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Abstract

Background: In cancer, large-scale technologies such as next-generation sequencing
and microarrays have produced a wide number of genomic features such as DNA
copy number alterations (CNA), mRNA expression (EXPR), microRNA expression
(MIRNA), and DNA somatic mutations (MUT), among others. Several analyses of a
specific type of these genomic data have generated many prognostic biomarkers in
cancer. However, it is uncertain which of these data is more powerful and whether
the best data-type is cancer-type dependent.
Therefore, our purpose is to characterize the prognostic power of models obtained
from different genomic data types, cancer types, and algorithms. For this, we
compared the prognostic power using the concordance and prognostic index of
models obtained from EXPR, MIRNA, CNA, MUT data and their integration for ovarian
serous cystadenocarcinoma (OV), multiform glioblastoma (GBM), lung adenocarcinoma
(LUAD), and breast cancer (BRCA) datasets from The Cancer Genome Atlas repository.
We used three different algorithms for prognostic model selection based on
constrained particle swarm optimization (CPSO), network feature selection (NFS), and
least absolute shrinkage and selection operator (LASSO).

Results: The integration of the four genomic data produced models having slightly
higher performance than any single genomic data. From the genomic data types, we
observed better prediction using EXPR closely followed by MIRNA and CNA depending
on the cancer type and method. We observed higher concordance index in BRCA,
followed by LUAD, OV, and GBM. We observed very similar results between LASSO
and CPSO but smaller values in NFS. Importantly, we observed that model predictions
highly concur between algorithms but are highly discordant between data types,
which seems to be dependent on the censoring rate of the dataset.

Conclusions: Gene expression (mRNA) generated higher performances, which is
marginally improved when other type of genomic data is considered. The level of
concordance in prognosis generated from different genomic data types seems to be
dependent on censoring rate.
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Background
Cancer is a public health problem worldwide due to its high prevalence and mortality

rates [1]. In the year 2012 alone, there were 14.1 million new cases of cancer, from

which 8.2 million resulted in death [2]. Moreover, projections estimate a 20 % and 40 %

increase of cancer cases for the years 2020 and 2030, respectively relative to 2010. The

cancers of breast and lung cancers are expected to remain within the top cancer

diagnoses and leading causes of cancer-related death [3].

Patient prognosis has a fundamental role in treatment, and research [3–8]. As a

result, many prognostic biomarkers have been proposed using a wide range of

biological features, such as genomic [9], proteomic [10], metabolomic [11], pathological

[12], imaging [13], and psychological features [14]. From these, genomic features are

currently the most used in biomarker discovery analyses [15], mainly due to significant

efforts made by the National Cancer Institute and the National Human Genome

Research Institute, which resulted in The Cancer Genome Atlas (TCGA) project [16].

TCGA has gathered information from several sources of genomic data on over 30

cancer types [17]. Large-scale technologies, like next-generation sequencing and micro-

arrays, have been used to obtain DNA copy number alterations (CNA), mRNA expres-

sion (EXPR), microRNA expression (MIRNA), DNA methylations, and DNA somatic

mutations (MUT), among others. These data have already been used to propose many

cancer prognostic signatures [17–24].

Identifying which source of genomic data, or combination, generates the most power-

ful prognostic biomarker could help to describe cancer etiology [16, 19, 20]. However,

some studies have generated inconsistent results across cancers when evaluating dis-

tinct sources of genomic data for prognosis [19, 20], probably because of the use of dif-

ferent algorithms. Thus, it is not clear which type of data is the best at predicting

cancer prognosis or whether combinations of data types provide some improvement.

For example, it has been shown that no significant improvement is obtained adding

any genomic measurement once EXPR data and clinical covariates were included in the

model [19] using principal components, partial least squares, and a penalization algo-

rithm. On the other hand, a similar study showed that all clinical outcomes were better

predicted when integrating multi-layers of genomic data [20] using a graph-based algo-

rithm while others suggest that the clinical improvement of genomic data is limited in

magnitude and on cancer types [21] using diverse classification algorithms.

Given the lack of concordance on methods and genomic data provides the best

prognostic results and its utility, our purpose is to characterize the prognostic power of

models obtained from different genomic data types, cancer types, and algorithms. For this,

we tested the prognostic and concordance index of models obtained by three different

algorithms from EXPR, MIRNA, CNA, MUT data and their integration for ovarian serous

cystadenocarcinoma (OV), multiform glioblastoma (GBM), lung adenocarcinoma

(LUAD), and breast cancer (BRCA) datasets from the TCGA repository. The algorithms

used are based on very different properties to search for diverse solutions attempting to

derive conclusions at certain independency of the algorithms. We used constrained

particle swarm optimization (CPSO) [22], which explores combinations of features irre-

spectively of its biological connections, network feature selection (NFS) [23] that explores

combination of features integrating protein-protein interaction information, and the least

absolute shrinkage and selection operator (LASSO) [24] that explores penalized models.
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Methods
The methodology is summarized in Fig. 1. Briefly, samples from the four cancer types

that fulfill a specific inclusion criterion were selected. Features from each database and

source were filtered. The resulting four databases were then merged into a metabase

(MERGE) for comparisons with single-sourced databases. Predictive models were

obtained for each database using three feature selection algorithms that generate a

unique model. Finally, the performance of the models was evaluated using the con-

cordance index (c-index) [25].

Database selection

The data used in this study was downloaded in April 2013 from the TCGA data portal

(https://tcga-data.nci.nih.gov/tcga/) including level 2 (MUT) and level 3 (EXPR,

MIRNA, and CNA) data. CNA was segmented by regions per sample using the GISTIC

algorithm [26]. EXPR and MIRNA data were quantile-normalized before use. Using the

TCGA-ID, a tag unique to each subject, only those subjects with available EXPR,

MIRNA, CNA, and MUT data were used. The results published here are in whole or

Fig. 1 Overview of the methodology. TCGA: The Cancer Genome Atlas. BRCA: Breast Cancer. LUAD: Lung
Adenocarcinoma. OV: Ovary Cystadenocarcinoma. GMB: Glioblastoma Multiform. EXPR: Gene Expression.
MIRNA: micro RNAs. CNA: Copy Number Alteration. MUT: Somatic Mutations’. Stands for Filtered Data.
EN: Elastic-Net LASSO (Least Absolute Shrinkage and Selection Operator). NFS: Network Feature Selector.
CPSO: Constrained Particle Swarm Optimization. c-index: Concordance Index
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part based upon data generated by The Cancer Genome Atlas pilot project established by

the NCI and NHGRI. Information about TCGA and the investigators and institutions who

constitute the TCGA research network can be found at http://cancergenome.nih.gov/.

Feature filtering

We filtered features to reduce complexity, to avoid the use of invariant information, and

to balance the number of features from each source avoiding to remove predictive

information. MIRNA and EXPR databases were filtered using a correlation and

quantization strategy. First, features without absolute Spearman correlation coefficient

larger than 0.6 were excluded. Second, to remove invariant genes, we split the data into

five uniform segments and only those genes having counts in more than two segments

were used. For CNA data, we used the 10 % probes having the most significant p-values

using the univariate log-rank test from a Cox proportional hazard model splitting the

linear predictor at the median. For MUT data, we used the 11.4 % of OV, 12.2 % of LUAD,

9.9 % of BRCA and 30.4 % of GBM, of the most frequently mutated genes. Using LUAD

as an overall validation of the filtering procedure, we observed that using LASSO and all

features in CNA, EXPR, MIRNA and MERGE, the results were 61, 77, 76, and 78 of

concordance index respectively, which are very close to those observed after the filtering.

Metabase generation

A fifth dataset (MERGE) was constructed per cancer type by merging their correspond-

ing EXPR, MIRNA, CNA, and MUT filtered databases. This allowed a direct com-

parison on which data source is best selected in the presence of other sources.

Furthermore, the metabases permitted the identification of predictive models with

features from different sources, and compare such compound models with single-

source models.

Feature selection algorithms

We used a multivariate Cox proportional hazard model for the three feature selection

algorithms. Beta coefficients were calculated by optimizing either the log-likelihood

(NFS and CPSO) or a penalized maximum likelihood function (LASSO) through sev-

eral iterations using bootstrap (NFS and CPSO) or a 10-fold cross-validation (LASSO)

scheme [27, 28]. In the case of NFS and CPSO, only two- thirds of the population was

used for training while the remaining was used to perform a blind test. Bootstrap

consists in randomly sampling the population using a similar fraction per strata in the

resampled sets [29]. For MUT databases, we relied on resubstitution because mutation

data is sparse where only small number mutations are observed per gene, which may

generate sets of training samples with no mutations at all.

Constrained particle swarm optimization (CPSO)

Particle swarm optimization algorithms are based on the biological behavior of swarms.

Concisely, these algorithms create a swarm of particles with random positions and

velocities. The positions represent parameters of the problem to solve. The particles will

update their velocity and position depending on their performance, iteratively. The per-

formance is a function that evaluates the particle position relatively to the swarm [22].
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We have customized PSO (CPSO) to handle feature selection problems from large gen-

omic datasets [30]. This algorithm uses a user-defined number of features, k, to generate

efficiently a subset of features that is used as the survival model. We used k = 5 and 500

iterations. We ran the algorithm 1,000 times. Models generated contained between 8 and

10 genes. We used the model with the highest c-index estimated by bootstrapping.

Network feature selection (NFS)

Network Feature Selection (NFS) is based on the exploration of protein-protein inter-

action networks to select features resulting in more biologically coherent models [23].

NFS has recently been used to generate multi-cancer biomarkers [23]. Briefly, each feature

is evaluated individually by the p-value of an univariate Cox proportional hazards model.

Each gene is then considered as a survival model. Each model grows by considering all

possible neighbors according to the interactions provided by a network. The top 5 % of

these grown models having higher performance are selected to grow in the next iteration.

This procedure is carried on until no model can be further grown, or until 10 iterations.

The protein-protein interaction network used was downloaded from the human protein

reference database (HPRD, http://www.hprd.org/). Genes having more than 1,000 connec-

tions are not allowed to grow (for example, the UBC gene). For MIRNA data, the interac-

tions between miRNA and mRNA were considered as surrogate interactions for the

network, where the mRNA was replaced by the miRNA that regulates it. In order to

identify the targets of each miRNA and create the miRNA/protein-protein interaction

network, the miRTarDatabase (http://mirtarbase.mbc.nctu.edu.tw/) was used. In the

MERGE dataset, the gene/protein connections were used irrespective of the data type.

Least absolute shrinkage and selection operator (LASSO)

LASSO is a well-known widely used feature selection algorithm, particularly when the

number of samples is considerably smaller than the number of features. This algorithm

performs a coefficient penalization in which only well-associated features emerge [28].

The best model containing around 10 features was used.

Performance evaluation

Models were evaluated and compared using the concordance index (c-index) and the

p-value of the log-rank. The c-index was used to assess the prediction power of the sur-

vival model [25, 31]. The log-rank test was used to determine whether low- and high-

risk groups were significantly different from each other [25, 31]. These statistics were

estimated using the blind test subset for the models generated with CPSO and NFS, or

using re-substitution for the models generated with LASSO. To compare the agree-

ment of prognostic prediction of two models, we used the Cohen's kappa statistic in R

implemented within the package fmsb [32]. For this, we split the prognostic index by

the median. The prognostic index is the linear predictor of the exponential function in

the Cox model [27].

Results
We used OV, LUAD, BRCA, and GBM datasets that had at least 100 subjects with

EXPR, MIRNA, CNA, and MUT data in the TCGA repository at the time of accession.
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A brief description of the technologies and clinical and demographic information is

included in Additional file 1: Table S1 and Additional file 2: Table S2. The number of

features of each dataset before and after filtering is detailed in Table 1.

The results of the c-index and the log-rank test of all cancer types, data types, and

algorithms are shown in Table 2. From the genomic data types, we observed better

prediction in EXPR closely followed by MIRNA and CNA depending on the cancer

type and method (Figs. 2 and 3). In our tests, mutation data generated poor predictions.

In average, the results of the MERGE dataset were marginally more predictive that any

of the other data types (Figs. 2 and 3). Within the MERGE dataset, we explored which

of the dataset was more important. The Table 3 shows the number of features per data

type used by the best model in the MERGE database. The results further support that

EXPR is the preferred data (54 % of the features) when all other data is present.

Surprisingly, EXPR was followed by CNA (27 %) and then MUT (14 %) while MIRNA

data was almost not used (6 %).

We observed higher predictions in BRCA, followed by LUAD, OV, and GBM having

an average c-index around 0.82, 0.71, 0.63, and 0.60, respectively. These comparisons

agree with recent results of multi-cancer gene expression biomarkers [23]. In

BRCA and OV, CNA data were more predictive than MIRNA. In LUAD and GBM,

the c-index of MIRNA was higher than CNA and comparable with EXPR data.

Although the results of MUT were poor, in BRCA and LUAD the predictions were higher

than in OV and GBM even though we used more genes in those cancer types.

We observed similar c-index values between LASSO and CPSO but smaller c-index

values in NFS (Fig. 3). The MERGE data was more predictive in LASSO and NFS but

not in CPSO where EXPR was the best. CNA was clearly more predictive in CPSO than

in LASSO and NFS (Fig. 3).

We also compared whether the predictions made by models concur. We used the

Kappa statistic that measures the level of concordance of two predictors. Values of

Kappa close to 0 correspond to random agreements whereas values close to 1 represent

perfect agreement. The results show that MIRNA, CNA, and EXPR models have

acceptable agreement in LUAD, OV, and GBM irrespective of the method (Fig. 4). In

BRCA, we found agreement in CNA models and partially in MIRNA. In addition,

MIRNA slightly agrees with CNA in LUAD and with EXPR in GBM. In general,

however, the predictions made by different types of data disagree.

Discussion
Our objective was to compare and characterize the prognostic level of different gen-

omic data sources in cancer. For this, we analyzed four important cancer types (BRCA,

Table 1 Number of features used by the feature selection algorithms

Before filtering After filtering

OV LUAD BRCA GBM OV LUAD BRCA GBM

EXPR 12,042 20,502 17,787 12,042 1,203 4,632 3,836 1,204

MIRNA 705 1,046 1,046 534 108 578 587 534a

CNA 24,174 24,174 23,862 24,117 2,417 2,417 2,417 2,417

MUT 12,042 20,502 11,929 20,502 1,371 2,500 1,175 6,241
aNot filtered because of low number of remained filtered features

Gómez-Rueda et al. BioData Mining  (2015) 8:32 Page 6 of 12



LUAD, OV, GBM) that have diverse survival times. The analysis was performed using a

feature selection method trained with a specific data type. For feature selection, we

used three methods (LASSO, NFS, CPSO). For the data types, we used the genomic

data available at the time of the analysis (EXPR, MIRNA, CNA, MUT) and the union

of these (MERGE).

Table 2 Concordance index and log-rank test of all models

Cancer type Algorithm EXPR MIRNA CNA MUT MERGE

OV CPSO 66b 61b 64c 10c 65c

NFS 60a 53 56b 11c 63c

LASSO 68c 62c 64c - 68c

Average 65 59 61 10 65

LUAD CPSO 74b 70 74b 52c 75b

NFS 71b 73b 65a 29b 64

LASSO 72c 75c 66c 52c 78c

Average 72 72 68 44 72

BRCA CPSO 85c 82c 92 38c 83c

NFS 79 76 70 28c 84

LASSO 81c 80b 83c 53c 86c

Average 82 80 82 40 84

GBM CPSO 63c 59c 57b 16c 59

NFS 60c 61c 58b 3b 63c

LASSO 60c 61c 53c 5 61c

Average 61 61 56 8 61

Overall CPSO 72 68 72 29 71

NFS 67 66 62 18 69

LASSO 70 70 66 37 73

Average 70 68 67 27 71
a,b,cIndicate models whose Kaplan-Meier curves were statistically different at 0.05, 0.01, and 0.001 level respectively using
the log-rank test. For this, the population was split by the median using the prognostic index (linear predictor of the
Cox model). “-” indicates that no models were generated

Fig. 2 Performance of the models generated with different genomic data sorted by the cancer subtypes.
BRCA: Breast Cancer. LUAD: Lung Adenocarcinoma. OV: Ovary Cystadenocarcinoma. GMB: Glioblastoma
Multiform. EXPR: Gene Expression. MIRNA: micro RNAs. CNA: Copy Number Alteration. MUT: Somatic mutations
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Overall, MERGE data was the most predictive across the four cancer types (Fig. 2)

and the three algorithms (Fig. 3). This result is sensible because MERGE contained all

other data types. Nevertheless, in some cases MERGE was not the best. This was the

case in CPSO whose performance could be influenced by the increased number of

features.

From the genomic data types (EXPR, MIRNA, CNA, MUT), the best performance

was obtained with EXPR (Figs. 2 and 3). The gene expression is the result of complex

Fig. 3 Performance of the models generated with different genomic data sorted by the used algorithms.
EXPR: Gene Expression. MIRNA: micro RNAs. CNA: Copy Number Alteration. MUT: Somatic mutations. LASSO
(Least Absolute Shrinkage and Selection Operator). NFS: Network Feature Selector. CPSO: Constrained
Particle Swarm Optimization

Table 3 Feature source distribution for MERGE models

Algorithm Dataset Size EXPR MIRNA CNA MUT

CPSO BRCA 10 6 0 3 1

LUAD 9 6 0 3 0

GBM 10 2 2 1 5

OV 10 6 0 4 0

Total 39 51 % 5 % 28 % 15 %

NFS BRCA 4 0 0 4 0

LUAD 4 3 0 1 0

GBM 9 4 0 5 0

OV 9 4 0 4 1

Total 26 42 % 0 % 54 % 4 %

LASSO BRCA 11 4 0 2 5

LUAD 9 3 3 1 2

GBM 13 10 1 1 1

OV 10 10 0 0 0

Total 43 63 % 9 % 9 % 19 %

Overall 216 54 % 6 % 27 % 14 %

Percentages were rounded to closest integer
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dynamic interactions between all components of the system (genome, proteome, me-

tabolome, and environment). Consequently, any type of alterations or stimuli is likely

to influence EXPR. CNA and MIRNA followed EXPR in performance (Figs. 2 and 3

and Table 2). CNA represents changes in DNA, which are presumably less dynamic

than EXPR. Nevertheless, the CNA performance was surprisingly comparable to EXPR

suggesting that a considerable component of the survival is dictated by CNA. The

performance of MUT data was poor when compared to EXPR, MIRNA, and CNA.

Some issues are known relative to this lack of prediction. First, mutation frequencies

per gene are generally low suggesting that mutation data is highly disperse [21].

Second, the combination of sparseness and binary data (mutated or not mutated) may

Fig. 4 Agreement in the prognostic prediction by cancer type and data type. The figure shows the Cohen’s
Kappa agreement of the risk assessment based on the median of the prognostic index generated by each
model. Each heatmap shows the comparison of the models generated between data types and algorithms.
Cells shown in squares correspond to the comparisons between the models of the three algorithms (CPSO,
NFS, LASSO) for the same data type. The event proportion in each cancer type is shown in parenthesis.
Within heatmaps, blue colors denote lower kappa value, white denotes intermediate values, and red denotes
high kappa values. For comparison, the scatter-plots shown aside the color-coding corresponds to examples of
prognostic indexes pairs having 0, 0.25, 0.5, and 1 of kappa values. MUT data did not generate risk groups in OV
and GBM and were omitted. EXPR: Gene Expression. MIRNA: micro RNAs. CNA: Copy Number Alteration. MUT:
Somatic mutations. LASSO (Least Absolute Shrinkage and Selection Operator). NFS: Network Feature Selector.
CPSO: Constrained Particle Swarm Optimization. BRCA: Breast Cancer. LUAD: Lung Adenocarcinoma. OV: Ovary
Cystadenocarcinoma. GMB: Glioblastoma Multiform

Gómez-Rueda et al. BioData Mining  (2015) 8:32 Page 9 of 12



generate difficulties in the Cox model fitting. Third, the reports of mutation frequencies

do not commonly find associations with survival [33–36].

We did not observe big differences in performance relative to the algorithm used.

CPSO seems to show consistent and highly competitive results, but LASSO seems to

report slightly higher results while NFS seems to produce lower performance.

The prognostic values provided by different methods for the same data type were re-

markably high suggesting that the algorithm used is a minor source of differences

(Fig. 4). However, the observation of the lack of similitude in risk prediction between

different data types was surprising and an important result of our study (Fig. 4). It is

known that the precision of the prognostic values is highly influenced by the propor-

tion of censoring [37]. We observed higher similitudes between the prognostic values

generated by different data types in GBM where the proportion of censoring is the low-

est (21.3 %) and lower similitudes in BRCA where the proportion of censoring is the

highest (84.4 %). We also observed that the prediction in BRCA is high (around 0.8 of

c-index) while in GBM is low (around 0.6 of c-index). The c-index measures how well

the model fit the censoring data while kappa measures the consistency of two predic-

tions. We showed that these properties seem to be highly influenced by the proportion

of events. More research is needed to determine the lack of consistency.

We used four cancer types, three algorithms, and five data types. There may be some

level of interaction between these three components. For instance, the performance of

MIRNA data was higher in LUAD and the performance of NFS was generally lower

using CNA data. We did not study thoroughly the possible parameters combinations

within each algorithm, nor many potential schemes of data type filtering and pro-

cessing. However, our results suggest some tendencies and the results should be similar

to other cancer types and algorithms in similar circumstances to those tested here.

Conclusions
The integration of genomic data produced survival models were marginally higher in

performance than those from single genomic data, specially those of mRNA. From the

genomic data, the mRNA gene expression generated the highest predictive models and

were preferred in models that integrate the four types of genomic data. CNA and

miRNA data followed mRNA in performance while mutation data poorly predicted

survival. The risk prediction of survival models of different types of data disagrees and

the level of agreement seems to be related to the censoring rate.

Additional files

Additional file 1: Table S1. Technology used per cancer and genomic data type. (XLSX 8 kb)

Additional file 2: Table S2. Clinical data per cancer type. (XLSX 9 kb)

Abbreviations
CNA: Copy number alteration; EXPR: Gene expression of mRNA; MIRNA: Expression of miRNA; MUT: Somatic mutations;
MERGE: Database that contains the four genomic data of the patients; OV: Ovarian serous cystadenocarcinoma;
GBM: Multiform glioblastoma; LUAD: Lung adenocarcinoma; BRCA: Breast cancer; TCGA: The Cancer Genome Atlas;
CPSO: Constrained particle swarm optimization; NFS: Network feature selector; LASSO: Least absolute shrinkage and
selection operator; c-index: Concordance index.

Competing interests
The authors declare that they have no competing interest.

Gómez-Rueda et al. BioData Mining  (2015) 8:32 Page 10 of 12

dx.doi.org/10.1186/s13040-015-0065-1
dx.doi.org/10.1186/s13040-015-0065-1


Authors’ contributions
HGR made the conception, data acquisition, critical analysis of the results and writing the first draft; EML was involved
in the NFS experiments and data acquisition; AMT made the main draft revision and critical analysis of the results;
RPC participated in the critical analysis of the results and main draft revision; VTA made the conception, critical
analysis of the results and writing the final version of the draft. All authors read and approved the final manuscript.

Authors’ information
HGR obtained his MSc degree in Biotechnology with a bioinformatics analysis generating and testing a robust lung
survival biomarker; EML obtained his PhD degree developing two feature selection algorithms coupled to Cox, which
are CPSO and NFS, also was involved in many researches about survival biomarkers; AMT recently obtained his PhD
degree generating Alzheimer’s biomarkers using Kaplan Meier and a time series analysis to differentiate the Alzheimer
that progress fast from low; RPC obtained her PhD degree working in immunodeficiency associated to cancer, she has
been advisor in many thesis associated to cancer research; VT obtained his PhD degree analyzing normal and tumor gene
expression data. He was the main thesis advisor of EML and HGR, and co-advisor of AMT; he has been participated in many
researches performing bioinformatic analysis, and he has published several bioinformatic articles.

Acknowledgments
This research was supported by grants from Tecnológico de Monterrey (Cátedra de Bioinformática -CAT220-, and
Grupo de Investigación de Enfoque Estratégico en Bioinformática), and CONACyT (Posgrado Nacional 002087 and
grant scholarship 339770).

Author details
1Departamento de Investigación e Innovación, Grupo de Investigacion en Bioinformatica, Escuela de Medicina,
Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico. 2Centro de Investigación Biomédica del Noreste,
Instituto Mexicano del Seguro Social, Monterrey, Nuevo León 64720, Mexico.

Received: 19 June 2015 Accepted: 17 October 2015

References
1. Ferlay J, Soerjomataram II, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide:

sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136(5):E359–86. doi:10.1002/ijc.29210.
2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer Incidence and Mortality Worldwide:

IARC CancerBase No. 11. Int J Cancer. 2013;132(5):1133–45. doi:10.1002/ijc.27711.
3. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and

deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res.
2014;74(11):2913–21. doi:10.1158/0008-5472.CAN-14-0155.

4. Hagerty RG, Butow PN, Ellis PM, Dimitry S, Tattersall MHN. Communicating prognosis in cancer care: a systematic
review of the literature. Ann Oncol. 2005;16(7):1005–53. doi:10.1093/annonc/mdi211.

5. Butow PN, Dowsett S, Hagerty R, Tattersall MHN. Communicating prognosis to patients with metastatic disease:
what do they really want to know? Support Care Cancer. 2002;10(2):161–8.

6. Baile WF, Glober GA, Lenzi R, Beale EA, Kudelka AP. Discussing disease progression and end-of-life decisions.
Oncology (Williston Park, NY). 1999;13(7):1021–31.

7. Ptacek JT, Eberhardt TL. Breaking bad news. A review of the literature. JAMA. 1996;276(6):496–502.
doi:10.1001/jama.1996.03540060072041.

8. Riley RD, Hayden JA, Steyerberg EW, Moons KGM, Abrams K, Kyzas PA, et al. Prognosis Research Strategy
(PROGRESS) 2: prognostic factor research. PLoS Med. 2013;10(2):e1001380. doi:10.1371/journal.pmed.1001380.

9. Schroth W, Hamann U, Fasching PA, Dauser S, Winter S, Eichelbaum M, et al. CYP2D6 polymorphisms as
predictors of outcome in breast cancer patients treated with tamoxifen: expanded polymorphism coverage
improves risk stratification. Clin Cancer Res. 2010;16(17):4468–77. doi:10.1158/1078-0432.CCR-10-0478.

10. Liu NQ, Stingl C, Look MP, Smid M, Braakman RBH, De Marchi T, et al. Comparative proteome analysis revealing an
11-protein signature for aggressive triple-negative breast cancer. J Natl Cancer Inst. 2014;106(2):djt376.
doi:10.1093/jnci/djt376.

11. Mathé EA, Patterson AD, Haznadar M, Manna SK, Krausz KW, Bowman ED, et al. Noninvasive urinary metabolomic
profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 2014;74(12):3259–70.
doi:10.1158/0008-5472.

12. Abern MR, Terris MK, Aronson WJ, Kane CJ, Amling CL, Cooperberg MR, et al. The impact of pathologic staging on the
long-term oncologic outcomes of patients with clinically high-risk prostate cancer. Cancer. 2014;120(11):1656–62.
doi:10.1002/cncr.28647.

13. Ashraf AB, Daye D, Gavenonis S, Mies C, Feldman M, Rosen M, et al. Identification of intrinsic imaging phenotypes
for breast cancer tumors: preliminary associations with gene expression profiles. Radiology. 2014;272(2):374–84.
doi:10.1148/radiol.14131375.

14. Andersen BL. Biobehavioral outcomes following psychological interventions for cancer patients. J Consult Clin
Psychol. 2002;70(3):590–610.

15. Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153(1):17–37. doi:10.1016/j.cell.2013.03.002.
16. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, et al. International network of cancer genome

projects. Nature. 2010;464(7291):993–8. doi:10.1038/nature08987.
17. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas

Pan-Cancer analysis project. Nat Gen. 2013;45(10):1113–20. doi:10.1038/ng.2764.
18. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45. doi:10.1038/nbt1486.

Gómez-Rueda et al. BioData Mining  (2015) 8:32 Page 11 of 12

http://dx.doi.org/10.1002/ijc.29210
http://dx.doi.org/10.1002/ijc.27711
http://dx.doi.org/10.1158/0008-5472.CAN-14-0155
http://dx.doi.org/10.1093/annonc/mdi211
http://dx.doi.org/10.1001/jama.1996.03540060072041
http://dx.doi.org/10.1371/journal.pmed.1001380
http://dx.doi.org/10.1158/1078-0432.CCR-10-0478
http://dx.doi.org/10.1093/jnci/djt376
http://dx.doi.org/10.1158/0008-5472
http://dx.doi.org/10.1002/cncr.28647
http://dx.doi.org/10.1148/radiol.14131375
http://dx.doi.org/10.1016/j.cell.2013.03.002
http://dx.doi.org/10.1038/nature08987
http://dx.doi.org/10.1038/ng.2764
http://dx.doi.org/10.1038/nbt1486


19. Zhao Q, Shi X, Xie Y, Huang J, Shia B, Ma S. Combining multidimensional genomic measurements for predicting
cancer prognosis: observations from TCGA. Brief Bioinform. 2014;16:291–303. doi:10.1093/bib/bbu003.

20. Kim D, Shin H, Song YS, Kim JH. Synergistic effect of different levels of genomic data for cancer clinical outcome
prediction. J Biomed Inform. 2012;45(6):1191–8. doi:10.1016/j.jbi.2012.07.008.

21. Yuan Y, Van Allen EM, Omberg L, Wagle N, Amin-Mansour A, Sokolov A, et al. Assessing the clinical utility of
cancer genomic and proteomic data across tumor types. Nat Biotechnol. 2014;32(7):644–52. doi:10.1038/nbt.2940.

22. Martinez E, Alvarez MM, Trevino V. Compact cancer biomarkers discovery using a swarm intelligence feature
selection algorithm. Comput Biol Chem. 2010;34(4):244–50. doi:10.1016/j.compbiolchem.2010.08.003.

23. Martinez-Ledesma E, Verhaak RGW, Treviño V. Identification of a multi-cancer gene expression biomarker for
cancer clinical outcomes using a network-based algorithm. Sci Rep. 2015; In Press.

24. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent.
J Stat Softw. 2010;33(1):1–22.

25. Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for evaluating overall adequacy of risk
prediction procedures with censored survival data. Stat Med. 2011;30(10):1105–17. doi:10.1002/sim.4154.

26. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident
localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol.
2011;12(4):R41. doi:10.1186/gb-2011-12-4-r41.

27. Collet D. Modelling Survival Data in Medical Research. 2nd ed. Boca Raton, Florida: Chapman & Hall/CRC; 2003.
28. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Static Soc. 2005;67(2):301–20.
29. Efron B. Bootstrap Methods: Another Look at the Jackknife. Ann Statit. 1979;7(1):1–26.
30. Martinez E, Trevino V. Under-Updated Particle Swarm Optimization for Small Feature Selection Subsets from

Large-Scale Datasets. In: Parpinelli R, Lopes H, editors. Theory and New Applications of Swarm Intelligence. Croatia:
INTECH; 2012. p. 133–62.

31. Bewick V, Cheek L, Ball J. Statistics review 12: survival analysis. Crit Care. 2004;8(5):389–94.
32. Nakazawa M. Functions for medical statistics book with some demographic data. In: CRAN. 2015. p. 1–40.

http://cran.r-project.org/web/packages/fmsb. Accesed: 14 Jun 2015.
33. Cancer Genome Atlas Reasearch Network. Comprehensive genomic characterization defines human glioblastoma

genes and core pathways. Nature. 2008;455(7216):1061–8. doi:10.1038/nature07385.
34. Cancer Genome Atlas Reasearch Network. Integrated genomic analyses of ovarian carcinoma. Nature.

2011;474(7353):609–15. doi:10.1038/nature10166.
35. Cancer Genome Atlas Reasearch Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature.

2014;511(7511):543–50. doi:10.1038/nature13385.
36. Cancer Genome Atlas Reasearch Network. Comprehensive molecular portraits of human breast tumours. Nature.

2012;490(7418):61–70. doi:10.1038/nature11412.
37. Leung KM, Elashoff RM, Afifi AA. Censoring issues in survival analysis. Annu Rev Public Health. 1997;18:83–104.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Gómez-Rueda et al. BioData Mining  (2015) 8:32 Page 12 of 12

http://dx.doi.org/10.1093/bib/bbu003
http://dx.doi.org/10.1016/j.jbi.2012.07.008
http://dx.doi.org/10.1038/nbt.2940
http://dx.doi.org/10.1016/j.compbiolchem.2010.08.003
http://dx.doi.org/10.1002/sim.4154
http://dx.doi.org/10.1186/gb-2011-12-4-r41
http://cran.r-project.org/web/packages/fmsb
http://dx.doi.org/10.1038/nature07385
http://dx.doi.org/10.1038/nature10166
http://dx.doi.org/10.1038/nature13385
http://dx.doi.org/10.1038/nature11412

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Database selection
	Feature filtering
	Metabase generation
	Feature selection algorithms
	Constrained particle swarm optimization (CPSO)
	Network feature selection (NFS)
	Least absolute shrinkage and selection operator (LASSO)
	Performance evaluation

	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgments
	Author details
	References



