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Abstract

Background: Biorepositories linked to de-identified electronic medical records
(EMRs) have the potential to complement traditional epidemiologic studies in
genotype-phenotype studies of complex human diseases and traits. A major challenge
in meeting this potential is the use of EMR-derived data to extract phenotypes and
covariates for genetic association studies. Unlike traditional epidemiologic data,
EMR-derived data are collected for clinical care and are therefore highly variable across
patients. The variability of clinical data coupled with the challenges associated with
searching unstructured clinical notes requires the development of algorithms to
extract phenotypes for analysis. Given the number of possible algorithms that could
be developed for any one EMR-derived phenotype, we explored here the impact
algorithm decision logic has on genetic association study results for a single
quantitative trait, high density lipoprotein cholesterol (HDL-C).

Results: We used five different algorithms to extract HDL-C from African American
subjects genotyped on the Illumina Metabochip (n = 11,519) as part of Epidemiologic
Architecture for Genes Linked to Environment (EAGLE). Tests of association between
HDL-C and genetic risk scores for HDL-C associated variants suggest that the genetic
effect size does not vary substantially across the five HDL-C definitions.

Conclusions: These data collectively suggest that, at least for this quantitative trait,
algorithm decision logic and phenotyping details do not appreciably impact genetic
association study test statistics.

Keywords: Electronic medical record, Genetic risk score, HDL-C, eMERGE network,
PAGE I study
Background
Biorepositories linked to de-identified electronic medical records (EMR) are an

emerging resource for genetic association studies [1]. Compared with traditional

epidemiologic studies, EMR-based studies offer multiple advantages including relative

ease of ascertainment, rapid accrual of samples and associated data, longitudinal

measures, and the potential for lengthy follow-up. Another major advantage of

EMR-based or clinic-based studies is their potential for pharmaocogenomics and

other applications associated with personalized medicine.
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While clinic-based studies linked to EMRs offer multiple advantages, they also

offer multiple challenges when accessed for research such as genetic association

studies. A major challenge of the EMR is that the data are not collected for

research purposes; that is, the data are collected as part of routine clinical care.

Therefore, unlike traditional epidemiologic studies, there is no “baseline” measurement

or examination of all study participants, and the number of overall measurements

and exams can vary widely by patient. This variability is in stark contrast to longitudinal

epidemiologic studies where participants are surveyed and examined uniformly

every few years.

Because of the variable and somewhat erratic nature of the EMR data, investigators

accessing these data for genetic association studies must make specific decisions in de-

veloping phenotype algorithms designed to extract outcomes and covariates for ana-

lysis. For example, for a commonly studied measurement such as body mass index, the

investigator has multiple options including the first height and weight mentioned, the

last height and weight mentioned, an average of all heights and weights mentioned for

all clinic visits, the height and weight mentioned closest to another clinical diagnosis

(such as type 2 diabetes), and so on.

Many of the challenges associated with EMR-based phenotyping are being

addressed by collaborative consortiums such as the electronic MEdical Records and

GEnomics (eMERGE) network, a cooperative group of several DNA biorepositories

in the United States linked to EMRs funded by the National Human Genome

Research Institute [2,3]. A major goal of the eMERGE network is the development

of portable algorithms designed to define disease outcomes for use in genetic

association studies [4]. Algorithms developed under eMERGE have been used

successfully for single study site [5,6] and well as eMERGE-wide studies [7-13], the

latter of which demonstrate the portability of these algorithms despite possible

variations in clinical practice. A portion of the eMERGE EMR-derived phenotypes

have also been mapped back to PhenX variables using the PhenX Toolkit [14],

suggesting that EMR-derived phenotypes are comparable to epidemiologic collected

phenotypes [15].

The eMERGE network has been successful in designing and implementing EMR-

based algorithms for multiple phenotypes; however, it is unclear if the decision

logic underlying each algorithm for phenotypes with repeated measures impacts

downstream analyses for genetic association studies. To explore this possible

impact, we as the Epidemiologic Architecture for Genes Linked to Environment

(EAGLE) as part of the larger Population Architecture using Genomics and

Epidemiology (PAGE) I study [16] conducted a genetic association study for the

commonly measured and studied high density lipoprotein cholesterol (HDL-C). We

created five HDL-C algorithms to extract this quantitative trait from African

American subjects genotyped with the Illumina Metabochip [17] and available in

BioVU, the Vanderbilt biorepository linked to de-identified electronic medical

records [18]. Overall, we demonstrate that the genetic effect size estimates and

levels of significance are similar across all HDL-C extraction methods attempted

suggesting that commonly used decision logic for repeated measures in the EMR

may not have appreciable impacts on downstream analyses conducted for genetic

association studies.
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Methods
Study population

All study subjects are drawn from BioVU, Vanderbilt University Medical Center’s

biorespository linked to de-identified electronic medical records. A description of

BioVU, including its oversight and ethics, has been previously published [18,19]. In

brief, DNA is extracted from discarded blood samples drawn for routine clinical

care from Vanderbilt University affiliated outpatient clinics. The DNA sample is

linked to the patient’s de-identified EMR known as the Synthetic Derivative (SD).

The SD contains billing (ICD-9) codes, procedure codes and labs. Prescription

medication, including dose, is available in the SD through MedEx [20], an algorithm that

extracts medications and their signature mentions from free-text entries available in the

EMR. The SD also contains all clinical notes.

As EAGLE, a study site of PAGE I, we genotyped mostly non-European descent DNA

samples available in BioVU as of 2011 on the Illumina Metabochip (described below),

hereto referred as “EAGLE BioVU” (n = 15,863) [21]. The present study is limited

to African Americans within EAGLE BioVU (n = 11,519).
HDL-C definitions

HDL-C measurements were extracted from a de-identified EMR using five different

methods. First, for each subject, the median HDL-C value of all documented HDL-C

measurements was collected (“All HDL-C”). Next, both first and last reported HDL-C

were mined from the subject’s laboratory data (“First HDL-C” and “Last HDL-C”).

Lastly, HDL-C values were extracted for subjects both prior to (“pre-medication

HDL-C”) or following (“post-medication HDL-C”) evidence of lipid-lowering medications

and the median value was reported. EAGLE BioVU clinical notes were searched for

evidence of lipid-lowering drugs for each subject using medication class as well as

medication generic and brand names (Table 1). For each mention of lipid-lowering

drug use, we extracted the date of medication mention to compare against date of

HDL-C lab to determine if that measurement of HDL-C was “pre-medication” or
Table 1 Lipid-lowering medication class and list of drugs

Fibrates Resisns Statins

Gemfibrozil (Lopid®) Cholestyramine (Questran®,
Questran® Light, Prevalite®,
Locholest®, Locholest® Light)

Atorvastatin (Lipitor®)

Fenofibrate (Antara®,
Lofibra®, Tricor®, Triglide™)

Colestipol (Colestid®) Fluvastatin (Lescol®)

Clofibrate (Atromid-S) Colesevelam Hcl (WelChol®) Lovastatin (Mevacor® and Altoprev™)

Pravastatin (Pravachol®)

Rosuvastatin Calcium (Crestor®)

Simvastatin (Zocor®)

Lovastatin + niacin (Advicor®)

Atorovastatin + amlodipine (Caduet®)

Simvastatin + ezetimibe (Vytorin™)

Four major medication classes containing lipid-lowering medications were used to search the clinical notes: fibrates,
niacin, resins, selective cholesterol absorption inhibitors (Ezetimibe or Zetia®), and statins (also known an HMG CoA
reductase inhibitors). For each of the medication classes included in the search, we have listed the specific drugs
considered, including both the generic and brand names.
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“post-medication.” Subjects with no evidence of lipid-lowering medication prescriptions

were considered “pre-medication HDL-C.” All HDL-C values used in this analysis were

collected when the subject was 18 years or older.
Genotyping and SNP selection

A total of 15,863 DNA samples from mostly non-European descent subjects were genotyped

on the Illumina Metabochip, including 11,519 African Americans, by Vanderbilt University

Center for Human Genetics Research DNA Resources Core. The Illumina Metabochip is a

custom array of approximately 200,000 variants chosen as GWAS-identified index variants

or GWAS-identified regions for fine-mapping based on data from the first iteration of the

1000 Genomes Project [17]. Quality control of the Illumina Metabochip data for EAGLE

BioVU followed the quality control procedures outlined in Buyske et al. [22].

Based on a previous fine-mapping study of HDL-C using Metabochip [23], seven of

the 22 fine-mapped HDL-C loci exhibited evidence of association at p < 1x10−4 in African

Americans. The seven index SNPs from these seven associated HDL-C loci were selected

for use in calculating the genetic risk score (GRS, Table 2).
Statistical methods

Both a weighted and unweighted GRS were calculated in PLINK [24]. In general, the

GRS is calculated for each subject by counting the number of effect alleles (0, 1, or 2)

across each SNP, multiplying that number by the known effect size (for the unweighted

GRS, effect sizes were set equal to one), summing those values, and dividing by the

number of non-missing SNPs, thus providing the average score per SNP. Effect estimates

for the weighted GRS were based on the meta-analysis of PAGE African Americans [23].

Linear regression, adjusted for sex, with GRS as the independent variable and HDL-C

measurement as the dependent variable was used to determine the beta coefficient.
Results
Approximately 43% of the 11,519 African American subjects genotyped on the Illumina

Metabochip as part of EAGLE had at least one HDL-C measurement available in the

EMR (Table 3). The median number of clinic visits and medical records lengths in

years was three each while the median ICD-9 code mentions (for unique codes) was

54. The median value for HDL-C ranged from 48–51 across the five different HDL-C

definitions explored here (Table 3).
Table 2 SNPs used to calculate the genetic risk score for HDL-C in African Americans

SNP Gene of interest Effect Allele Effect on HDL-C† (mg/dl)

rs247617 CETP C −0.111

rs1077834 LIPC A −0.033

rs10096633 LPL G −0.042

rs189069311 APOA5 A −0.080

rs255054 LCAT A −0.042

rs6601299 PPP1R3B A −0.063

rs4810479 PLTP G −0.029
†Beta coefficients were drawn from meta-analysis results of PAGE African Americans [23].



Table 3 EAGLE BioVU African American demographics for HDL-C

Variable No. Obs. Median IQR

Medical record length (years) 4,912 3 8

Clinic visits (N) 4,912 3 6

ICD-9 codes (N)† 4,897 54 85

All HDL-C (mg/dl) 4,890 51 23

First HDL-C (mg/dl) 4,912 50 23

Last HDL-C (mg/dl) 4,912 49 22

pre-medication HDL-C (mg/dl) 4,074 51 23

post-medication HDL-C (mg/dl) 2,086 48 22

Number of observations (No. Obs.) as well as medians and interquartile ranges (IQR) are given for each variable. †Includes
only unique ICD-9 codes per individual.

Dumitrescu et al. BioData Mining  (2015) 8:15 Page 5 of 8
We first calculated the unweighted GRS using seven HDL-C associated variants

(Table 2) for each African American in EAGLE BioVU with at least one HDL-C

measurement. The number of HDL-C risk alleles ranged from 3 to 12, which the

majority of subjects having 8 risk alleles (Figure 1).

We then performed tests of association for each of the five HDL-C definitions using the

unweighted GRS as the independent variable. The unweighted GRS was significantly

associated with each of the five HDL-C definitions, and the levels of significance ranged

from 4.06 × 10−86 (post-medication HDL-C; n = 2,085) to 3.73 × 10−197 (first HDL-C;

n = 4,910). Because level of significance is influenced by sample size, we then

plotted each resulting beta and 95% confidence intervals to compare the effect

sizes of the unweighted GRS across the five different HDL-C definitions (Figure 2).

The unweighted GRS effect size was similar across the five different HDL-C definitions

(Figure 2). Results from the weighted GRS do not appreciably differ from the unweighted

results (data not shown).
Discussion
We demonstrate here that for HDL-C, a commonly studied quantitative trait for

cardiovascular disease risk, algorithm decision logic and phenotyping details applied

to repeated measures available in the EMR do not appreciably affect downstream
Figure 1 Distribution of HDL-C risk alleles in EAGLE BioVU African Americans.



Figure 2 Additive effects of HDL-C risk alleles on various HDL-C measurements. Effect sizes (betas) from the
linear regression analysis with the unweighted GRS, adjusted for sex, are shown as expected HDL-C levels
(in mg/dl; black diamonds), along with their 95% confidence intervals.
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genetic association test statistics or overall study conclusions. These data, along

with on-going algorithm development within the eMERGE network [5,25], suggest

that phenotypes derived from EMR-based repositories are robust to the underlying

variability inherent in clinical collections. Although not explicitly tested here, the

similarities of genetic effect sizes observed here for the five HDL-C definitions in

the same sample suggest that any one of these EMR-derived test statistics robust to

algorithm decision logic can be included in meta-analyses with traditional epidemiologic

studies.

While our data suggest that EMR-derived phenotypes may be robust to certain aspects

of the algorithm decision logic and phenotyping details, these data do not imply that

genetic association studies are not impacted by poor phenotyping. Substantial literature

has documented the need for rigorous case/control phenotyping as misclassification of

either can lead to loss of power [26,27]. Careful phenotyping can also lead to insights into

biological mechanisms or disease processes [28,29]. Finally, careful phenotyping is also

essential for creative study design and genetic discovery [30].

The present study focuses on examining the impact algorithm decision logic has on

genetic associations related to a single quantitative trait, HDL-C. As such, the conclusions

offered here may be limited to HDL-C or to quantitative traits defined from repeated

measures available in the EMR. Further study is needed to more fully explore the

limitations and impact algorithm decision logic may have on genetic association

studies for binary clinical outcomes such as myocardial infarction or pharmacogenomic

studies for traits such as warfarin dosing. For the HDL-C data included here, additional

limitations of the present study include limitations associated with extracting HDL-C

from the EMR. For example, we searched clinic notes for mentions of lipid-lowering

medication classes and drugs (genetic and brand names), but we did not include

any common misspellings of these search terms. It is possible, therefore, that the

“pre-medication” HDL-C definition contains HDL-C measurements while the subject was

on lipid-lowering medication. Another limitation of the EMR is that, unlike most

epidemiologic studies, fasting status or time to last meal is not available as a structured

field. Here, we assumed that the HDL-C measured in EAGLE BioVU was measured for

subjects who fasted for at least eight hours. This assumption is most likely incorrect, but

its violation is unlikely to impact HDL-C levels substantially.
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Another limitation of the present study is related to sample size and power. We

present here tests of association between various HDL-C derived variables and an

unweighted GRS. The unweighted GRS, by design, is calculated by the number of risk

alleles at loci known to be significantly associated with HDL-C levels. Therefore, with

only a few thousand samples, we were able to statistically replicate the expected

association between the unweighted GRS and the various HDL-C variables to further

examine the genetic effect sizes estimated from these tests of associations. While the

sample size of the present study was large enough for replicating known associations

such as the loci represented in the unweighted GRS, the sample size is not large

enough to perform discovery studies with the entire Metabochip dataset, even when

limited to common variation (minor allele frequency >5%). Indeed, tests of association

between the various HDL-C variables and common variants on the Metabochip

failed to identify a statistically significant association after correction for multiple

testing (data not shown). Furthermore, neither significance rankings nor genetic

effect sizes could be reliably compared across HDL-C variables given the chance

findings of non-significant tests of associations. Larger sample sizes are needed to

make comprehensive comparisons of genetic effect sizes and significance rankings

for EMR-derived phenotypes susceptible to algorithm decision logic and pheno-

typing details.

Despite the limitations, this study had multiple strengths including the depth of

the clinical data and the diversity of EAGLE BioVU. EMR-derived datasets such as

EAGLE BioVU coupled with genotype and sequence data promise to enrich existing and

complimentary datasets for future genetic association studies for complex human diseases

and traits.
Conclusions
These data collectively suggest that, at least for HDL-C, algorithm decision logic and

phenotyping details do not appreciably impact genetics association study tests statistics.
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