused by experimental variation. D: The identification of potential regulators is laborious [29],
and candidates prioritizing is imperative. A validated group of co-regulated genes can be used to predict the
most likely regulator by selecting genes on the eQTL hotspot locus with the most direct connections to the
target genes (dark orange circles), or indirect connections via other genes (yellow circles)

As for the gene pairs, we compare the SPF coefficients calculated for gene clusters and
for random sets of nodes with the same degree distribution in a network. Apparently,
direct links contribute to the calculated SPF coefficient the most; however for quite rare
networks a contribution of longer paths can be significant.

Prediction of potential regulators

The methods for prediction of potential gene expression regulators from a network are
usually based on the enrichment of direct links [2] or the overlap of the sub network of
the genes directly connected to the potential regulator with the studied gene cluster [4].
Our approach to predict the potential gene expression regulators from a network context
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is based on the assumption that potential regulators of a cluster are associated with the
cluster by multiple genetic connections. The SPF coefficients kSPFM , determined as

kSPFM = 1
N

N∑

i=1

1
di,M

(3)

is proved to be promising identifier of potential regulators of co-expressed gene clusters.
Note that a potential regulator that belongs to the cluster or lie outside of it, can have
connections to not all cluster genes. It should however have more connections to the
cluster than to other genes in the network, where the connections can be non-direct.
As before, we analyze the correlation of the SPF coefficients and a respective number of
direct links between a potential regulator and the cluster genes.

Results
Statistical properties of co-expression clusters

Statistical validation of eQTL hot spot gene clusters

Our first goal was to define the topological properties of the eQTL hot spots in a network.
We calculated the SPF coefficients for the trans-regulatory hotspots (or trans-bands)
associated with ageing in C.elegans (see Table 1) in eWormNet (Fig. 1). Table 3 demon-
strates the values of GP scores defined by (1) and the respective GP scores in the SPF
coefficients. The SPF coefficients for trans-bands (numbering according to Table 1) are
slightly smaller than the respective GP scores. This indicates a nearly homogeneous distri-
bution of the shortest paths in eWormNet. However, the number of direct links (di,j = 1)
is contrasting between the eQTL hotspots and random clusters for all trans-bands (the
respective scores aremore than 1). Therefore, we can conclude that the eQTL trans-bands
are characterized by higher connectivity at the level of direct links in eWormNet.
The same analysis was applied to the co-expression cluster of genes involved in transla-

tion (Cluster K1). We found that the genes within the cluster have a higher connectivity
both in SPF and in the number of direct links Table 3. Again, we can confidently distin-
guish the co-expression gene cluster by only on the number of the comprised direct links,
with the value of the respective statistical significance is order of 100.
Although we cannot distinguish both the cluster of co-expressed genes and eQTL

hotspots from a random gene set by the values of the SPF coefficient alone, this method
can be successfully applied to predict potential regulatory genes. We assume that a
cluster‘s regulatory gene must be well-connected with all genes in the cluster, rather

Table 3 Statistical significance scores (1) for number of direct links (gene pairs GP) and the SPF
coefficients for eQTL hotspot gene clusters

Cluster GP score the SPF score

1 114.8 100.2

2 15.8 6.2

3 22.2 10.8

4 25.8 9.3

5 185.2 96.4

6 5.5 5.34

7 1.6 35.70

8 4.3 0.88

K1 384.7 248.8
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than directly linked to a small subcluster. Therefore the calculation of a SPF coefficient
(averaging the lengths of all paths to a cluster) should be helpful and interpretive.

Prediction of expression cluster regulators

Testing of the SPFmethod

We have used the 3 pre-selected gene groups with known regulators (Table 2) to test our
algorithm on prediction of potential regulators. Two different methods have been tested.
We consider every gene in a network as a potential regulator and rank them by the fraction
of direct links (FDL), which a potential regulator has to genes in a co-expression cluster.
To be efficient, this method requires a dense connectivity matrix. The predicted regula-
tors were expected to have a strong and specific involvement in modulation of expression
of at least part of the gene cluster. A gene with any function could have an effect on
other gene expression. However, we expect to define a direct regulator of the mRNA pool
from the set of highly ranked genes. We used a number of ontological categories, such
as transcription, splicing, mRNA degradation and transport functions to filter the best
candidates.
The second method was based on ranking of the network nodes by their average

distance to all cluster genes, which was defined by the SPF. The different connectiv-
ity subnetworks reconstructed for genes in a cluster had different topologies, with the
genetic interactions subnetwork (gWormNet) generally being the least connected. The
SPF method did not require a matrix to be dense and could be applied to a gWormNet.
The power of the SPF method was in its compensation for fragmentary connectivity data,
as the top ranked regulatory links would be projected on the rest of the gene cluster.
Both the FDL and SPF methods were applied to the wWormNet and gWormNet sub-

networks reconstructed for the 3 test clusters (Table 4). We ranked all genes inWormNet
as potential regulators to a given gene group. Well studied regulators had high ranks in
both wWormNet and gWormNet subnetworks with pop-1 and daf-2 showing the largest
number of direct links to their gene groups (Table 4). Their coefficients in eWormNet
were equal to zero (not shown in Table 4), indicating that the identified regulators would
be unlikely co-expressed with the regulated groups of genes. Application of the SPF algo-
rithm increased the rank of the regulator lin-11 from the 19th to 8th position for the test
cluster 3 in wWormNet, and from 3rd to 1st position in gWormNet, proving that the
method may be successfully applied to even a small group of C. elegans genes connected
in WormNet.
Comparison of computational extrapolations made via applications of the wSPF and

gSPF methods demonstrate robustness of the highest and also other highly ranked pre-
dictions. Two other suggested regulators for the pop-1 regulated test gene group (mom-2
and skn-1), were ranked second and third by both methods, and 6 regulators suggested
for daf-2 test gene group were also among the top 10 predicted by application of the wSPF

Table 4 The ranks of potential regulators of the gene groups in Table 2

Group Regulator FDL SPF FDL SPF

wWormNet wWormNet gWormNet gWormNet

1 pop-1 1 1 1 1

2 daf-2 1 1 1 2

3 lin-11 19 8 3 1
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or gSPF. Three other regulators for emphlin-11 test group (lin-1, lin-29 and egl-38), were
also highly ranked by both the wSPF and gSPF scores.
To address problems with potential false-positive outcomes in the application of

SPF-based algorithms, we have compared the scores and inter-connectivity of the top
regulators predicted for each test gene group. This comparison showed that the very
top ranked regulators occurred to have strongly distinguished increments in their rank-
ing scores compared to the other suggested regulators, making them to stand out. For
instance, the gSPF score of daf-2’s is 0.94, which is high compared to the second ranked
(daf-7’s- 0.69), the third ranked (age-1’s -0.67) and the eighth ranked (daf-16’s -0.56). The
score of daf-2’s in wSPF equals 1 and for both daf-7 and age-1, now ranked as the 8th and
the 9th, scores equal at 0.69. The gSPF scores for the three top ranked regulators of the
pop-1 associated gene group are 0.55, 0.50, and 0.50 respectively, whereas the score of the
fourth ranked gene decreases abruptly to 0.37. Their corresponding scores using wSPF
are: 0.78, 0.65, and 0.63. Lin-11 shares the gSPF score of 0.5 with lin-29, however lin-11
has a higher score (0.73 versus 0.67) using wSPF.
The top suggested regulators that have high scores in both gSPF and wSPF ranking are

also strongly inter-connected in a network. age-1 , daf-7, and Pdk-1 that followed daf-2 in
the gSPF prediction list are the most connected to daf-2 by the number of experimentally
supported links. On the other hand, dao-5, dao-6 and isp-1 were only higly ranked using
the wSPF method and have lower positions in the gSPF list. These genes did not have
experimentally defined connections to daf-2 or its immediate connectors. Functions of
dao-5and dao-6 are also linked to regulation of dauer stage of larva development, which
may explain their high over-all connection to the dauer-associated daf-2-regulated test
gene group on wSPF. The gene isp-1 which is a component of the respiratory chain and
probably is associated with the test group of genes via co-expression connections taken
in consideration only in wSPF analysis. In case of the lin-11-regulated gene group all the
other highly ranked regulators contributed to cell differentiation and egg laying and can
be potentially functionally-relevant. wSPF however could generate potentially false pre-
dictions, such as of the gene B0034.1 ranked as 3rd by wSPF and having ‘0’ ranking score
in gSPF.
From this analysis we conclude that there is no critical false-positive issue with respect

to reliability of SPF method-based predictions, especially if the utilized network context
is comprised of only experimentally validated genetic interactions. Parallel application of
wSPF and gSPF can help to refine the predictions by contrasting true functional regulators
among at least top 10 ranked genes.

Prediction of regulators for eQTL hotspots

Subsequently we applied the SPF method to the age-associated C. elegance eQTL data
(Table 1) [13, 16]. Application of the SPF method to a gWormNet led to promising
regulatory predictions for eQTL-hotspots. Four regulators could be predicted for the
eQTL-hotspot on the left arm of chromosome I in the juvenile (L4) group when selection
included the position of the eQTL-hotspot locus. Interestingly, 3 from top 4 suggested
regulators (Pop-1, xnp-1, lin-17 and lin-44) are related to WNT pathway (see Table 5).
Pop-1 also associates with the chromosome V eQTL-hotspot in juvenile but cannot be the
first-order causal regultor of this QTL-hotspot as it is not located on the chromosome V
locus. When the location of the regulators was not considered, we found that both daf-2
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Table 5 Top regulators for eQTL-hotspot gene groups predicted by the SPF method in gWormNet

EQTL-hotspot Chromosome Gene Function

Juvenile worms

1 I pop-1 TCF/LEF TF, WNT pathway

1 I xnp-1 DNA helicase, stress response

1 I lin-17 Wnt signaling

1 I lin-44 Wnt signaling

Old worms

5 II age-1 PI3K, daf-2 Insulin pathway

and daf-16 were associated with the two juvenile eQTL-hotspots possibly functionally
linking these loci to wnt signaling.Age-1was suggested for the eQTL-hotspot on chromo-
some II, specifically found in old worms, by the analysis of the gWormNet (see Table 5).
No regulator could be identified for the eQTL-hotspot on the far right arm of chromo-
some V, found in all three age groups, even though the genes in this eQTL-hotspot were
highly linked in wWormNet. This could mean that a relatively less well studied gene is
involved in this eQTL regulation.
Application of the SPF method to wWormNet gave more diverse results presented

in Table 6. Besides a long list of candidate genes with unknown functions there were
promising predictions of steroid-hormone receptors nhr-218 and nhr-269, linked to let-
60 and thus to ras and wnt signaling for the Chromosome V eQTL-hotspot in old worms,
and also a prediction of RNA binding protein modulator encoded by moe-3 for the
chromosome II eQTL-hotspot in old worms.

Predictions for the co-expression cluster K1

Both algorithms were applied to the cluster of co-expressed genes involved in trans-
lation (Cluster K1). Among the most promising predicted regulators are: daf-2, iff-1,
cgh-1, tin-9.2 and car-1. They all are related to mRNA processing/translation/decay
and are in a cross-talking relationship (see Table 7). The SPF method allowed us to
predict some regulators which we could not detect by the FDL method. Especially,
it was demonstrated on gWormNet, where the density of network links is low (see
Table 8). We could identify a number of genes encoding TFs that may be consid-
ered for a role of transcription regulators of genes in Cluster K1, such as: taf-5—
transcription initiation factor TFIID subunit 5, xbp-1— heat-shock transcription fac-
tor, sin-3 — histone deacetylase subunit and premRNA-splicing factor cwc-22. Com-
pared to FDL, SPF greatly increased the ranking position of daf-2, genes upstream
daf-2 (C25A1.10) or ones that were known to be directly affected by daf-2 mutation
(C05C8.3).
Figure 2 illustrates typical positions of the predicted regulators for the Cluster K1.

Nodes predicted by the FDL method (purple frame) are located proximal to the cluster
or even inside the cluster. The nodes predicted by the SPF method can be distant from
the many nodes in the cluster (ces-1, eor-1, orange frames in Fig. 2). Though the connec-
tions between the SPF-predicted node and the cluster may include several intermediate
steps, the majority of these steps do contain the nodes that can translate signals at the
level of mRNA pool regulation, potentially representing complexes of proteins with a joint
regulatory performance.
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Table 6 Top regulators for eQTL-hotspot gene groups predicted by the SPF method in wWormNet

EQTL Chrom. Gene Function

Juvenile worms

1 I

K09H9.2, Endocytosis/

clec-53 regulation of growth rate

R12E2.2

1 I W01B11.1

1 I sep-1 Cell division

1 I mis-12 Cell division

1 I Y54E10BR.3 TF/Zn ion binding

1 I Y71F9B.6

2 V fbxa-192 Protein interaction

2 V str-92

2 V T10C6.7 Protein interaction

2 V Y59A8A.3

Reproducing worms

3 IV Y55F3BL.2 Metal ion transport

3 IV Y69A2AR.16 Metabolism/oxidoredutase

3 IV Y69A2AR.21 Embrionic development

4 V Y32B12A.5

4 V Y43F8B.13

4 V Y43F8B.14

4 V Y51A2B.4 Lipid metabolism

4 V Y70C5B.1

4 V srh-296 Integral membrane component

Old worms

5 II moe-3 RNA binding/iRNA modification

5 II Y17G7B.18 Positive regulation of growth rate/development

5 II cpt-1 Acetyl-transferase/histone modification

5 II csp-1 Caspase/apoptosis

5 II pqn-87 Prion/protein modification

6 IV F15E6.4

6 IV F28F9.3

6 IV T08B6.4

6 IV Y9C9A.1 Structural element of vitelline membrane

7 IV C17H12.12 Protein binding

7 IV C17H12.5 Tyrosine phosphatase

7 IV C31H1.1

7 IV F36H12.5

7 IV F38A5.6

7 IV ZK354.3

8 V Y38H6C.15

8 V Y38H6C.18

8 V tgt-2 Queuine tRNA-ribosyltransferase activity modification

8 V T26E4.10 Lipid storage

8 V T26F2.2

8 V sri-7 Integral membrane component

8 V nhr-218 TF,steroid hormon receptor

8 V str-151 Integral membrane component

8 V nhr-269 TF,steroid hormon receptor
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Table 7 Top regulators for test cluster K1 predicted by the FDL and the SPF methods in wWormNet

Seq. IDs Gene Function

F57B9.6 inf-1 Transl.initiation/ RNA transport

T05G5.10 iff-1 Transl.initiation/ NMD

Y71G12B.8 Y71G12B.8 RNA helicase/ RNA transport

T10C6.14, T10C6.12, T10C6.11,

38 His genes Histones

F45F2.4, F45F2.12, ZK131.4,

ZK131.6, ZK131.8, ZK131.10,

K06C4.10, K06C4.11, K06C4.4,

K06C4.3, K06C4.12, ZK131.1,

K06C4.2, F35H10.1, F17E9.12,

F17E9.13, C50F4.7, K03A1.6,

C50F4.5, F08G2.2, B0035.9,

B0035.7, F07B7.9, F07B7.10,

F07B7.4, F07B7.3, F07B7.11,

F54E12.3, F54E12.5, F55G1.11,

F55G1.10, F22B3.1,H02I12.7,

T23D8.5, T23D8.6, F45F2.3

C41D11.2 eif-3.H Transl.initiation

F32E10.1 nol-10 Nucleolar protein, polyglut. binding

F54H12.6 eef-1B.1 Elongation factor

C01F6.5 aly-1 RNA export

M163.3 his-24 Histones

B0564.1 tin-9.2 Decay/ NMD

Y18D10A.17 car-1 Decay/decapping

F56D12.5 vig-1 RISC component/miRNA binding

F26D10.3 hsp-1 Splicing

R04A9.4 ife-2 Transl.initiation

Discussion
Our study aimed to refine algorithms that use biological networks for identification
of gene regulators. We used test clusters of co-regulated genes with known regulators
and a large cluster of co-expressed house-keeping genes to validate their performances.
Both test computations gave us positive outcomes for an application of the SPF-function
based algorithm, especially when only genetic interactions were used for network recon-
structions. We were able to perform a reverse prediction of the regulators for the
selected clusters of co-regulated genes and to suggest a number of expected functional
links/potential regulators of the cluster of co-expressed genes relevant to translation.
Our method may be especially useful in finding the causal regulators for gene expres-

sion QTLs in genetical genomics studies. Genes sharing an eQTL are very likely to have
a common regulator as well as a joined biological function, however, candidate regula-
tors in the relevant genomic position are still too numerous for a focused experimental
validation. As more diverse organisms like yeast [4, 25, 26], plants [3, 9, 10, 27], animals
[12, 18, 28–32], human [33] are interrogated via eQTL analysis, an efficient way of can-
didate gene selection is indeed becoming essential. This application is also of potential
interest for interpreting the results of population genomic studies, since eQTLs from
individual experiments may provide inconclusive clues to the relevant functional rela-
tionships underlying observed responses. Our methods predict the most likely regulator
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Table 8 Top regulators for the test cluster K1 predicted by the SPF method in gWormNet

Seq. IDs Gene Function

Y55D5A.5,B0334.8,Y116F11B.1 daf-2, age1, daf-28 Insulin/aging

F35H8.5 exc-7 mRNA processing

W10D5.1 mef-2 TF

C17D12.2 unc-75 Splicing

C47G2.2 unc-130 TF

F30F8.8 taf-5 Transl.initiation

R74.3 xbp-1 TF, histone modulation

F33A8.1 cwc22 Splicing

C41C4.4 xre-1 (RNA processing) decay/processing

C37H5.8 hsp-6 Decay

C26D10.2 hel-1 DNA helicase

C07H6.5 cgh-1 Decay/ decapping

F02E9.4 sin-3 Histone modulation

M163.3 his-1 Histone

212312 C25A1.10 dao-5 rRNA transcription/aging

ZC247.3 lin-11 TF

R107.8 lin-12 TF

C05D9.5 ife-4 Transl.initiation

R11E3.6 eor-1 TF

F43G9.11 ces-1 TF

ZK909.4 ces-2 TF

based on hundreds of previously published experiments, as, in our case, are those used to
generate WormNet [34].
The test co-expression gene Cluster K1 mainly contained genes involved in the transla-

tionalmachinery. Our analysis highlighted its primary associationwith insulin-dependent
pathway via such suggested regulators as daf-2 and insulin-regulated mRNA decay func-
tions iff-1 and bir-2 [35]. The insulin pathway has an established role in the regulation
of translation [36, 37]. As it is involved in regulation of the aging process, and iff-1 was
shown to have a longevity phenotype, we investigated the genes of cluster K1 for associa-
tion with longevity phenotypes (Fig. 3). The analysis has produced a supportive outcome.
Predicted K1 connections, iff-1 and tin-9.2, are associated in a network with a ribo-
some maturation protein SBDS [38, 39], which is required for the longevity phenotype of
daf-2 [40]. Interestingly, the transcription factors predicted for Cluster K1 by the SPF
method were also found to be involved in regulation of longevity. The genes cgh-1 [41],
dao-5 [42], hel-1 [43] were already linked to aging processes downstream of daf-2, daf-16,
and in case of dao-5, to a daf-16 independent pathway associated with determination of
the adult life span GO-term in WormBase database.
All top regulators predicted for age-associated eQTLs were relevant to aging and

longevity processes. Finding AGE-1 as a possible regulator for an eQTL-hotspot
expressed in old age worms is especially interesting as this protein gene has been already
suggested as a regulator of lifespan after heat shock [44]. POP-1, a predicted regulator of
the chromosome I eQTL-hotspot in juveniles, is a TF that functions as a component of
WNT signaling pathways [36], and both longevity-related DAF-2 and DAF-16 are known
to interact with its components [45]. For instance, it was shown that DAF-2, DAF-16 and
POP-1 synergistically affect the immune response in C. elegans [46].
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Fig. 2 Connectivity between the predicted regulators and the cluster K1 in STRING Network browser:
experimentally derived interactions (pink), co-expression (black), co-localization in the genomes (green), and
co-occurrences in the genomes (blue). Colored circles represents input genes, white circles — the most
associated additional nodes (set number of 200) automatically added by a STRING software on a request to
increase a connectivity between uploaded functions. Predicted potential regulators are shown in frames:
orange— the SPF method, purple — the FDL method, green node excluded in hub-exclusion SPF method

We anticipate that our work provides new insights to the structure of biological func-
tional networks and highlights the aspects that need to be considered in the prediction of
regulatory nodes and functional modules from a multilevel and heterogeneous network
context.

Conclusions
1. Application of the SPF function has been adopted for computational prediction of

potential gene expression regulators from a network context.
2. Computational identification of groups of co-expressed genes in a network was

proven to be achievable. The developed method can be used for validation of
functional significance of suggested eQTLs and a discovery of new regulatory
interactions.

3. We have demonstrated differences in topology and connectivity of co-expression
and genetic interactions subnetworks in WormNet. The modularity of less
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Fig. 3 Network reconstructed from the C.elegans genes with an adult life span phenotype from WormBase
220. Three main distinguished clusters can be seen: in the center — ribosomal, top left —metabolic, top
right — proteosome and exosome functions. Blue circles indicate the test Cluster K1 genes.
Orange-predicted regulators, dashed borders — functionally associated regulators discussed in the
manuscript. (Not all aging-related functions related to the Cluster K1 are shown on this figure)

continuous genetic interaction network does not correspond to modularity of the
dense network comprised by gene co-expression interactions. However the genetic
interaction network can be used much more efficiently with the SPF method in
prediction of potential regulators of gene expression.

4. Regulators predicted for the test cluster of co-expressed genes related to
translation revealed the relation of this gene group to longevity. RNA decay may be
suggested as an important player in longevity regulation.
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