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Abstract

Background: Modeling of the immune system – a highly non-linear and complex
system – requires practical and efficient data analytic approaches. The immune
system is composed of heterogeneous cell populations and hundreds of cell types,
such as neutrophils, eosinophils, macrophages, dendritic cells, T cells, and B cells.
Each cell type is highly diverse and can be further differentiated into subsets with
unique and overlapping functions. For example, CD4+ T cells can be differentiated
into Th1, Th2, Th17, Th9, Th22, Treg, Tfh, as well as Tr1. Each subset plays different
roles in the immune system. To study molecular mechanisms of cell differentiation,
computational systems biology approaches can be used to represent these
processes; however, the latter often requires building complex intracellular signaling
models with a large number of equations to accurately represent intracellular
pathways and biochemical reactions. Furthermore, studying the immune system
entails integration of complex processes which occur at different time and space
scales.

Methods: This study presents and compares four supervised learning methods for
modeling CD4+ T cell differentiation: Artificial Neural Networks (ANN), Random
Forest (RF), Support Vector Machines (SVM), and Linear Regression (LR). Application
of supervised learning methods could reduce the complexity of Ordinary Differential
Equations (ODEs)-based intracellular models by only focusing on the input and
output cytokine concentrations. In addition, this modeling framework can be
efficiently integrated into multiscale models.

Results: Our results demonstrate that ANN and RF outperform the other two
methods. Furthermore, ANN and RF have comparable performance when applied to
in silico data with and without added noise. The trained models were also able to
reproduce dynamic behavior when applied to experimental data; in four out of five
cases, model predictions based on ANN and RF correctly predicted the outcome of
the system. Finally, the running time of different methods was compared, which
confirms that ANN is considerably faster than RF.

Conclusions: Using machine learning as opposed to ODE-based method reduces
the computational complexity of the system and allows one to gain a deeper
understanding of the complex interplay between the different related entities.
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Background
Immune cell differentiation and modeling

The process of immune cell differentiation plays a central role in orchestrating immune

responses. This process is based on the differentiation of naïve immune cells that, upon

activation of their transcriptional machinery through a variety of signaling cascades, become

phenotypically and functionally different entities capable of responding to a wide range of

viruses, bacteria, parasites, or cancer cells. Functionally, immune cells have been classified

in either regulatory or effector cell subsets. The cell differentiation process involves a series

of sequential and complex biochemical reactions within the intracellular compartment of

each cell. The Systems Biology Markup Language (SBML) is an XML-based format widely

used to represent as well as store models of biological processes. SBML allows

the encoding of biological process including their dynamics. This information can

be unambiguously converted into a system of Ordinary Differential Equations

(ODEs). Of note, ODE models are extensively used to model biological processes

such as cell differentiation, immune responses towards specific pathogens, auto-

immune processes or intracellular activation of specific cellular pathways [1–3].

Several equations are usually required to adequately represent these complex

immunological processes, being either at the level of the whole organism, tissue,

cells or molecules

In one of our previous studies, Carbo et. al. published the first comprehensive ODE model

of CD4+ T cell differentiation that encompassed both effector T helper (Th1, Th2, Th17)

and regulatory Treg cell phenotypes [3]. CD4+ T cells play an important role in regulating

adaptive immune functions as well as orchestrating other subsets to maintain homeostasis

[4]. These cells interact with other immune cells by releasing cytokines that could further

promote, suppress or regulate immune responses. CD4+ T cells are essential in B cell anti-

body class switching, in the activation and growth of CD8+ cytotoxic T cells, and in maxi-

mizing bactericidal activity of phagocytes such as macrophages. Mature T helper cells

express the surface protein CD4, for which this subset is referred as CD4+ T cells. Upon

antigen presentation, naïve CD4+ T cells become activated and undergo a differentiation

process controlled by the cytokine milieu in the tissue environment. The cytokine environ-

mental composition therefore represents a critical factor in CD4+ T cell differentiation. As

an example, a naïve CD4+ T cell in an environment rich in IFNγ or IL-12 will differentiate

into Th1. In contrast, an environment rich in IL-4 will induce a Th2 phenotype. Some other

phenotypes are also balanced by each other: Th17 cells, induced by IL-6, IL-1β and TGF-β,

are closely balanced by regulatory Tcells (induced by TGFβ only) [5]. Furthermore, competi-

tion for cytokines by competing clones of CD4+ T cells within an expanding cell population

(proliferation), cell death and expression of other selective activation factors such as the T

cell receptor, OX40, CD28, ICOS and PD1 are key steps that influence CD4+ T cell

differentiation.

Computational approaches allow concurrent multiparametric analysis of biological pro-

cesses. Computational algorithms and models have become powerful and widely used tools

to improve the efficiency and reduce cost of the knowledge discovery process. Systems

modeling approaches combined with experimental immunology studies can inte-

grate existing knowledge and provide novel insights on rising trends and behav-

iors in biological processes such as CD4+ T cell differentiation and function. The
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CD4+ T cell differentiation model was built upon the current paradigms of mo-

lecular interactions that occur in CD4+ T cells, which consists of 60 ODEs, 53

reactions, and 94 species. The mathematical model ensures proper modulation of

intracellular pathways and cell phenotypes via external cytokines representing the

cytokine milieu. Two types of kinetic equations were employed to mathematically

compute dynamic biological processes in the CD4+ T cell model: 1) mass action

and 2) Hill equation kinetics. Despite their simplicity, mass action kinetics are

widely accepted and extensively validated in biological systems due to their inher-

ent ability to accurately represent elementary reactions and species degradation

[6]. Mass action rates are also extremely reliable for stochastic modeling simula-

tions. In the CD4+ T cell model, the natural loss of model species due to mRNA

and protein decay was fit using mass action rate laws. On the other hand, sig-

moidal Hill equations were used to model more complex molecular processes

that behave via “on/off” switch mechanisms including protein phosphorylation,

cytokine-receptor binding and transcription. Extensive studies have demonstrated

the benefits of the Hill equation for studying combinatorial regulation, especially

in sigmoidal Hill equations [7], and thus this equation set captures complexities

arising when a particular model species can be modified by more than one input.

Results from modeling the pleiotropic and highly dynamic regulation of CD4+ T

cell differentiation has guided experimentation to elucidate underlying regulatory

mechanisms, identify novel putative CD4+ T cell subsets or potential targets, and

enrich our understanding of the dynamics of the process [8, 9].

ODE-based modeling approaches require detailed knowledge about kinetic parame-

ters, some of which can be estimated from literature and some from in silico experi-

ments. However, models that are based on a large parameter set will be subject to

higher level of inaccuracies. Thus, the use of novel modeling approaches applicable to

the immune system and specifically to the CD4+ cell differentiation has a high value

for investigation.

Multiscale modeling and model reduction

Current biomedical research involves performing experiments and developing hypoth-

eses that link different scales of biological systems such as: intracellular signaling or

transcriptional interactions, cellular behavior and cell population behavior, as well as

tissue and organism-level events. Computational modeling efforts exploring multiscale

systems have to incorporate an array of techniques due to the different time and space

scales involved. In one of our previous studies, Mei et. al. presented Enteric Immunity

Simulator (ENISI), an agent-based simulator for modeling mucosa immune responses

to enteric pathogens [10]. ENISI uses a rule-based approach and can simulate cells,

cytokines, cell movement and cell-cell interactions. To be able to model fine-grained

intracellular behaviors, a multiscale modeling approach that embeds intracellular

models into the intercellular tissue level models is needed. Indeed, the multiscale mod-

eling approach includes four scales: Intracellular, Chemokine/Cytokine diffusion (inter-

cellular), Cellular, and Tissue. The current version of ENISI incorporates Cellular Scale,

Chemokine Scale and Tissue Scale. The cellular scale represents how the cells interact

with nearby cells and incorporates the plasticity of a cell based on stochastic and
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temporal rules. The chemokine scale represents the chemokine concentration and dif-

fusion process. Finally, the tissue scale represents the spatial and compartmental

information (Fig. 1).

Fine-grained ODE models of intracellular pathways controlling immune cell differen-

tiation are adequate for studying mechanisms of cell differentiation. However, they can

be highly complex and expensive from a computational stand-point, especially when

embedded within large-scale agent-based simulations. ENISI Visual models a large

number of cells and microbes in the gastrointestinal mucosa. If each agent is represented

by 60 ODEs, as an example, the simulation will be hardly scalable. Therefore, to be able to

develop efficient agent-based multiscale models, model reduction needs to be performed.

In addition, multiscale models usually do not require all the internal details of intracellular

scales to have predictive value. In essence, novel model reduction strategies could be used

to address the multiscale scalability requirements to reduce molecular models before inte-

grating them into large-scale agent-based tissue-level models.

Supervised learning methods and their applications

Supervised machine learning methods use training data to learn the structure of a

system and utilize that knowledge to predict the outcome for an unseen condition.

Supervised learning methods have been applied in multiple areas, such as bioinformat-

ics, cheminformatics, database marketing, spam detection, and pattern recognition in

general [11]. Artificial Neural Network (ANN), Linear Regression (LR), Support Vector

Machines (SVM) and Random Forest (RF) are examples of supervised machine learning

methods.

Artificial neural networks algorithms, inspired by the biological neural systems, are

powerful in modeling and data mining tools based upon the theory of connectionism

[12]. In biological systems, neurons are connected to each other through synapses. A

neuron receives inputs from multiple neurons and outputs a value based upon the

activation function. Perceptron is one of the easiest data structures for the study of

neural networking. The perceptron models neuron’s behavior in the following way: First

the perceptron receives several input values. The connection for each of the inputs has

a weight in the range of 0 to 1. The threshold unit then sums the inputs, and if the

sum exceeds the threshold value a signal is sent to the output node, otherwise no signal

is sent. The perceptron can learn by adjusting the weights to approach the desired

output [13].

Building on the algorithm of the simple perceptron, the multilayer perceptron (MLP)

model not only gives a perceptron structure for representing more than two classes, it

also defines a learning rule for this kind of networks. The MLP is divided into three

Fig. 1 Integration of 4 order spatiotemporal scales. To be able to model fine-grained intracellular behaviors,
a multiscale modeling approach which embeds intra-cellular models into the inter-cellular tissue level
models is needed. The multiscale modeling approach includes four scales: Intracellular, Chemokine/Cytokine
diffusion (intercellular), Cellular, and Tissue
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layers: the input layer, the hidden layer and the output layer, where each layer in this

order processes inputs and deliver outputs to next layer [13]. The extra layers give the

structure needed to recognize non-linearly separable classes (Fig. 2). The network

structures and the parameters of the activation function are important factors when

developing neural network models. Feedforward neural networks are frequently used

structures in modeling. There are effective learning algorithms for the parameters once

the structures are set in the feedforward ANNs.

Artificial neural network algorithms are widely used for data mining tasks such as

classification and pattern recognition. Neural network algorithms are especially effect-

ive in modeling non-linear relationships which makes them ideal candidates for differ-

entiation processes. Importantly, this process is scalable. However, there are also some

practical challenges. It is not possible to know in advance the ideal network topology.

Therefore, ANN-based methods require testing several network settings or topologies

in order to find the best solution. This technical challenge triggers an extended training

period. Our initial pilot study was the first to apply neural network algorithms into

studying the immune cell differentiation [14]. Based on the initial success, the study

was systematized and expanded.

Linear regression model are attractive because of their simplicity and reduced com-

putational complexity. Linear regression is an approach for modeling the relationship

between a scalar dependent variable and explanatory variables [15]. In linear regression,

data are modeled using linear predictor functions, while unknown model parameters

are estimated from the data. Such models are called linear models [16]. Linear regres-

sion is a regression analysis that is studied rigorously, and used widely in practical

applications. Linear regression is extensively used in biological [17], behavioral and

social sciences to describe possible relationships between variables.

Support Vector Machines is another widely-used supervised learning algorithm for

classification and regression problems. SVM contains all the main features that

characterize maximum margin algorithm: a non-linear function is leaned by linear

Fig. 2 The multilayer perceptron structure of artificial neural network. The multilayer perceptron structure of
artificial neural network is divided into three layers: the input layer, the hidden layer and the output layer,
where each layer in this order processes inputs and deliver outputs to next layer. The extra layers give the
structure needed to recognize non-linearly separable classes
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learning machine mapping into high dimensional kernel induced feature space [18].

Given a set of training examples with each marked as belonging to one category, an

SVM training algorithm builds a model that could assign new examples into one

category [19]. SVMs are helpful in text and hypertext categorization as their application

can significantly reduce the need for labeled training instances in both the standard

inductive and transductive settings. SVMs are also useful in medical science to predict

survival in breast cancer [20].

Finally bagging of classification trees is one well-known ensemble learning method.

In bagging, each successive tree is independently constructed using a bootstrap sample

of the dataset. A simple majority vote is then taken for prediction [21]. Based on

bagging theory, Breiman proposed the Random Forest algorithm, which adds an add-

itional layer of randomness to bagging [22]. In addition to constructing each tree using

a different bootstrap data sample, random forests change how the classification and

regression trees are constructed. In standard trees, each node is split using the best

split among all variables, while in a random forest, each node is split using the best

among a subset of predictors randomly chosen at that node. In addition, RF algorithm

has only two parameters (the number of variables in the random subset at each node

and the number of trees in the forest) and is usually not very sensitive to their values

[23]. RF method is based on the aggregation of a large number of decision trees. Specif-

ically, it is an ensemble of trees constructed from a training dataset and internally

validated to yield a prediction of the response given the predictors for future observa-

tions. An important feature of RF is its out-of-bag (OOB) error [24]. Each observation

is an OOB observation for some of the trees. The OOB error of the RF is the average

error frequency obtained when the observations from the dataset are predicted using

the trees for which they are OOB. Through this internal validation, the error estimation

is less optimistic and usually considered as a good estimator of the expected error for

independent data (Fig. 3). For instance, Random Forest models have been successfully

used in recent years to explore metabolic syndrome serum profiling [25] and predict

avian influenza H5N1 outbreaks [26]. However, to the best of our knowledge, this study

is the first to apply RF algorithms into studying the immune cell differentiation.

Fig. 3 Random Forest Algorithm. Random Forest method is based on the aggregation of a large number of
decision trees. Specifically, it is an ensemble of trees constructed from a training dataset and internally
validated to yield a prediction of the response given the predictors for future observations
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Related work

Modeling the CD4+ T cell differentiation is challenging because of the complexity of

the immune system, plasticity between phenotypes, feedback loops involved in regula-

tion and combinatorial effects of cytokines. The immune system protects the human

body from pathogens by recognizing, containing, and destroying non-self or foreign

antigens [27, 28]. At the highest level, the immune system can be divided into innate

and adaptive branches. The innate immune system, involving cells such as macro-

phages, epithelial cells, neutrophils, and dendritic cells, responds quickly but non-

specifically to stimuli [29]. On the contrary, the adaptive immune system involving T

cells and B cells responds more specifically to antigens [30]. Immune cells are activated

and differentiated into ever-growing numbers of cell subsets such as CD4+ T cells and

macrophages [31–33]. These cells are regulated by different cytokines in their micro-

environment. Using CD4+ T cells as an example, Th1 cells stably express IFNγ, whereas

Th2 cells express IL-4. The discovery and investigation of two other CD4+ T cell sub-

sets, induced regulatory T (iTreg) cells and Th17 cells, has led to a rethinking of the

notion that helper T cell subsets represent irreversibly differentiated endpoints. Mount-

ing evidence supports the tissue environment-dependent plasticity of CD4+ T cell

subsets and suggests the emergence of new phenotypes. When both TGFβ and IL-6 are

present in the environment, naïve CD4+ T cells differentiate into Th17 [34, 35]. When

TGFβ alone presents in the environment, CD4+ T Cells differentiate into Treg [14].

When IFNγ and IL-12 are present, T cells differentiates into Th1 [36].

Systems biology has become an important paradigm in immunology research, using

mathematical and computational models to synthesize and mine exiting knowledge,

and discover new knowledge from big data [37]. Biological systems and processes can

be modeled using a variety of methods [38–40]. In some instances, biological processes

can be mapped to networks where nodes and edges represent biological agents such as

cells and their interactions [41]. Furthermore, mathematical or computational dynamics

can be applied to the network models so that in silico simulations can be

performed [1, 42]. SBML is a XML-based file format used to represent computa-

tional models of biological processes [43]. There are many types of models used

for modeling biological processes such as Bayesian networks, ODE, and agent-based

models [44]. For metabolic and signaling networks, the biochemical reactions can be

represented by first-order ODEs [45].

In line with our systems and translational immunology efforts under Modeling

Immunity to Enteric Pathogens (www.modelingimmunity.org) of computational model

building, calibration, refinement and validation, Carbo et. al. published the first ODE

model of CD4+ T Cell differentiation, which comprises of 60 ODEs [2]. The model as

shown in Fig. 4 represents the intracellular pathways that are critical for CD4+ T cell

differentiation. The hypotheses generated by this model were fully validated using

in vivo animal models of inflammatory bowel disease (IBD). Computational modeling

and mouse adoptive transfer studies were combined to gain a better mechanistic under-

standing of the modulation of CD4+ T cell differentiation and plasticity at the intestinal

mucosa of mice. Sensitivity analyses highlighted the importance of PPARγ in the regu-

lation of Th17 to iTreg plasticity. Indeed, validation experiments demonstrated that

PPARγ is required for the plasticity of Th17 promoting a functional shift towards an

iTreg phenotype. More specifically, PPARγ activation is associated with up-regulation
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of FOXP3 and suppression of IL-17A and RORγt expression in colonic lamina propria

CD4+ T cells. Conversely, the loss of PPARγ in T cells results in colonic immunopa-

thology driven by Th17 cells in adoptive transfer studies.

In another study Mei et. al. presented ENISI Visual, an agent-based simulator for

modeling enteric immunity [10]. ENISI Visual provides high quality visualizations for

simulating gut immunity to enteric pathogens and is capable of simulating gut immun-

ity, including pathogen invasion, pro-inflammatory immune responses, pathogen elim-

ination, regulatory immune responses, and restoring homeostasis. ENISI Visual can

also help immunologists test novel hypotheses and design biological experiments

accordingly. Undoubtedly a holistic model of the immune response could provide even

more valuable insights; however, it needs to take into consideration complexities at the

different layers: intracellular, cellular, inter-cellular, tissue and whole organism. Modeling

a complex system at four levels of magnitude – multiscale modeling (MSM) – poses new

set of challenges. Multiscale modeling requires considering different spatial and temporal

scales, ranging from nano-meters to meters and nano-seconds to years. Therefore,

different technologies have to be integrated to provide most accurate predictions.

Multiscale modeling frameworks have been recently developed and attempted to

address some of these challenges [46–48]. In our recent work, we have developed

ENISI MSM, a multiscale modeling platform driven by high-performance comput-

ing and designed specifically for computational immunology, which integrates agent

based modeling (ABM), ODEs and partial differential equations (PDEs) [48]. Our

ENISI MSM platform is calibrated with experimental data and tested for the CD4+

T cell differentiation model which is able to perform a variety of in silico experi-

mentation for generating new hypothesis. However, running simulations on the

MSM platform that requires COPASI [49] to solve complex ODEs is computation-

ally expensive and time consuming. Replacing the ODE-based steps in the MSM

by machine learning methods would significantly improve its computational

performance and allow researchers to perform broad and comprehensive in silico

Fig. 4 The network model of the T Cell differentiations. The figure illustrates network topologies associated
with the naïve T cells differentiation towards T helper (Th)1, Th2, Th17, and induced regulatory T cells. The
network is built in Systems Biology Markup Language-compliant format
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experimentation that uncovers emerging properties of the immune system and

results in new nonintuitive computational hypotheses about immune responses.

Machine learning methods – supervised learning methods in particular – are key in

building predictive models from observations, therefore facilitating knowledge discov-

ery for complex systems. Neural network algorithm is a supervised learning approach

and has been widely used in data mining tasks [50, 51] as well as medical applications

[52, 53]. Snow et al. developed neural networks for prostate cancer diagnosis and

prognosis [54]. Lek et al. introduced neural networks in ecological modeling [55].

Brusic et al. used neural networks for predicting major histocompatibility complex

(MHC) binding peptides [56]. Learning is an important research topic in neural

networks. White presented neural network learning algorithms from the statistical

perspective [57]. Hagan et al. presented an effective learning algorithm called back-

propagation for training feedforward networks [58]. In addition to modeling and

predictions, neural network algorithm has also been used for solving ordinary and

partial differential equations [59].

Our initial work [14] presented ANN as an alternative to solving ODEs using in silico

data; in that study ANN was compared with LR model and it was shown to outperform

the latter. In the present work, we compare four different learning methods: ANN, LR,

SVM and RF. We optimize the parameters of the models and apply them to in silico

data with and without added noise. We corroborate our findings with experimental

data and demonstrate that both ANN and RF are capable of predicting the dynamic

behavior of the output cytokines in four out of five cases. Finally, we also evaluated the

methods based on their computational performance.

Methods
To model cell differentiation we first define the problem and make the following

assumptions. There are m input cytokines that regulate immune cell differentiation: Ci1,

Ci2, …, Cim. There are also n output cytokines secreted by immune cells: Co1, Co2, …, Con.

The cytokine concentrations are positive continuous values.

The problem of modeling immune cell differentiation is to develop one model for the

following functional relationship:

Co1;Co2; …; Conf g ¼ Fc Ci1;Ci2; …; Cimð Þ ð1Þ

The model is designed to predict the output cytokine concentrations given concen-

trations of input cytokines.

T cell differentiation process as a use case

This study focuses on the T cell differentiation. However, the techniques and algorithms

developed herein can be applied to differentiations of other types of immune cells, such

as macrophages, dendritic cells, B cells, etc. The input cytokines are internalized by the

naïve T cells and regulate the T cell differentiation process. The output cytokines are

externalized and secreted.

Data for training and testing models

The data for modeling the relationship from the input and output cytokines can be

derived from the T Cell differentiation ODE model [2] which was calibrated using
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data from biological experiments. By changing the concentrations of the input cytokines,

the steady state of the ODE model is calculated. The steady state results provide a measure

of the output cytokines that can be used in the model. Creation of datasets was achieved by

using the parameter scan task of COPASI tool [49]. COPASI is a software application for

simulation and analysis of biochemical networks and their dynamics, which supports

models in the SBML standard and can simulate their behavior using ODEs. A five-

dimensional scan was performed, where five output cytokines were independently mea-

sured. All the data is normalized to the range of [0, 1]. The method used to create datasets

is equal-distance sampling. For each input cytokine, five values were chosen (0, 0.25, 0.5,

0.75, and 1). Since there is a total of five input cytokines, 625 data points were created

by the parameter scan process. One hundred of the data points were selected

randomly for training and the remaining 525 data points were used for testing.

Additionally, uniformly distributed noise was added to the output for a quantitative

analysis. Table 1 shows an example of data points used in the study.

Supervised learning methods

Artificial neural networks

ANN models can be used to model nonlinear relationships. We developed the ANN

model for T cell differentiation using a package in R named neuralnet [60]. The learn-

ing algorithm used is back-propagation. The function neuralnet is used for training

neural networks, which provides the opportunity to define the required number of

hidden layers and hidden neurons. The most important arguments of neuralnet func-

tion include formula (a symbolic description of the model to be fitted), data (a data

frame containing the variables specified in formula), and a hidden vector (specifying

the number of hidden layers and hidden neurons in each layer) [60]. To optimize the

performance of the ANN model, we tested different sizes of hidden layers, including 1,

2, 4, 5, 6, 7, 8, 10, and 11 hidden neurons. By comparing the average absolute difference

between the model predictions and real outputs from the test data, the neural network

model with seven hidden neurons was identified to perform best (Table 2). Size of

Table 1 Example datasets used for training and testing the models

Sample data Input data Output data

IFNγ IL12 IL6 TGFβ IL17 RORgt IFNγ Tbet FOXP3

Data without Noise 1 0 0.5 0 0.996 0.989 0.122 0.547 7.51E-06

0.75 0.75 0 0.75 0.156 0.117 0.942 0.677 0.000103

0.5 0.5 0.25 0.5 0.989 0.967 0.282 0.404 1.25E-05

0.25 0 0 1 0.155 0.117 0.401 0.645 0.000105

Data with noise in range
of [−0.5 %, 0.5 %]

1 0 0.5 0 0.974 0.913 0.118 0.545 7.12E-06

0.75 0.75 0 0.75 0.148 0.106 0.900 0.644 9.91E-05

0.5 0.5 0.25 0.5 0.950 0.922 0.264 0.391 1.28E-05

0.25 0 0 1 0.144 0.115 0.390 0.640 0.000105

Data with noise in range
of [−1 %, 1 %]

1 0 0.5 0 0.933 0.880 0.114 0.482 6.71E-06

0.75 0.75 0 0.75 0.133 0.116 0.784 0.614 9.84E-05

0.5 0.5 0.25 0.5 0.980 0.959 0.264 0.368 1.21E-05

0.25 0 0 1 0.154 0.106 0.352 0.604 9.75E-05
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hidden layers is a critical model parameter. If the number of layers is too small under-

learning can occur whereas a size too large can cause over-learning or over fitting. In

this study, our results demonstrated that with the network of four inputs and five

outputs, seven hidden neurons were necessary to best model the complex non-linear

system of cell differentiation using back-propagation (Fig. 5).

Linear regression

LR model was tested for its simplicity. R has a linear regression module lm that was

adapted and used in this study. The lm function is used to fit linear models, which can

be used to carry out regression, single stratum analysis of variance and analysis of

covariance [61].

Support vector machine

A model was created using SVM algorithm. The R Package, e1071 [62], was applied to

build the support vector machine models using the same training data and test data as

used by our previous modeling approaches. To optimize the performance of the SVM

model, we tested different width of radial kernel, including baseline (0.25), 1, 0.1, 0.01,

Table 2 Prediction errors of the neural network models with different sizes of hidden layer

Number of hidden neurons IL17 RORgt IFNγ Tbet FOXP3 Sum of prediction error

1 0.0551 0.0408 0.0831 0.114 0.0233 0.316

2 0.0559 0.0415 0.049 0.114 0.0369 0.297

4 0.0562 0.0411 0.0527 0.109 0.0362 0.295

5 0.0562 0.0415 0.0367 0.0396 0.0368 0.211

6 0.0562 0.0423 0.0482 0.0436 0.0357 0.226

7 0.0561 0.0419 0.0407 0.0142 0.0368 0.190

8 0.0561 0.0421 0.0426 0.0234 0.0368 0.201

10 0.0561 0.0415 0.0503 0.0453 0.0362 0.230

11 0.0561 0.0424 0.0423 0.0148 0.0360 0.192

Fig. 5 Artificial neural network (ANN) model of CD4+ T cell differentiation. The ANN model for T cell
differentiation was built using a package in R named neuralnet. The network of four inputs and five outputs,
seven hidden neurons were necessary to best model the complex non-linear system of cell differentiation
using back-propagation

Lu et al. BioData Mining  (2015) 8:27 Page 11 of 21



and 0.001. By comparing the average absolute difference between the model predictions

and real outputs from the test data, the model with a kernel size of 0.25 (baseline) was

identified to perform best (Table 3).

Random forest

A RF model was created using the randomForest package in R [23]. The function

randomForest is used for building trees, which provides the opportunity to define the

number of trees to grow and the number of variables randomly sampled as candidates

at each split. For each output cytokine, a Random Forest model was built. In essence,

for five outputs, IL17, RORgt INFγ, Tbet, and FOXP3, five Random Forest models were

created. To optimize the performance of the RF model, two main variables – mtry and

ntree – were optimized (see Fig. 6). By comparing the average absolute difference

between the model predictions and real outputs from the test data, the random forest

model with 1000 trees and 4 variables randomly sampled as candidates at each split

was identified to perform best.

Capability of the models to analyze data with noise

Stochasticity is an inherent component of biological processes and an important as-

pect in modeling such systems [43–46]. Thus, we incorporated noise to the output

data points. A uniformly distributed noise in range of [−0.5 %, 0.5 %] and [−1 %, 1 %]

was add to all five output data points independently in order to assess whether the

learning methods could be used to model the system with same level of accuracy.

The level of noise that was applied is relatively low because there is no indication of

any species in the model to be subject to a low copy number and therefore to signifi-

cantly higher levels of fluctuation and noise. In a similar manner, 100 data points

were selected randomly as the training dataset and the remaining 525 data were used

for testing.

Model validation

Testing the models using in vitro data

In vitro data were obtained from recent publications, which were used to further valid-

ate neural network model and random forest model. The first publication [63] shows

that TGFβ and IL-6 are required for the lineage commitment of pathogenic Th17 cells.

TGFβ and IL-6 drive the production of IL-17 by T cells and restrain Th17 cell-

mediated pathology, such as production of IFNγ. The second publication [64] shows

that TGFβ and IL-6 together induces the differentiation of pathogenic Th17 cells from

naïve T cells. Meanwhile, IL-6 as an acute phase protein induced during inflammation,

Table 3 Prediction error of support vector machine models with different width of radial kernel.
The baseline width is the inverse of the dimension of the data (in this case Baseline will be 0.25)

Width of radial IL17 RORgt IFNγ Tbet FOXP3 Sum of prediction error

Baseline 0.181 0.179 0.146 0.122 0.0355 0.665

1 0.189 0.192 0.149 0.126 0.0349 0.691

0.1 0.193 0.192 0.160 0.130 0.0360 0.711

0.01 0.257 0.263 0.216 0.148 0.0366 0.920

0.001 0.343 0.351 0.259 0.174 0.0368 1.163
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completely inhibits the generation of Foxp3+ Treg cells induced by TGFβ. The third

publication [65] shows that T-bet upregulation and subsequent IL-12 stimulation

are essential for induction of Th1 mediated immunopathology in Crohn’s disease.

Also, augmentation of IFNγ production by IL-12/IL-18 was independent of T-bet

expression. The experimental condition (cytokine concentrations) was extracted

from publications as inputs of supervised learning models. The outputs of models

were compared with experimental data to identify whether the dynamics behaviors

of cells could be predicted correctly.

10-fold cross validation

Cross-validation is a model validation technique for assessing how the results of a

statistical analysis could generalize to an independent dataset. The goal of cross

validation is to define a dataset to test the model in the training phase, in order to

limit overfitting and give an insight on how the model will generalize to an inde-

pendent dataset. 10-fold cross-validation approach was used in our studies. Firstly,

Fig. 6 Performance optimization of Random Forest (RF) model. The RF model was created using the
randomForest package in R. To optimize the performance of the RF model, two main variables – mtry
(numbers of variables randomly sampled as candidates at each split) and ntree (numbers of trees to grow) –
were optimized. The RF model with 1000 trees and 4 variables randomly sampled as candidates at each
split was identified to perform best
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the whole dataset was randomly divided into 10 subsets. Since there are totally 625

data samples, five subsets contains 63 data respectively and the other five subsets

have 62 data per set. Then, 10 rounds of learning were performed for each

machine learning approaches; on each round one subset of the data was used as a

test set and the remaining 9 data subsets are used as training data. The average of

mean-squared error on the predictions of each machine learning approach was

used as an estimate of accuracy.

Running time comparison among different supervised learning methods

The running time of different supervised learning methods was calculated using

proc.time function of R, which determines how much real and CPU time the

currently running R process has already taken.

Results
LR model was tested for its simplicity. R has a linear regression module lm that was

adapted and used in this study. The lm function is used to fit linear models, which can

be used to carry out regression, single stratum analysis of variance and analysis of

covariance [61]. The result of the linear regression model can be summarized as linear

transformation from the input cytokines to the output cytokines as shown by the Eq. 2.

The transformation matrix, MTran, (Eq. 3) summarizes the relationship between input

and output cytokine concentrations.

FOXP3
IFNγi

IL17
RORγt

Tbet

2
66664

3
77775
¼ MTran �

1
IFNγo

IL12
IL6

TFGβ

2
66664

3
77775

ð2Þ

MTran ¼

0:0386
−0:0259
−0:0303
−0:0191
0:00558

0:531
−0:0536
0:297
−0:568
0:0551

0:408
0:155
−0:0466
0:773
−0:130

0:387
0:146
−0:0592
0:811
−0:132

0:663
0:0267
0:129
−0:302
−0:198

2
66664

3
77775
; ð3Þ

where rows represent IFNγ, IL12, IL6, and TGFβ respectively.

The prediction error, the average absolute difference between the model predictions

and real outputs from the test data, of the linear model is shown in Table 3. Consider-

ing the data are normalized within [0, 1], the prediction error of linear regression

model is larger than that of neural network model. This corroborates that the T cell

differentiation process is highly non-linear and linear regression will not be an appro-

priate method for this highly complex and non-linear process. By calculating the

prediction error, it is concluded that the performance of support vector machine model

is better than linear regression model, but worse than neural network model (Table 4).

The prediction error of the RF model (Table 4) is better than linear regression and

support vector machine. RF’s performance is comparable with ANN method.

The Table 5 shows that the ANN model and RF model still outperform the linear

regression model and the support vector machine model when noise is added to the

data. However, the performance of these two models deteriorates slightly when

compared to data without added noise.
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Testing the best performers – ANN and RF – using in vitro data is important in

order to assess the predictive quality of the models. We gathered three publications

that provide experimental data for our input and output cytokines. We tested the

methods and in four out of five cases both models were able to predict the dynamic

behavior of the system. For instance in the first study, when IL-6 and TGFβ are 100

and 10 respectively the level of IL-17 is measured to be 4875 (baseline level is 188),

corresponding to an up-regulation of IL-17 with respect to baseline. The model predic-

tions for the same input values are 0.99 versus 0.14 for ANN and 0.769 versus 0.128 for

RF: and up-regulation with respect to the baseline. Four out of five experimental data

are reproduced with the correct dynamic behavior. It is essential to note that even

though it is important to test the system with experimental data, there is discrepancy

between different experimental conditions and the final results. For instance, the third

and fourth studies measure the same cytokines; however, the results demonstrate differ-

ent dynamic behavior. In the third study the authors observe an up-regulation of

Foxp3; while, in the fourth study authors observe a down-regulation of the same

output. The difference can be due to experimental conditions as well as input range

(Table 6).

In order to control overfitting and give an insight on how the models will generalize

to an independent dataset cross-validation was performed. Cross-validation is a model

validation technique for assessing how the results of a statistical analysis would

generalize to an independent dataset in a practical setting. The goal of cross-validation

is to define a dataset to test the model in the training phase. 10-fold cross-validation

approach was used to evaluate models created by different machine learning, including

Table 4 Comparison of prediction error for the different models

Approach IL17 RORgt IFNγ Tbet FOXP3 Sum of prediction error

Artificial Neural Network 0.0561 0.0419 0.0407 0.0142 0.0368 0.190

Linear Regression 0.256 0.258 0.213 0.141 0.0362 0.904

Support Vector Machine 0.181 0.179 0.146 0.122 0.0355 0.665

Random Forest 0.0261 0.032 0.0326 0.0920 0.0296 0.211

Table 5 Comparison of prediction error on data with noise for the different models

Noise level Approach IL17 RORgt IFNγ Tbet FOXP3 Sum of
prediction
error

Uniformly distributed noise in
range of [−0.5 %, 0.5 %]

Artificial Neural
Network

0.0671 0.0698 0.042 0.0362 0.0354 0.250

Linear
Regression

0.235 0.235 0.190 0.129 0.0355 0.824

Support Vector
Machine

0.0329 0.146 0.182 0.178 0.111 0.649

Random Forest 0.0413 0.0479 0.0364 0.0769 0.0397 0.242

Uniformly distributed noise in
range of [−1 %, 1 %]

Artificial Neural
Network

0.0706 0.0553 0.0435 0.0361 0.0393 0.2448

Linear
Regression

0.795 0.682 0.677 0.546 0.46 3.16

Support Vector
Machine

0.179 0.177 0.147 0.112 0.0406 0.6556

Random Forest 0.0552 0.0495 0.0484 0.0935 0.0349 0.2815
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Table 6 Applying the RF and ANN method on experimental data

Study Input Output Dynamics behavior

Experimental (EXP) Model prediction (ANN) Model prediction (RF) Up/Down-regulation with respect to control

IL12 IL6 TGFβ IL17 RORgt FOXP3 Tbet IL17 RORgt FOXP3 Tbet IL17 RORgt FOXP3 Tbet EXP ANN / RF

1.[63] 0 0 188 0.14 0.128 ↑ ↑ / ↑

100 10 4875 0.99 0.769

2.[63] 0 0 63 0.104 0.103 ↑ ↑ / ↑

100 10 485 0.999 0.946

3.[63] 0 0 406 0.0164 0.194 ↑ ↓ / ↓

100 10 469 0.0075 0.143

4.[64] 0 0 3.3 0.0164 0.194 ↓ ↓ / ↓

20 3 0.6 0.0065 0.143

5.[65] 0 1 0.0602 0.874 ↑ ↑ / ↑

10 1.33 0.809 0.992
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ANN, LR, SVM, and RF. The average of mean-squared error on the predictions of each

model was used as an estimate of accuracy, which is shown in Table 7. ANN and RF

are still the best performers following this analysis.

The R function, proc.time, was used to determine how much real and CPU time (in

seconds) the training and testing processes of each supervised learning methods have

already taken (Table 8). proc.time returns five elements for backwards compatibility,

but its print method prints a named vector of length 3. The first two entries are the

total user and system CPU times of the current R process and any child processes on

which it has waited, and the third entry is the ‘real’ elapsed time since the process was

started. The system specification is Intel® Core(TM) i7-4500 CPU @ 1.80 GHz

2.40 GHz and 4.00 GB RAM. The comparison between ANN and RF shows that ANN

is faster on both real and CPU time.

Discussion
In this study, we presented four different supervised learning methods – ANN, LR,

SVM, and RF – to model the CD4+ T Cell differentiation. Immune cell differentiation

is an important immunological process that is not fully characterized. Based upon our

previous studies on the ODE model of CD4+ T cell differentiation and agent-based

modeling for enteric immunity, it is concluded that developing multiscale models re-

quires significant reduction of the intracellular ODE model before integrating them

into the inter-cellular agent-based models. However, since immune cell differentiation

is a highly non-linear process, the linear regression model was not capable of fitting the

data well. Linear regression models provide a simplistic approach that is very well scal-

able and was shown to outperform neural network models in a recent study [66]. ANN

and RF were shown to be best performers with in silico data with and without added

noise.

In particular a feed-forward neural network model has been developed, focusing on

modeling the relationship between the input external cytokines regulating the cell

differentiation and the output cytokines secreted and externalized by the immune cell

subsets. After training using back propagation algorithm, this neural network model

predicts the concentrations of the output cytokines with an average prediction error of

0.0379 for the five output cytokines concentrations. The neural network model signifi-

cantly reduces the ODE model complexity by focusing on the needs of multiscale

models. This approach is scalable and can be integrated into future multiscale modeling

efforts.

In our analysis, we also explored SVM as potential candidates for the modeling

of T cell differentiation. SVMs provide a number of advantages over ANN. For in-

stance, ANN algorithm is more prone to over-fitting as compared to SVMs [67].

Table 7 Comparison of average prediction error on data from 10-fold cross validation for the different
models

Approach IL17 RORgt IFNγ Tbet FOXP3 Sum of prediction error

Artificial Neural Network 0.00662 0.0128 0.0124 0.00755 0.0201 0.0595

Linear Regression 0.239 0.241 0.201 0.136 0.0311 0.849

Support Vector Machine 0.0914 0.0881 0.0893 0.0871 0.0277 0.384

Random Forest 0.000421 0.000647 0.00131 0.0210 0.00660 0.030
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In additions, unlike ANN, computational complexities of SVM do not depend on

the dimensionality of the input space [68] and therefore it could provide a more

scalable framework. Finally, solution to SVM is global [69], where ANN could suf-

fer from multiple local minima [70]. However, in our analysis the ANN signifi-

cantly outperformed SVM.

Random Forest has also outperformed SVM and Linear regression model in our

experiment. RF and ANN have comparative performance. Inherited from classification

and regression trees, random forest algorithm has the following advantages. It handles

categorical predictors, highly non-linear interactions, and missing values. It is computa-

tionally simple even for large problems. Furthermore, RF does not require formal distri-

butional assumptions (non-parametric) and provides an automatic variable selection

process [22, 71]. In addition, it also overcomes disadvantages of classification and

regression trees. For example, on accuracy aspect, random forest turns out to perform

very well compared to many other classifiers, including discriminant analysis, support

vector machines and neural networks [23], and is robust against over-fitting [22].

Random forest methods have been widely applied in bioinformatics and computational

biology. A major field of application of RF method is large-scale genetic association

studies. The response is typically a phenotype of interest, while the predictors are

genetic markers, often SNPs that can be seen as predictors with two or three categories.

RFs yield both a prediction tool and a ranking of the SNPs with respect to their classifi-

cation ability [72]. Other applications of random forest include prediction of patient

outcome from high dimensional gene expression data, where patients are instances and

their outcome is the response to be predicted [73]. Another class of applications is the

prediction of molecule properties based on sequence information, such as the

prediction of replication capacity based on HIV-1 sequence variation [74]. However,

RF methods have not been heavily used in immunology studies. To the best of our

knowledge this study is the first one applying the random forest algorithm for

immune cell differentiation.

Furthermore, analysis of data with noise is an important step, as biological systems

are stochastic processes in general. As we have shown the performance of the ANN

system deteriorates but only marginally. RF outperforms all the other methods when

low level noise is added to the in silico data, while ANN performs best using date with

high level noise. Therefore, the constructed modeling framework is stable and robust

to slight variations.

Finally, by testing the best performers – ANN and RF – using in vitro experimental

data, the predictive accuracy of the models was accessed. In four out of five cases both

models were able to predict the dynamic behavior of the system, which demonstrated

that our models are capable of predicting dynamic behaviors of cell differentiation

Table 8 Running time comparison for the different models

Approach Running time for training (s) Running time for testing (s)

User System Elapsed User System Elapsed

Artificial Neural Network 0.36 0.05 0.64 0.01 0.02 0.03

Linear Regression 0.02 0.04 0.31 0 0.02 0.02

Support Vector Machine 0.04 0.06 0.3 0 0.02 0.02

Random Forest 1.28 0.09 1.42 0.1 0.05 0.66
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system with high accuracy. There are two contradictory data on FOXP3. One data

showed that Foxp3 did not substantially change (slightly increase) [63], while another

data showed that addition of TGFβ plus IL-6 to T cells during differentiation com-

pletely abrogated the expression of Foxp3 [64]. This contradictory observation could be

due to different background of mice used in these two studies or different initial

expressing level of Foxp3 in T cells [75]. In addition to prediction accuracy, the running

time of each supervised learning method was measured. It is concluded that ANN

performs more efficiently than RF with similar accuracy.

Conclusions
This is the first study using neural networks as well as random forest to model immune

cell differentiation. We have shown that the proposed modeling framework is robust to

noise, and outperforms two other widely used methods – LRM and SVM. Furthermore,

ANN and RF models represent ideal candidates for integration into the agent-based

models that we have developed using ENISI MSM to study the immunological

processes comprehensively and systematically. Using machine learning as opposed to

ODE-based methods will reduce the computational complexity of the system and allow

us to gain a deeper understanding of the complex interplay between the molecules,

cells and tissues of the immune system to advance the development of safer and more

efficacious therapeutics.
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