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Abstract

Background: Retrieving relevant biomedical literature has become increasingly
difficult due to the large volume and rapid growth of biomedical publication. A
query to a biomedical retrieval system often retrieves hundreds of results. Since the
searcher will not likely consider all of these documents, ranking the documents is
important. Ranking by recency, as PubMed does, takes into account only one factor
indicating potential relevance. This study explores the use of the searcher’s relevance
feedback judgments to support relevance ranking based on features more general
than recency.

Results: It was found that the researcher’s relevance judgments could be used
to accurately predict the relevance of additional documents: both using tenfold
cross-validation and by training on publications from 2008–2010 and testing on
documents from 2011.

Conclusions: This case study has shown the promise for relevance feedback to
improve biomedical document retrieval. A researcher’s judgments as to which
initially retrieved documents are relevant, or not, can be leveraged to predict
additional relevant documents.

Background
Manual curation, document ranking, and relevance feedback

When a person judges a document to be relevant to a particular query, or information

need, such a judgment is called a relevance judgment. Relevance judgments have been

used to evaluate document retrieval systems since the 1950s [1] up until the present

[2]. Relevance judgments are used to construct ground truth test collections, so that

the retrieval accuracy of retrieval methods can be evaluated. Ground truth test

collections for the evaluation of document retrieval systems have sets of queries and

documents for which human experts have judged the relevance of document query

pairs. [3]. Relevance judgments can also be used to provide relevance feedback [4, 5].

With relevance feedback a first iteration of documents retrieved by a retrieval system

is evaluated for relevance, e.g., the searcher makes relevance judgments for each

retrieved document. This feedback enables the weights that a retrieval system uses to

rank documents to be adjusted. The system then retrieves another set of documents

based on these adjusted weights. This process can be iterated multiple times. Labora-

tory studies have shown that relevance feedback can lead to much more effective
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document retrieval, as measured by the standard metrics of precision and recall [3].

For further background on document retrieval research see also [6–8].

The 1990s was a time of innovation in the development of large-scale information

retrieval systems in the medical, legal, and aerospace domains and on the Web. Until

that time academic research on information retrieval had little connection with

commercial online information retrieval systems. The commercial systems all used

Boolean exact match retrieval, while academic researchers studied vector space or

probabilistic retrieval models, which ranked documents according to relevance in

response to a user’s query. In 1992, West Publishing Company, the legal publisher,

introduced a ranked retrieval search mode for its Westlaw retrieval system. Westlaw’s

probabilistic retrieval algorithm is based on Bayesian belief networks [9]. Every point of

law in each of West’s caselaw documents is manually identified by an attorney editor

and categorized according to the KeyNumber System, a taxonomy of approximately

100,000 categories with up to eight levels of hierarchy [10].

Lexis-Nexis, the other major legal retrieval system, and DIALOG, a widely-used

retrieval service, also developed ranked retrieval search modes within a year. These

three were the first large-scale commercial retrieval systems providing relevance rank-

ing. Any document retrieval system that displays lists of retrieved documents in

response to a query needs to rank documents. Before the 1990s, however, commercial

systems did not rank based on relevance, but rather ranked based on some objective

feature of the document, e.g., its recency of publication. Biomedical searchers are often

interested in finding the most recent papers, but recency is only one factor that might

be used to predict relevance. Searchers using each of these three retrieval systems,

however, had the option of using the traditional Boolean search mode as well, rather

than the new ranked retrieval mode, and the vast majority of users continued to use

Boolean search. At the National Aeronautics and Space Administration (NASA) and at

the European Institute of Cognitive Sciences and Engineering (EURISCO) research

projects during this same period focused on developing machine learning algorithms to

model the information needs of individual searchers who searched through technical

documentation on a daily basis [11–14].

While informatics researchers in the biomedical domain eventually explored many tech-

niques for information retrieval and extraction, as well as automated curation, retrieval

systems, such as PubMed [15], the National Library of Medicine’s document retrieval

system, do not offer relevance-ranked retrieval search modes. However, over the past

15 years many new information retrieval tools have been introduced to complement

PubMed information retrieval [16]. Furthermore, the National Library of Medicine devel-

oped the Unified Medical Language System (UMLS) [17], and many other taxonomies and

ontologies were developed by various groups. Despite the focus in the biomedical domain

on ontology development and manual curation, it is recognized that the rate at which

biomedical literature is being produced is too great for manual curation to keep pace [18].

During this same time the World Wide Web was introduced, and there were soon

Web search engines. Early Web search engines used the same ranked retrieval

approaches developed in academia and implemented in legal and other search services.

These approaches did not work well on the Web and were soon replaced by new

algorithms, such as Hubs and Authorities [19], or PageRank [20], that ranked docu-

ments based on the link structure of the Web. Using these algorithms a document
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receives a high ranking if it has all of the user’s search terms (often only one or two

terms are used in Web searching) and if it is linked to by many other popular Web sites.

Ontologies and taxonomies, such as UMLS or the KeyNumber system are costly to

develop and maintain. Furthermore, a searcher may not view her, or his, research area in

the same way as the creators of ontologies or taxonomies. In a rapidly developing field

such as the human microbiome, terminology may evolve quickly. The attraction of ranked

retrieval algorithms is that they can make use of the full text of documents to rank docu-

ments for searchers. The example of early Web search engines shows that having the full

text may not be enough. A Web search would typically return, say, 5,000,000 results with

a very poor ranking of the documents. A similar point was shown in the 1970s for the

legal domain, when full text retrieval systems first became available [21]. Attorneys and

paralegals who thought that they were retrieving at least 75 % of all relevant documents

for a court case, were at best finding only about 20 % of the relevant documents.

Laboratory experiments in academia have often shown dramatic gains from using

relevance feedback [4]. Once ranked retrieval was used commercially, however,

relevance feedback was either not used, or used in a very limited way. Even in academic

research, there was a trend away from using real relevance judgments, which were seen

as too costly to obtain. The Text REtrieval Conference (TREC), is an annual benchmark

retrieval challenge task with multiple tracks which has been held every year since 1992

by the National Institute of Standards and Technology [2]. At the TREC conference

there has been much experimentation with pseudo-relevance feedback in which the

assumption is made that the top n ranked documents are relevant and then proceeding

as though a user had judged each of these n documents to be relevant. From 2008 to

2010 the TREC conference held a relevance feedback track [5]. Despite the strong belief

of many information retrieval researchers in the effectiveness of relevance feedback,

this track was not long lived.

Relevance judgments in the evaluation and operation of document retrieval systems

An issue with most relevance feedback studies, as well as with evaluations of retrieval

systems more generally, is that relevance judgments are not provided by real users with

real information needs. Rather, as with the evaluations done for the Text REtrieval

Conference, or, TREC [2], one or more non-users judge whether the document should

be considered relevant or not. Saracevic describes the manner in which relevance

judgments have been used in information retrieval evaluation [22].

The objective of relevance judgments in IR tests is to get as close as possible to real-

life situations so that test results would have real-life validity. This is very, very diffi-

cult to achieve. Thus, simulation methods have been developed. Basically, there are

four methods by which relevance judgments have been obtained that are regarded as

gold standards:

1. By the user or questioner—person who posed own question made the judgment as well;

2. By a user surrogate(s)—such as a specialist (or by consensus of a group of specialists)

who perform judgments on the topic of a given question in their specialty;

3. By an information professional (or by consensus of a group of professionals) who is

professionally entrusted or involved with some aspect of the process, who performs
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judgments on the topic of a given question that is not necessarily in their specialty,

but is familiar with what is going on; and

4. By “bystanders” signifying none of the above—for example, by students asked to do

a given task of judgment, including possible prescreening.

The first method involves “real users” and the others “laboratory-type users”.

Very few evaluations of document retrieval systems have used relevance judgments

as described in method one. For example, the TREC conference primarily uses method

two and, to some extent, methods three and four. For previous evaluations using

method one, Saracevic mentions only Lancaster’s evaluation of the National Library of

Medicine’s Medical Literature Analsyis and Retrieval System (MEDLARS) [23] and

Saracevic’s own evaluations of the DIALOG system [24–26]. Organizations have felt

that it was too expensive and time consuming to use method one. On the other hand,

relevance feedback judgments have be used with operational information retrieval

systems. The legal information retrieval system Lexis-Nexis has supported relevance

feedback, at least to the extent that a user has been able to make a relevance judgment

for a single highly relevant document and the system has used this feedback for another

iteration of ranked retrieval. Some early World Wide Web search engines also had

similar functionality, i.e., a “more like this” command where a user could provide

relevance feedback based on a single relevant document. Spink et al. [27] analyzed the

relevance feedback capability of the Excite web search engine. They found that the

relevance feedback mechanism was effective in retrieving further relevant documents,

but that few searchers used it. More recently two relevance feedback engines have been

developed for use with PubMed. RefMed [28] provides a multi-level relevance feedback

capability with which searchers can make explicit (i.e., the searcher selects both which

documents are relevant and non-relevant) relevance judgments for documents re-

trieved by a PubMed search. Then a second iteration of documents are retrieved

based on this feedback. The searcher can do as many of these iterations as desired

to find more relevant documents. MiSearch [29] on the other hand, takes as its

starting point the notion documented by Spink et al. [27] and many others that few

searchers will be willing to take the time to provide explicit relevance feedback, even

if doing so would lead to finding more relevant documents. Instead MiSsearch records

implicit relevance feedback [30] by observing the searcher's past behavior when viewing

retrieved documents. These observations are used to build a statistical profile of the

searcher that is then used to rerank search results from a PubMed query.

Document retrieval and information needs

The information retrieval problem is to find the right document, or documents, that

will help satisfy a searcher’s information need. While there are many types of informa-

tion need, e.g., to find a known item, more generally, a more complex information need

can be regarded as a mental state representing a gap in the searcher’s knowledge. Infor-

mation found in one or more documents, which may satisfy this information need, is

an expression of knowledge represented in the mind of the author of the document.

An information retrieval system, such as PubMed, of course, has access to neither the
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searcher’s information need, nor the knowledge in the mind of the author. Instead, the

retrieval system has the searcher’s query and some representation of the document, say

an abstract and descriptors, or possibly the full text of the document.

Relevance is one of the fundamental concepts of information retrieval. Many defini-

tions have been proposed [31–33]. Many information retrieval experiments have taken

relevance to be a relation between a query and a document, but an arguably more

accurate view is that relevance is a relation between an information need and the

intellectual content represented in a document [34]. The searcher’s query is a represen-

tation of the searcher’s information need. This need may be expressed in multiple

queries, but still each of these queries is derived from the searcher’s information need.

In the past most searching, particularly in the biomedical and legal domains, was

done by professional searchers. Often these searchers were trained reference librarians

who engaged in a reference interview with the researcher who needed the information

so that the searcher could express the researcher’s information need correctly, usually

as a Boolean logic expression with search terms connected with logical operators such

as AND, OR, or NOT [35]. For example, the query “gut AND microbiome” would

retrieve all documents that included both the words “gut” and “microbiome”. Further-

more, medical indexers, or attorney editors, who were in both instances highly trained

professionals, assigned metadata to documents, such as Medical Subject Headings,

which allowed documents to be retrieved based on the indexer’s expert understanding

of the document’s intellectual content.

Today manual curation in the medical and legal fields, i.e., the assignment of meta-

data to documents by domain experts, as described above, continues, though generally

a researcher does her or his own searching. Traditional retrieval systems were biblio-

graphic retrieval systems. The record for each document only included metadata. If any

of the textual content of the document were included, it was only the abstract. In

today’s retrieval systems, the full-text of the document is usually available to search.

This is true of Web search engines as well as legal information retrieval systems and

medical retrieval systems such as PubMed Central [36]. While Web search engines

sometimes allow Boolean search operators, most Web searches do not include such

operators. Rather documents are ranked based on some metric involving word frequen-

cies in the documents or on patterns of linkage among websites [19, 20].

A role for relevance feedback in human microbiome literature searching

The study of the human microbiome is a cross-disciplinary, rapidly evolving field. As

such it can be difficult for a clinical researcher to find relevant papers from the litera-

ture. Medical literature search can be cumbersome, incomplete, and produce “islands”

of references that are not integrated or miss large amounts of relevant data. Arguably,

relevance feedback can help alleviate this problem. Once a researcher has identified,

through the provision of relevance judgments, a seed collection of relevant, and

non-relevant documents for her or his research, these documents can be used as a

model of that researcher’s information need, which is potentially a much more

powerful representation of the researcher’s information need than the PubMed quer-

ies which were used to retrieve the documents for review. These queries retrieve

documents that match the specification of the query, but which may, or may not,
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be relevant. Once a researcher has indicated which documents are in fact relevant,

the relevant, and non-relevant documents can be used as positive and negative

examples for machine learning algorithms to predict the relevance of additional doc-

uments. By reading each relevant and non-relevant document a person with domain

knowledge could gain a good understanding of what constituted a relevant docu-

ment for this researcher.

Our research seeks to establish whether an automated approach could simulate this

understanding, i.e., of what distinguishes a relevant from a non-relevant document for

this researcher, in order to predict which as yet unseen documents the researcher

would judge relevant. The goal of this study is to show that the words, and their within

document and overall frequencies within the collection of reviewed documents, taken

from documents judged to be relevant and non-relevant to her information need by a

human microbiome researcher, can be used to predict the relevance and non-relevance

of additional documents to her information need. This technique is called relevance

feedback. While we have not implemented relevance feedback in an operational

document retrieval system, we have provided a case study of the effectiveness of a

relevance feedback component of an operational system.

Our initial hypothesis was that we could use our searcher’s relevance judgments on

the approximately three quarters of the documents published during 2008–2010 to

predict her judgments for the quarter of the documents published in 2011. Since the

field of human microbiome research is evolving very rapidly, we thought that the

language of the 2008–2010 documents might not predict which documents from 2011

were relevant, as well as might be the case if the field were not so rapidly evolving.

Accordingly, we also did another set of experiments in which we pooled all of the

documents and used ten-fold cross-validation.

Methods
Figure 1 shows the steps for our study. First we obtained the full text of the publica-

tions found with the PubMed queries. In some cases the full-text of the publication is

available through PubMedCenteral. In other cases we were able to obtain the full-text

through the publishers through Dartmouth Libraries licenses. Once the full-text of

the document was available, we extracted the words from the text. We created

features by removing stop words and using an automatic indexing algorithm to pro-

duce the counts for the each feature, i.e., the stemmed forms of words. For our

machine learning experiments we used the WEKA machine learning toolkit [37]. We

used two machine learning algorithms: C4.5 (J48 in WEKA) and Support Vector

Machines (SVMs) (libsvm in WEKA). C4.5 is a standard decision tree-based machine

learning algorithm which is often used as a baseline against which to compare results

obtained with other algorithms [38]. SVMs are a more complex approach, which

Extract 
Features 
from 
Documents

Create ARRF 
Files with 
Feature Values

Run Weka with 
libsvm and J48

Fig. 1 Machine learning steps
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often gives excellent performance for text categorization [39]. These feature values,

the word counts, were then placed in Weka’s Attribute-Relations File Format (ARRF).

Then the Weka machine learning algorithms, J48 and libsvm, were run to produce

our binary categorization results.

For this study we retrieved 658 documents, using six PubMed queries, for one of the

authors, a neonatal human microbiome researcher. She judged each one of these

documents as relevant, possibly relevant, or not relevant. Two of the queries, “gut

AND microbiome” and “intestine AND microbiome”, retrieved largely overlapping sets

of documents, so documents returned by the latter query were not judged. In addition

on a second examination of the documents, for the documents judged relevant, she

further categorized the documents as relevant for: a) the methodology, b) relation to

her specific research question, or c) for her bibliography. Also on this second examin-

ation she reviewed documents in greater detail for which she felt less certain of her

initial relevance judgments. Some of these original judgments were changed. Of the

401 documents that were judged only 201 were used for the experiments. Some of

these documents were duplicates, i.e., retrieved by more than one query, while others

were not used because electronic full text versions of the papers were not readily

accessible.

To assemble a collection of documents for training and testing the machine learning

algorithms, scripts were written which pulled the html version of documents available

through the linkout functionality of PubMed. After stripping the html files of markup,

stopwords were removed using a standard stopword list. Once stopwords were

removed a representation was created for each document. This representation was a

vector with a component for each word in the collection. For each component of the

vector the corresponding count of the word in that document was entered. This repre-

sentation was then converted into the ARRF format used by WEKA (see below) to

represent feature vectors for machine learning. All experiments were binary categoriza-

tions. The documents judged by the researcher to be possibly relevant were alterna-

tively considered relevant, or non-relevant, i.e., we merged the possibly relevant, or

“maybe”, documents alternately with either the relevant, or non-relevant, documents as

shown in Tables 1 and 2, where these merged documents are shown as “Maybe + yes”

and “Maybe + no”.

Table 1 Ten-fold cross validation results, n = 201

Maybe + yes
– libsvm

Maybes + no
– libsvm

Maybe + yes –
libsvm - detailed

Maybe + no –
libsvm - detailed

Maybe + yes
– j48

Maybe + no
– j48

Correctly classified 130 64.68 % 150 74.63 % 97 48.26 % 150 75 % 120 59.70 % 126 62.69 %

Incorrectly classified 71 35.32 % 51 25.37 % 104 51.74 % 50 25 % 81 40.30 % 75 37.31 %

Kappa statistic 0.26 −0.01 −0.04 0 0.14 −0.11

Mean absolute
error

0.35 0.26 0.52 0.25 0.41 0.39

Root mean
squared error

0.59 0.50 0.72 0.5 0.61 0.59

Relative
absolute error

72.11 % 67.64 % 103.48 % 66.42 % 83.59 % 102.51 %

Root relative
squared error

120.09 % 116.52 % 143.86 % 115.47 % 122.76 % 135.82 %
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Most research on relevance feedback has represented documents using a bag-of-

words representation, i.e., wherein a document is represented by the frequencies of

words appearing in the document. Using the bag-of-words representation, after

common stop words, such as “and” and “the” are removed, a document is represented

by the frequencies of the unique words that it contains. These “words” are usually not

true words, but rather word stems, such as “comput”, which represents “computer” as

well as “computed” or other variations. It is possible to represent a document using a

much richer representations using methods from natural language understanding. Such

representations might predict relevant documents more accurately, but would also be

more expensive computationally to implement. In the future we plan to experiment

with richer representations of document content, e.g., based on the concepts contained

in the documents as represented in ontologies.

Results
Table 1 shows results for support vector machines (SVM) (libsvm) and for the C4.5

decision tree algorithm (j48) for the researcher’s initial relevance judgments. All of

these results are based on tenfold cross-validation. Both algorithms do well when

“maybes” are merged with “noes” and reasonably well, though less so, when “maybes”

are merged with “yeses”. Table 1 also shows the results for libsvm when the researcher

modified her relevance judgments after making a more detailed examination of the

retrieved document, in some cases after reviewing the full text of the document. The

columns in Table 1 showing the results based on a more detailed examination of the

documents include the word “detailed” in the column heading. Again, results are much

better when “maybe’s are combined with “noes”, rather than when combined with

“yeses”. Surprisingly, while combining “maybes” with “noes” gives comparable results to

the results based on initial relevance judgments, the results given when “maybes” are

combined with “yeses” are far worse than was the case with initial relevance judgments.

Table 2 shows the results based on training libsvm on the 2008 – 2010 documents

and testing on the 2011 documents. These results are based on the modified, detailed,

relevance judgments. While combining “maybes” with “noes” leads to correct classifica-

tion 63 % of the time, combining “maybes” with “yeses” again gives worse results. These

unexpected results are perhaps due to the small size of the test collection, n = 19, for

the testing on 2011 documents. Our results show the importance of having the

researcher express her relevance judgments as “yes”, “maybe”, or “no”. Predicting which

Table 2 Training on 2008–2010 documents and testing on 2011 documents, n = 19

Maybe + yes Maybe + no

Correctly classified 8 42.11 % 12 63.16 %

Incorrectly classified 11 57.90 % 7 36.84 %

Kappa statistic 0 0

Mean absolute error 0.58 0.37

Root mean squared error 0.76 0.61

Relative absolute error 118.46 % 78.61 %

Root relative squared error 154.09 % 125.79 %
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documents she will judge relevant, whether based on tenfold cross-validation, or on

predicting relevance for 2011 documents based on training on pre-2011 documents, is

noticeably more accurate when “maybe” judgments are folded in with “no” judgments

than when “maybe” judgments are folded in with “yes” judgments.

Discussion
Relevance feedback and improved biomedical information retrieval

In our study we show that relevance feedback from a human microbiome researcher

can be used to predict the relevance, for that same researcher, of unseen additional

documents. We have not deployed this relevance feedback capability in an information

retrieval system, but our task can be seen as a surrogate for the relevance feedback

functionality of such a system. In an operational information retrieval system it may

not seem practical to ask a searcher to provide relevance judgments for every retrieved

document, as we have done in this study. On the other hand, much use has been made

of implicit relevance judgments, particularly by Web search engines [40]. Systems using

implicit relevance judgments do not ask the searcher which documents are relevant, or

not, but rather try to infer relevance from observable user behavior, e.g., how long a

user looks at a document or whether the user prints the document. Inferring relevance

in this way is a type of clickstream mining [41]. Relevance judgments obtained impli-

citly are noisier than those obtained by directly asking a user for judgments, but are

more practical in practice. Implicit relevance judgments, or clickstream mining, is the

technology which underlies auctions of advertising on the Web. Accordingly, it is a

well-studied area of research for which effective algorithms have been developed [42].

Our study, using explicit relevance judgments, shows an upper bound on the level of

performance that could be expected by noisier implicit feedback. Moreover, in some

biomedical information retrieval settings it may be possible to use explicit judg-

ments. Using the approach developed here in a real-world biomedical search system

would require training a relevance model for each searcher/information need, as the

RefMed [28] system does. Alternatively, implicit relevance feedback might be used

to represent the searcher’s information need, as does MiSearch [29]. A next step for

future research would be to compare the retrieval effectiveness of explicit relevance

feedback for biomedical information retrieval, as explored here, with implicit relevance

feedback.

Our results are positive when judgments of maybe relevant are converted to not

relevant, i.e., as shown in Tables 1 and 2, where results of 75 % accuracy are achieved

using libsvm and tenfold cross validation and 63 %, when training on judgments of 2008–

2010 documents to predict relevance for 2011 documents. We believe that better

results can be achieved while still using the bag-of-words representation. In our

experiments we used the raw frequencies of words in the documents as features. In

text retrieval and categorization one usually normalizes word frequencies by docu-

ment length. Term weights also usually are based on tf*idf, or term frequency/inverse

document frequency. The raw, or normalized frequency is the tf component, but idf

is important as well. This is the inverse of the proportion of the documents in a

collection that contain a term. Thus a term that occurs frequently in a document (tf ),

but which occurs in a small proportion of the collection (idf ) is a good feature.

Thompson et al. BioData Mining  (2015) 8:28 Page 9 of 12



To obtain substantially better results, though, we believe that richer representations

will be needed. The bag-of-words approach can be effective for topic categorization,

e.g., that a document is about the microbiome, or is not about the microbiome. For

example, in the legal domain one of the authors was able to categorize case law

documents as being on the topic, or not, of bankruptcy with a 0.8193 recall rate and a

0.6898 precision rate, though other categories, such as government benefits, were

harder with only a 0.2586 recall rate and a 0.3652 precision rate being achieved [43].

Recall is the proportion of all documents of a given category that are categorized as

that category by the algorithm, while precision is the proportion of all documents that

are categorized as a given category by the algorithm that actually belong to that

category. Our task is much harder. We are trying to determine if a document will help

meet the information need of a specific researcher, based on positive and negative

examples of documents meeting that need. While better feature extraction and weight-

ing at the isolated word level may improve results, we suspect that significantly better

results will require an approach based on natural language understanding. We are

considering new experiments using the commercial information extraction products,

Pathway Studio [44] and Cogito [45]. Pathway Studio is tailored to the biological

domain. It extracts entities such as genes and proteins and characterizes the relation-

ship to each other of extracted entities, e.g., up or down regulation. Cogito is a more

general purpose package, but it has also been tailored to the biomedical domain. In

addition it provides an API, or application programming interface, which allows a user

to develop custom information extraction rules.

Conclusions
Our case study has shown that the relevance feedback judgments of a human microbiome

researcher can be used to effectively predict the relevance of additional documents. If

these results can be replicated with studies of the relevance feedback judgments provided

by additional biomedical researchers, then a proof of concept will be given for the utility

of a relevance feedback capability as a component of a biomedical information retrieval

system. As mentioned above, such systems are already being used, e.g., RefMed [28].

Appendix
These were the PubMed queries used for this study.

1) Gut AND microbiome: 305 results

2) Intestine AND microbiome: 257 results (relevance judgments were not made for

these documents, as there was significant overlap with the first query)

3) Intestine AND microbiome AND infant: 14 results

4) Intestine AND microbiome AND inflammation: 47 results

5) Intestine AND microbiome AND sepsis: 7 results

6) Intestine AND microbiome AND infection: 28 results
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