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Abstract

The emergence of massive datasets in a clinical setting presents both challenges and
opportunities in data storage and analysis. This so called “big data” challenges
traditional analytic tools and will increasingly require novel solutions adapted from
other fields. Advances in information and communication technology present the
most viable solutions to big data analysis in terms of efficiency and scalability. It is
vital those big data solutions are multithreaded and that data access approaches be
precisely tailored to large volumes of semi-structured/unstructured data.
The MapReduce programming framework uses two tasks common in functional
programming: Map and Reduce. MapReduce is a new parallel processing framework
and Hadoop is its open-source implementation on a single computing node or on
clusters. Compared with existing parallel processing paradigms (e.g. grid computing
and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages:
1) fault-tolerant storage resulting in reliable data processing by replicating the
computing tasks, and cloning the data chunks on different computing nodes across
the computing cluster; 2) high-throughput data processing via a batch processing
framework and the Hadoop distributed file system (HDFS). Data are stored in the
HDFS and made available to the slave nodes for computation.
In this paper, we review the existing applications of the MapReduce programming
framework and its implementation platform Hadoop in clinical big data and related
medical health informatics fields. The usage of MapReduce and Hadoop on a
distributed system represents a significant advance in clinical big data processing
and utilization, and opens up new opportunities in the emerging era of big data
analytics. The objective of this paper is to summarize the state-of-the-art efforts in
clinical big data analytics and highlight what might be needed to enhance the
outcomes of clinical big data analytics tools. This paper is concluded by summarizing
the potential usage of the MapReduce programming framework and Hadoop
platform to process huge volumes of clinical data in medical health informatics
related fields.
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Introduction
Big data is the term used to describe huge datasets having the “4 V” definition: volume,

variety, velocity and value (e.g. medical images, electronic medical records (EMR),

biometrics data, etc.). Such datasets present problems with storage, analysis, and

visualization [1,2]. To deal with these challenges, new software programming

frameworks to multithread computing tasks have been developed [2-4]. These

programming frameworks are designed to get their parallelism not from a supercomputer,

but from computing clusters: large collections of commodity hardware, including

conventional processors (computing nodes) connected by Ethernet cables or inexpensive

switches. These software programming frameworks begin with a new form of file system,

known as a distributed file system (DFS) [3,4], which features much larger units than the

disk blocks in a conventional operating system. DFS also provides replication of data or

redundancy to protect against the frequent media failures that occur when data is

distributed over potentially thousands of low cost computing nodes [3]. The goal

of this review is to summarize the potential and expanding usage of MapReduce

on top of the Hadoop platform in the processing of clinical big data. A secondary

objective is to highlight the potential benefits of predictive and prescriptive clinical big

data analytics. These types of analytics are needed for better usage and optimization of

resources [5,6].
Types of analytics

Analytics is a term used to describe various goals and techniques of processing a

dataset.

There are three types of analytics:

1- Descriptive analytics: is a process to summarize the dataset under investigation. It

may be used to generate standard reports that might be useful to address questions

like “What happened? What is the problem? What actions are needed?”

2- Predictive analytics: descriptive analytics, unfortunately do not tell anything about

the future, that is the reason predictive analytics is needed. Predictive analytics

utilize statistical models of the historical datasets to predict the future. Predictive

analytics are useful to answer questions like “Why is this happening? What will

happen next?”. The predictive ability is dependent on the goodness of fit of the

statistical model [6].

3- Prescriptive analytics: are the type of analytics that help in utilizing different

scenarios of the data model (i.e. multi-variables simulation, detecting hidden

relationships between different variables). It is useful to answer questions like

“What will happen if this scenario of resource utilization is used? What is the best

scenario?”. Prescriptive analytics are generally used in optimization problems and

require sophisticated algorithms to find the optimum solution and therefore are less

widely used in some fields (i.e. clinical big data analytics).
This paper summarizes the efforts in clinical big data analytics which currently

entirely focus on descriptive and predictive analytics. This in turn is followed by a

discussion of leveraging clinical big data for analytical advantages and highlighting



Mohammed et al. BioData Mining 2014, 7:22 Page 3 of 23
http://www.biodatamining.org/content/7/1/22
the potential importance of prescriptive analytics with potential applications that

might arise from these types of analyses. (See section on Clinical big data and

upcoming challenges).

High Performance Computing (HPC) systems

Distributed system

A distributed system [3] is a setup in which several independent computers (computing

nodes) participate in solving the problem of processing a large volume of and variety of

structured/semi-structured/unstructured data.

Grid computing system

The grid computing system [7] is a way to utilize resources (e.g. CPUs, storage of

computer systems across a worldwide network, etc.) to function as a flexible,

pervasive, and inexpensive accessible pool of computing resources that can be used

on demand by any task.

Graphical processing unit (GPU)

GPU computing [8] is well adapted to the throughput-oriented workload problems that

are characteristic of large-scale data processing. Parallel data processing can be handled

by GPU clusters [9]. However, implementing MapReduce on a cluster of GPUs has

some limitations [10]. For example GPUs have difficulty communicating over a

network. Moreover GPUs cannot handle virtualization of resources. Furthermore

the system architecture of GPUs may not be suitable for the MapReduce architecture and

may require a great deal of modification [9].

The basic differences between grid computing and distributed computing systems

are:

1. A distributed computing system manages hundreds or thousands of computer

systems, which are limited in processing resources (e.g. memory, CPU, storage,

etc.). However the grid computing system is concerned about efficient usage of

heterogeneous systems with optimal workload management servers, networks,

storage, etc.

2. A grid computing system is dedicated to support computation across a variety of

administrative domains, which makes it different from the traditional distributed

computing system.

Distributed file systems

Most computing is done on a single processor, with its main memory, cache, and local

disk (a computing node). In the past, applications that called for parallel processing,

such as large scientific calculations, were done on special-purpose parallel computers

with many processors and specialized hardware [2,3]. However, the prevalence of

large-scale Web services has resulted in more computing being done on installations with

thousands of computing nodes operating more or less independently [3,4]. In these

installations, the computing nodes are commodity hardware, which greatly reduces

the cost compared to special-purpose parallel machines [3]. These new computing

facilities have given rise to a new generation of programming frameworks. These
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frameworks take advantage of the power of parallelism and at the same time avoid

the reliability problems that arise when the computing hardware consists of thousands of

independent components, any of which could fail at any time [2]. Figure 1 shows a

Hadoop cluster with its distributed computing nodes and connecting Ethernet switch.

The cluster runs jobs controlled by the master node, which is known as the NameNode

and it is responsible for chunking the data, cloning it, sending the data to the distributed

computing nodes (DataNodes), monitoring the cluster status, and collecting/aggregating

the results. The cluster illustrated in Figure 1 is currently installed in the Department of

Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory

Services (CLS), Calgary, Alberta, Canada.
The MapReduce programming framework

On top of the DFS, many different higher-level programming frameworks have been

developed. The most commonly implemented programming framework is the MapReduce

framework [4,11,12]. MapReduce is an emerging programming framework for

data-intensive applications proposed by Google. MapReduce borrows ideas from

functional programming [12], where the programmer defines Map and Reduce

tasks to process large sets of distributed data.

Implementations of MapReduce [11] enable many of the most common calculations

on large-scale data to be performed on computing clusters efficiently and in a way that

is tolerant of hardware failures during computation. However MapReduce is not suitable

for online transactions [11,12].

The key strengths of the MapReduce programming framework are the high

degree of parallelism combined with the simplicity of the programming framework

and its applicability to a large variety of application domains [4,11]. This requires

dividing the workload across a large number of machines. The degree of parallelism

depends on the input data size. The map function processes the input pairs (key1, value1)

returning some other intermediary pairs (key2, value2). Then the intermediary pairs are

grouped together according to their key. The reduce function will output some

new key-value pairs of the form (key3, value3). Figure 2 shows an example of a
Figure 1 The architecture of the Hadoop cluster. Hadoop cluster architecture, showing the distributed
computing nodes, which are Master node (NameNode), Slave Nodes (DataNode), and the Ethernet switch.



Figure 2 The WordCount problem MapReduce algorithm workflow. The algorithm counts the number
of occurrences for every word in the file. The file is chunked and distributed over the computing nodes in
the cluster. The mapper must be completed to start the reducer phase, otherwise an error will be reported
and the execution will be stopped.
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MapReduce algorithm used to count words in a file. In this example the map input

key is the provided data chunk with a value of 1. The map output key is the word

itself and the value is 1 every time the word exists in the processed data chunk.

The reducers perform the aggregation of the key-values pair output from the maps

and output a single value for every key, which in this case is a count for every

word. Figure 2 provides further explanation of the generation of the key-value pairs

produced during the processing phases of the WordCount MapReduce program.

High performance is achieved by breaking the processing into small units of work

that can be run in parallel across potentially hundreds or thousands of nodes in the

cluster. Programs written in this functional style are automatically parallelized and

executed on a large cluster of commodity machines. This allows programmers

without any experience with parallel and distributed systems to easily utilize the

resources of a large distributed system [3,4].

MapReduce programs are usually written in Java; however they can also be coded in

languages such as C++, Perl, Python, Ruby, R, etc. These programs may process data

stored in different file and database systems.
The hadoop platform

Hadoop [13-15] is an open source software implementation of the MapReduce framework

for running applications on large clusters built of commodity hardware from Apache [16].

Hadoop is a platform that provides both distributed storage and computational capabilities.

Hadoop was first comprehended to fix a scalability issue that existed in Nutch [15,17], an

open source crawler and search engine that utilizes the MapReduce and big-table [17]

methods developed by Google. Hadoop is a distributed master–slave architecture that

consists of the Hadoop Distributed File System (HDFS) for storage and the MapReduce

programming framework for computational capabilities. The HDFS stores data on the

computing nodes providing a very high aggregate bandwidth across the cluster.

Traits inherent to Hadoop are data partitioning and parallel computation of large

datasets. Its storage and computational capabilities scale with the addition of computing



Mohammed et al. BioData Mining 2014, 7:22 Page 6 of 23
http://www.biodatamining.org/content/7/1/22
nodes to a Hadoop cluster, and can reach volume sizes in the petabytes on clusters with

thousands of nodes.

Hadoop also provides Hive [18,19] and Pig Latin [20], which are high-level languages

that generate MapReduce programs. Several vendors offer open source and commercially

supported Hadoop distributions; examples include Cloudera [21], DataStax [22],

Hortonworks [23] and MapR [24]. Many of these vendors have added their own

extensions and modifications to the Hadoop open source platform.

Hadoop differs from other distributed system schemes in its philosophy toward data.

A traditional distributed system requires repeat transmissions of data between clients

and servers [3]. This works fine for computationally intensive work, but for data-intensive

processing, the size of data becomes too large to be moved around easily. Hadoop focuses

on moving code to data instead of vice versa [13,14]. The client (NameNode) sends

only the MapReduce programs to be executed, and these programs are usually

small (often in kilobytes). More importantly, the move-code-to-data philosophy applies

within the Hadoop cluster itself. Data is broken up and distributed across the cluster, and

as much as possible, computation on a chunk of data takes place on the same machine

where that chunk of data resides.

Figure 3 shows the Hadoop ecosystems, the associated technology, and the current

distribution existing in the market. Table 1 shows the basic features of 14 Hadoop

distributions [25] and Table 2 shows the related Hadoop projects/ecosystems that are

used on top of the Hadoop to provide my functionalities to the MapReduce framework.
Figure 3 The Hadoop ecosystems. The Hadoop system core, components (ecosystems), associated
technology, and different distributions by vendors. This Figure illustrates the current Hadoop ecosystem and
a short list of the available distributions by vendors.



Table 1 Basic features of 14 Hadoop distributions and related download links

Vendor Features Download URL

Amazon Web
Services Inc

• Amazon Elastic Block Store http://aws.amazon.com/

• Amazon Virtual Private Cloud

• GPU Instances

• High Performance Computing (HPC) Cluster

IBM Corp • Social and Machine Data Analytics Accelerator http://www-03.ibm.com/software/products/
en/infobigienteedit/

• Provides a workload scheduler

• Includes Jaql, a declarative query language.

• Allows executing R jobs directly from the
BigInsights web console.

Pivotal Corp • A Fast, Proven SQL Database Engine for
Hadoop

http://www.gopivotal.com/products/
pivotal-hd

• Enterprise Real-Time Data Service on Hadoop

• Familiar SQL Interface

• Hadoop In the Cloud: Pivotal HD Virtualized
by VMware

Cloudera Inc • HDFS Snapshots http://www.cloudera.com/content/
cloudera/en/products-and-services/
cloudera-enterprise.html• Support for running Hadoop on Microsoft

Windows

• YARN API stabilization

• Binary Compatibility for MapReduce
applications built on hadoop-1.x

MapR
Technologies Inc

• Finish small jobs quickly with MapR
ExpressLane

http://www.mapr.com/products/only-
with-mapr

• Enable atomic, consistent point-in-time
recovery with MapR Snapshots

Hortonworks Inc • Use rich business intelligence (BI) tools
such as Microsoft Excel, PowerPivot for
Excel and Power View

http://hortonworks.com/products/hdp/

• HDP for Windows is the ONLY Hadoop
distribution available for Windows Server.

Karmasphere Inc • Ability to Use Existing SAS, SPSS and R
Analytic Models

http://www.karmasphere.com/product-
overview/key-features/

Hadapt Inc • Analyze both structured and unstructured
data in a single, unified platform

http://hadapt.com/product/

Super Micro
Computer Inc

• Fully-validated, pre-configured SKUs optimized
for Hadoop solutions

http://www.supermicro.com/products/rack/
hadoop.cfm

Pentaho Corp • Visual development for Hadoop data
preparation and modeling

http://www.pentahobigdata.com/
ecosystem/platforms/hadoop

Zettaset Inc • Enterprise-Grade Hadoop Cluster
Management

http://www.zettaset.com/platform.php

Datastax Inc • Powered by Apache Cassandra™, Certified
for Production

http://www.datastax.com/what-we-offer/
products-services/datastax-enterprise/
apache-hadoop

Datameer Inc • Data Integration, Analytics, and Visualization http://www.datameer.com/

Dell Inc • Cloudera distribution for Hadoop http://www.dell.com/learn/us/en/555/
solutions/hadoop-big-dataSolution?
c=us&l=en&s=biz&cs=555
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Relevant literature cited in this paper related to “MapReduce, Hadoop, clinical data,

and biomedical/bioinformatics applications of MapReduce” was obtained from

PubMed, IEEEXplore, Springer, and BioMed Central databases. The MapReduce

http://aws.amazon.com/
http://www-03.ibm.com/software/products/en/infobigienteedit/
http://www-03.ibm.com/software/products/en/infobigienteedit/
http://www.gopivotal.com/products/pivotal-hd
http://www.gopivotal.com/products/pivotal-hd
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise.html
http://www.mapr.com/products/only-with-mapr
http://www.mapr.com/products/only-with-mapr
http://hortonworks.com/products/hdp/
http://www.karmasphere.com/product-overview/key-features/
http://www.karmasphere.com/product-overview/key-features/
http://hadapt.com/product/
http://www.supermicro.com/products/rack/hadoop.cfm
http://www.supermicro.com/products/rack/hadoop.cfm
http://www.pentahobigdata.com/ecosystem/platforms/hadoop
http://www.pentahobigdata.com/ecosystem/platforms/hadoop
http://www.zettaset.com/platform.php
http://www.datastax.com/what-we-offer/products-services/datastax-enterprise/apache-hadoop
http://www.datastax.com/what-we-offer/products-services/datastax-enterprise/apache-hadoop
http://www.datastax.com/what-we-offer/products-services/datastax-enterprise/apache-hadoop
http://www.datameer.com/
http://www.dell.com/learn/us/en/555/solutions/hadoop-big-dataSolution?c=us&l=en&s=biz&cs=555
http://www.dell.com/learn/us/en/555/solutions/hadoop-big-dataSolution?c=us&l=en&s=biz&cs=555
http://www.dell.com/learn/us/en/555/solutions/hadoop-big-dataSolution?c=us&l=en&s=biz&cs=555
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programming framework was first introduced to industry in 2006. And thus the

literature search concentrated on 2007 to 2014. A total of 32 articles were found

based on the use of the MapReduce framework to process the clinical big data and

its application using the Hadoop platform.

Review
In this review we start by listing the different types of big clinical datasets, followed by

the efforts that are developed to leverage the data for analytical advantages. These

advantages are mainly focused on descriptive and predictive analytics. The major

reason for using the MapReduce programming framework in the reviewed efforts is to

speed up these kind of analytics. This is due the fact that these kinds of analytic

algorithms are very well developed and tested for the MapReduce framework and the

Hadoop platform can handle a huge amount of data [11] in a small amount of time.

The prescriptive analytics require data sharing among computing nodes, which

unfortunately cannot be achieved easily (i.e. sophisticated programs with a great deal of

data management) using MapReduce, and thus, not all optimization problems (i.e.

prescriptive analytics) can be implemented on the MapReduce framework.

The review section is followed by a challenges and future trends section that

highlights the use of the MapReduce programming framework and its open source

implementation Hadoop for processing clinical big data. This is followed by our

perspective and use cases on how to leverage clinical big data for novel analytics.

Clinical big data analysis

The exponential production of data in recent years has introduced a new area in the

field of information technology known as ‘Big Data’. In a clinical setting such datasets

are emerging from large-scale laboratory information system (LIS) data, test utilization

data, electronic medical record (EMR), biomedical data, biometrics data, gene expression

data, and in other areas. Massive datasets are extremely difficult to analyse and query

using traditional mechanisms, especially when the queries themselves are quite

complicated. In effect, a MapReduce algorithm maps both the query and the dataset

into constituent parts. The mapped components of the query can be processed

simultaneously – or reduced – to rapidly return results.

Big datasets of clinical, biomedical, and biometric data have been processed successfully

using the MapReduce framework on top of the Hadoop distributed file system.

An overview of the Hadoop platform, MapReduce framework and its current

applications [26,27] has been reported for the field of bioinformatics. The promise

of big data analytics in bioinformatics and health care in general has previously

been described [5]. However our review enlarges the scope to the application of

the MapReduce framework and its open source implementation Hadoop to a wide

range of clinical big data including:

1. Publicly available clinical datasets: online published datasets and reports from the

United States Food and Drug Administration (FDA) [28].

2. Biometrics datasets: containing measurable features related to human

characteristics. Biometrics data is used as a form of identification and access

control [29].



Table 2 Description of the Hadoop related projects/ecosystems

Hadoop related project
and technology

Description Download URL

Avro • Avro is a framework for performing remote
procedure calls and data serialization.

avro.apache.org

Flume • Flume is a tool for harvesting, aggregating and
moving large amounts of log data in and out of
Hadoop.

flume.apache.org

HBase • Based on Google’s Bigtable, HBase is an
open-source, distributed, versioned,
column-oriented store that sits on top of
HDFS. HBase is column-based rather than
row-based, which enables high-speed
execution of operations performed over
similar values across massive datasets.

hbase.apache.org

HCatalog • An incubator-level project at Apache,
HCatalog is a metadata and table storage
management service for HDFS.

Incubator.apache.org/hcatalog/

Hive • Hive provides a warehouse structure and
SQL-like access for data in HDFS and other
Hadoop input sources

hive.apache.org

Mahout • Mahout is a scalable machine-learning and
data mining library.

mahout.apache.org

Oozie • Oozie is a job coordinator and workflow
manager for jobs executed in Hadoop, which
can include non-MapReduce jobs.

oozie.apache.org

Pig • Pig is a framework consisting of a high-level
scripting language (Pig Latin) and a run-time
environment that allows users to execute
MapReduce on a Hadoop cluster.

http://pig.apache.org/docs/r0.7.0/
piglatin_ref2.html

Sqoop • Sqoop (SQL-to-Hadoop) is a tool which
transfers data in both directions between
relational systems and HDFS or other
Hadoop data stores, e.g. Hive or HBase.

sqoop.apache.org

ZooKeeper • ZooKeeper is a service for maintaining
configuration information, naming, providing
distributed synchronization and providing group
services.

zookeeper.apache.org

YARN • YARN is a resource-management platform
responsible for managing compute resources
in clusters and using them for scheduling of
users’ applications.

http://hadoop.apache.org/docs/
r2.3.0/hadoop-yarn/hadoop-
yarn-site/YARN.html

Cascading • Cascading is an alternative API to Hadoop
MapReduce. Cascading now has support for
reading and writing data to and from a HBase
cluster.

http://wiki.apache.org/hadoop/
Hbase/Cascading

Twitter Storm • Twitter Storm is a free and open source
distributed real time computation system.

http://storm.incubator.apache.org/

High performance
computing cluster (HPCC)

• HPCC is an open source, data-intensive
computing system platform developed by
LexisNexis Risk Solutions

http://hpccsystems.com/

Dremel • Dremel is a scalable, interactive ad-hoc query
system for analysis of read-only nested data

http://research.google.com/pubs/
pub36632.html

Mohammed et al. BioData Mining 2014, 7:22 Page 9 of 23
http://www.biodatamining.org/content/7/1/22
3. Bioinformatics datasets: biological data of a patient (e.g. protein structure, DNA

sequence, etc.).

4. Biomedical signal datasets: data resulting from the recording of vital

signs of a patient (e.g. electrocardiography (ECG), electroencephalography

(EEG), etc.).

http://avro.apache.org
http://flume.apache.org
http://hbase.apache.org
http://Incubator.apache.org/hcatalog/
http://hive.apache.org
http://mahout.apache.org
http://oozie.apache.org
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://sqoop.apache.org
http://zookeeper.apache.org
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/YARN.html
http://wiki.apache.org/hadoop/Hbase/Cascading
http://wiki.apache.org/hadoop/Hbase/Cascading
http://storm.incubator.apache.org/
http://hpccsystems.com/
http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
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5. Biomedical image datasets: data resulting from the scanning of medical images

(e.g. ultrasound imaging, magnetic resonance imaging (MRI), histology images, etc.).

Moreover, our review presents a detailed discussion about the various types of clinical

big data, challenges and consequences relevant to the application of big data analytics

in a health care facility. This review is concluded with the future potential applications

of the MapReduce programming framework and the Hadoop platform applied to

clinical big data.
Public databases

A MapReduce-based algorithm [30] has been proposed for common adverse drug event

(ADE) detection and has been tested in mining spontaneous ADE reports from the

United States FDA. The purpose of this algorithm was to investigate the possibility of

using the MapReduce framework to speed up biomedical data mining tasks using this

pharmacovigilance case as one specific example. The results demonstrated that the

MapReduce programming framework could improve the performance of common

signal detection algorithms for pharmacovigilance [30] in a distributed computation

environment at approximately linear speedup rates. The MapReduce distributed

architecture and high dimensionality compression via Markov boundary feature

selection [31] have been used to identify unproven cancer treatments on the World

Wide Web. This study showed that unproven treatments used distinct language to

market their claims and this language was learnable, and through distributed

parallelization and state of the art feature selection [32], it is possible to build and

apply models with large scalability.

A novel system known as GroupFilterFormat [33] has been developed to handle the

definition of field content based on a Pig Latin script [20]. Dummy discharge summary

data for 2.3 million inpatients and medical activity log data for 950 million events were

processed. The response time was significantly reduced and a linear relationship was

observed between the quantity of data and processing time in both a small and a very

large dataset. The results show that doubling the number of nodes resulted in a 47%

decrease in processing time.
Biometrics

The MapReduce programming framework has also been used to classify biometric

measurements [34] using the Hadoop platform for face matching, iris recognition, and

fingerprint recognition. A biometrics prototype system [35] has been implemented for

generalized searching of cloud-scale biometric data and matching a collection of

synthetic human iris images. A biometric-capture mobile phone application has

been developed for secure access to the cloud [36]. The biometric capture and recognition

are performed during a standard Web session. The Hadoop platform is used to establish

the connection between a mobile user and the server in the cloud.
Bioinformatics: genome and protein big data analysis

The large datasets stemming from genomic data are particularly amenable to analysis

by distributed systems. A novel and efficient tag for single-nucleotide polymorphism
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(SNP) selection algorithms has been proposed using the MapReduce framework [37]. A

genome sequence comparison algorithm [38] has been implemented on top of

Hadoop while relying on HBase [39] for data management and MapReduce jobs

for computation. The system performance has been tested with real-life genetic

sequences on the level of single genes as well as artificially generated test sequences [38].

While the initial test runs clearly illustrated the feasibility of the approach, more work is

needed to improve the applicability of the solution. Moreover additional tuning of the

local Hadoop configuration towards the genome comparison is expected to yield

additional performance benefits. A bioinformatics processing tool known as BioPig has

been built on the Apache’s Hadoop system and the Pig Latin data flow language [40].

Compared with traditional algorithms, BioPig has three major advantages: first, BioPig

programmability reduces development time for parallel bioinformatics applications;

second, testing BioPig with up to 500 GB sequences demonstrates that it scales

automatically with the size of data; and finally, BioPig can be ported without modification

on many Hadoop infrastructures, as tested with the Magellan system at the National

Energy Research Scientific Computing Center (NERSC [41]) and the Amazon Elastic

Compute Cloud [42]. Chang et al. [43] have developed a distributed genome assembler

based on string graphs and the MapReduce framework, known as the CloudBrush. The

assembler includes a novel edge-adjustment algorithm to detect structural defects by

examining the neighbouring areas of a specific read for sequencing errors and adjusting

the edges of the string graph. McKenna et al. [44] presented a sequence database

search engine that was specifically designed to run efficiently on the Hadoop

distributed computing platform. The search engine implemented the K-score algorithm

[45], generating comparable output for the same input files as the original implementation

for mass spectrometry based proteomics. A parallel protein structure alignment algorithm

has also been proposed based on the Hadoop distributed platform [46]. The authors

analysed and compared the structure alignments produced by different methods

using a dataset randomly selected from the Protein Data Bank (PDB) database [19].

The experimental results verified that the proposed algorithm refined the resulting

alignments more accurately than existing algorithms. Meanwhile, the computational

performance of the proposed algorithm was proportional to the number of processors

used in the cloud platform. The implementation of genome-wide association study

(GWAS) statistical tests in the R programming language has been presented in the form

of the BlueSNP R package [47], which executes calculations across clusters configured

with Hadoop. An efficient algorithm for DNA fragment assembly in the MapReduce

framework has been proposed [48]. The experimental results show that the parallel

strategy can effectively improve the computational efficiency and remove the memory

limitations of the assembly algorithm based on the Euler super path [49]. Next generation

genome software mapping has been developed for SNP discovery and genotyping [50].

The software is known as Cloudburst and it is implemented on top of the Hadoop

platform for the analysis of next generation sequencing data. Performance comparison

studies have been conducted between a message passing interface (MPI) [51], Dryad [52],

and a Hadoop MapReduce programming framework for measuring relative performance

using three bioinformatics applications [53]. BLAST and gene set enrichment analysis

(GSEA) algorithms have been implemented in Hadoop [54] for streaming computation

on large data sets and a multi-pass computation on relatively small datasets. The results
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indicate that the framework could have a wide range of bioinformatics applications while

maintaining good computational efficiency, scalability, and ease of maintenance.

CloudBLAST [55], a parallelized version of the NCBI BLAST2 algorithm [56] is

implemented using Hadoop. The results were compared against the available version of

mpiBLAST [57], which is an earlier parallel version of BLAST. CloudBLAST showed

better performance and was considered simpler than mpiBLAST. The Hadoop platform

has been used for multiple sequence alignment [58] using HBase.

The reciprocal smallest distance (RSD) algorithm for gene sequence comparison has

been redesigned to run with EC2 cloud [42]. The redesigned algorithm used ortholog

calculations across a wide selection of fully sequenced genomes. They ran over 300,000

RSD process using the MapReduce framework on the EC2 cloud running on 100

high capacity computing nodes. According to their results, MapReduce provides a

substantial boost to the process.

Cloudgene [59] is a freely available platform to improve the usability of MapReduce

programs in bioinformatics. Cloudgene is used to build a standardized graphical execution

environment for currently available and future MapReduce programs, which can be

integrated by using its plug-in interface. The results show that MapReduce programs can

be integrated into Cloudgene with little effort and without adding any computational

overhead to existing programs. Currently, five different bioinformatics programs using

MapReduce and two systems are integrated and have been successfully deployed [59].

Hydra is a genome sequence database search engine that is designed to run on top of

the Hadoop and MapReduce distributed computing framework [60]. It implements the

K-score algorithm [45] and generates comparable output for the same input files as the

original implementation. The results show that the software is scalable in its ability to

handle a large peptide database.

A parallel version of the random forest algorithm [61] for regression and genetic

similarity learning tasks has been developed [62] for large-scale population genetic

association studies involving multivariate traits. It is implemented using MapReduce

programming framework on top of Hadoop. The algorithm has been applied to a

genome-wide association study on Alzheimer disease (AD) in which the quantitative

characteristic consists of a high-dimensional neuroimaging phenotype describing

longitudinal changes in human brain structure and notable speed-ups in the processing

are obtained.

A solution to sequence comparison that can be thoroughly decomposed into multiple

rounds of map and reduce operations has been proposed [63]. The procedure described

is an effort in decomposition and parallelization of sequence alignment in prediction of

a volume of genomic sequence data, which cannot be processed using sequential

programming methods.

Nephele is a suite of tools [64] that uses the complete composition vector algorithm

[65] to represent each genome sequence in the dataset as a vector derived from its

constituent. The method is implemented using the MapReduce framework on top of the

Hadoop platform. The method produces results that correlate well with expert-defined

clades at a fraction of the computational cost of traditional methods [64]. Nephele was

able to generate a neighbor-joined tree of over 10,000 16S samples in less than 2 hours.

A practical framework [66] based on MapReduce programming framework is

developed to infer large gene networks, by developing and parallelizing a hybrid
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genetic algorithm particle swarm optimization (GA-PSO) method [67]. The authors

use the open-source software GeneNetWeaver to create the gene profiles. The

results show that the parallel method based on the MapReduce framework can be

successfully used to gather networks with desired behaviors and the computation

time can be reduced.

A method for enhancement of accuracy and efficiency for RNA secondary structure

prediction by sequence segmentation and MapReduce has been implemented [68]. The

results show that by using statistical analysis implemented using the MapReduce

framework, the inversion-based chunking methods can outperform predictions

using the whole sequence.

Rainbow [69] is a cloud-based software package that can assist in the automation of

large-scale whole-genome sequencing (WGS) data analyses to overcome the limitations

of Crossbow [70], which is a software tool that can detect SNPs WGS data from a

single subject. The performance of Rainbow was evaluated by analyzing 44 different

whole-genome-sequenced subjects. Rainbow has the capacity to process genomic

data from more than 500 subjects in two weeks using cloud computing provided

by the Amazon Web Service.

Mercury [71] is an automated, flexible, and extensible analysis workflow that provides

accurate and reproducible genomic results at scales ranging from individuals to large

partners. Moreover, Mercury can be deployed on local clusters and the Amazon Web

Services cloud via the DNAnexus platform.
Biomedical signal analysis

The parallel ensemble empirical mode decomposition (EEMD) algorithm [72] has been

implemented on top of the Hadoop platform in a modern cyber infrastructure [73].

The algorithm described a parallel neural signal processing with EEMD using the

MapReduce framework. Test results and performance evaluation show that parallel

EEMD can significantly improve the performance of neural signal processing. A novel

approach has been proposed [39] to store and process clinical signals based on the

Apache HBase distributed column-store and the MapReduce programming framework

with an integrated Web-based data visualization layer.
Biomedical image analysis

The growth in the volume of medical images produced on a daily basis in modern

hospitals has forced a move away from traditional medical image analysis and

indexing approaches towards scalable solutions [74]. MapReduce has been used to

speed up and make possible three large–scale medical image processing use–cases: (1)

parameter optimization for lung texture classification using support vector machines

(SVM), (2) content–based medical image indexing/retrieval, and (3) dimensional

directional wavelet analysis for solid texture classification [75]. A cluster of heterogeneous

computing nodes was set up using the Hadoop platform allowing for a maximum of 42

concurrent map tasks. The majority of the machines used were desktop computers that

are also used for regular office work. The three use–cases reflect the various challenges of

processing medical images in different clinical scenarios.
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An ultrafast and scalable cone-beam computed tomography (CT) reconstruction

algorithm using MapReduce in a cloud-computing environment has been proposed

[76]. The algorithm accelerates the Feldcamp-Davis-Kress (FDK) algorithm [77] by

porting it to a MapReduce implementation. The map functions were used to filter

and back-project subsets of projections, and reduce functions to aggregate that partial

back-projection into the whole volume. The speed up of reconstruction time was found

to be roughly linear with the number of nodes employed.

Table 3 includes a summary of the discussed literature on clinical big data analysis

using the MapReduce programming framework. It tabulates the studies referenced

in this paper grouped by relevant categories to indicate the following fields: study

name, year, and technology used, and potential application of the algorithm or the

technology used.
Challenges and future trends
Challenges and consequences

Health care systems in general suffer unsustainable costs and lack data utilization [78].

Therefore there is a pressing need to find solutions that can reduce unnecessary costs.

Advances in health quality outcomes and cost control measures depend on using the

power of large integrated databases to underline patterns and insights. However, there

is much less certainty on how this clinical data should be collected, maintained,

disclosed, and used. The problem in health care systems is not the lack of data, it is the

lack of information that can be utilized to support critical decision-making [79]. This

presents the following challenges to big data solutions in clinical facilities:

1- Technology straggling. Health care is resistant to redesigning processes and

approving technology that influences the health care system [80].

2- Data dispersion. Clinical data is generated from many sources (e.g. providers, labs,

data vendors, financial, regulations, etc.) this motivates the need for data integration

and maintaining mechanism to hold the data into a flexible data warehouse.

3- Security concerns and privacy issues. There are lots of benefits from sharing clinical

big data between researchers and scholars, however these benefits are constricted

due to the privacy issues and laws that regulate clinical data privacy and access [81].

4- Standards and regulations. Big data solution architectures have to be flexible and

adoptable to manage the variety of dispersed sources and the growth of standards

and regulations (e.g. new encryption standards that may require system architecture

modifications) that are used to interchange and maintain data [82].
An outlook for the future

Big Data has a substantial potential to unlock the whole health care value chain [83].

Big data analytics changed the traditional perspective of health care systems from finding

new drugs to patient-central health care for better clinical outcomes and increased

efficiency. The future applications of big data in the health care system have the potential

of enhancing and accelerating interactions among clinicians, administrators, lab directors,

logistic mangers, and researchers by saving costs, creating better efficiencies based on

outcome comparison, reducing risks, and improving personalized care.
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Study category Study Name/Reference Study
year

Technology used Application

Public database A drug-adverse event extraction algorithm to support pharmacovigilance
knowledge mining from PubMed citations/[30]

2011 A MapReduce based algorithm for
common adverse drug events (ADE)
detection

Biomedical data mining

Identifying unproven cancer treatments on the health web: Addressing
accuracy, generalizability and scalability/[31]

2012 Using MapReduce and Markove
boundary feature selection

Identify unproven cancer
treatments on the health web

A user-friendly tool to transform large scale administrative data into wide
table format using a MapReduce program with a pig latin based script/[33]

2012 MapRedcue and Pig Latin Administrative data management

Biometric Leveraging the cloud for big data biometrics: Meeting the performance
requirements of the next generation biometric systems/[34]

2011 MapReduce machine learning
algorithms for image regnition on
Hadoop paltform

Design of secuirty system using
biometric identification

Iris recognition on hadoop: A biometrics system implementation on cloud
computing/[35]

2011 Human iris MapReduce search
algorithm on the cloud

Data retrival and secuirty system

Cloud-ready biometric system for mobile security access/[36] 2012 MapReduce algorithm to capture
and recognition of biometric
information

Biometric-identification mobile
phone applications

Genome and Protein
data analysis

Parallelizing bioinformatics applications with MapReduce/[54] 2008 MapRedcue algorithms Bioinformatics applications

Cloudblast: Combining MapReduce and virtualization on distributed
resources for bioinformatics applications/[55]

2008 Cloud/MapReduce Bioinformatics applications

CloudBurst: highly sensitive read mapping with MapReduce/[50] 2009 MapRedcue algorithms Genome sequence mapping tool

Cloud technologies for bioinformatics applications/[53] 2009 Cloud/MapReduce Bioinformatics applications

The genome analysis toolkit: A MapReduce framework for analyzing
next-generation DNA sequencing data/[44]

2010 HBase for data management and
MapReduce jobs for computation

Genome sequence comparison
application

Nephele: genotyping via complete composition vectors and
MapReduce/[64]

2011 MapReduce Algorithms Genotyping sequence tool

A graphical execution platform for MapReduce programs on private
and public clouds/[59]

2012 Cloud/MapReduce Bioinformatics applications

Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed
computing framework/[60]

2012 MapReduce Algorithms Bioinformatics applications
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Table 3 Summary of reviewed research in clinical big data analysis using the MapReduce programming model (Continued)

An efficient algorithm for DNA fragment assembly in MapReduce/[48] 2012 MapReduce algorithm for DNA
framentation

A tool for DNA fragmentation
assembly

De novo assembly of high-throughput sequencing data with cloud
computing and new operations on string graphs/[43]

2012 String graph based on the
MapReduce algorithms

Distributed Genome assembler

Fractal MapReduce decomposition of sequence alignment/[63] 2012 MapReduce Algorithms Genome sequence alignment tool

Genotyping in the cloud with crossbow/[70] 2012 Cloud Genotyping application

BioPig: A hadoop-based analytic toolkit for large-scale sequence data [40] 2013 MapReduce algorithms Bioinformatics processing tool
known as BioPig

Implementation of a parallel protein structure alignment service on
cloud/[46]

2013 MapReduce alignment algorithm Protein alignment application

BlueSNP: R package for highly scalable genome-wide association studies
using hadoop clusters/[47]

2013 R alagorithms executed on top
of the Hadoop platform

Statistical package in R for Genome
analysis

Enhancement of accuracy and efficiency for RNA secondary structure
prediction by sequence segmentation and MapReduce/[68]

2013 MapReduce algorithms Enhanced algorithm

Rainbow: a tool for large-scale whole-genome sequencing data analysis
using cloud computing/[69]

2013 Cloud Whole-genome sequencing

Study Category Study Name/Reference Study
year

Technology used Application

Genome and Protein
data analysis

Random forests on Hadoop for genome-wide association studies of
multivariate neuroimaging phenotypes/[62]

2013 MapReduce Algorithms multivariate neuroimaging
phenotypes

Novel and efficient tag SNPs selection algorithms/[37] 2014 MapReduce algorithm for
efficient selection of SNP

Genom analysis

Designing a parallel evolutionary algorithm for inferring gene
networks on the cloud computing environment/[66]

2014 Cloud Algorithm for inferring gene
networks

Launching genomics into the cloud: deployment of Mercury, a
next generation sequence analysis pipeline/[71]

2014 Cloud sequence analysis application

Biomedical signal
analysis

HBase, MapReduce, and integrated data visualization for processing
clinical signal data/[39]

2011 HBase for data mangement and
MapReduce processing algorithm

Store and processing clinical signals

Parallel processing of massive EEG data with MapReduce/[73] 2012 MapReduce EEMD algorithm Massive biomedical signal processing
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Table 3 Summary of reviewed research in clinical big data analysis using the MapReduce programming model (Continued)

Biomedical image
analysis

Hadoop-gis: A high performance query system for analytical medical
imaging with MapReduce/[74]

2011 HBase for data management and
MapReduce processing algorithm

Store and processing of medical
images

Ultrafast and scalable cone-beam CT reconstruction using
MapReduce in a cloud computing environment [76]

2011 MapReduce image processing
algorithms on the Cloud

Accelerates FDK algorithm for the
cone-beam CT

Using MapReduce for Large-Scale Medical Image Analysis/[75] 2012 MapReduce algorithm Medical Image Analysis

The summary includes information related to the study (i.e. category, name, year, technology used, experiment design and potetial applications).
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The following is a list is of potential future applications associated with clinical big

data.

1- E-clinics, E-medicine, and similar case retrieval applications based on text analytics

applications.

Large amounts of health data is unstructured as documents, images, clinical or

transcribed notes [84]. Research articles, review articles, clinical references, and

practice guidelines are rich sources for text analytics applications that aim to discover

knowledge by mining these type of text data.

2- Genotyping applications.

Genomic data represent significant amounts of gene sequencing data and applications

are required to analysis and understand the sequence in regards to better understanding

of patient treatment.

3- Mining and analysis of biosensors applications.

Streamed data home monitoring, tele-health, handheld and sensor-based wireless are

well established data sources for clinical data.

4- Social media analytics applications.

Social media will increase the communication between patients, physician and

communities. Consequently, analytics are required to analyse this data to underline

emerging outbreak of disease, patient satisfaction, and compliance of patient to

clinical regulations and treatments.

5- Business and organizational modelling applications.

Administrative data such as billing, scheduling, and other non-health data

present an exponentially growing source of data. Analysing and optimizing this

kind of data can save large amounts of money and increase the sustainability of a

health care facility [78,79,83].

The aforementioned types of clinical data sources provide a rich environment for

research and give rise to many future applications that can be analysed for better

patient treatment outcomes and a more sustainable health care system.
Clinical big data and the upcoming challenges

Big data by itself usually confers little direct advantage, however analytics based on big

data can reveal many actionable insights that may prove useful in a clinical environment.

This section describe the potential benefits and highlight potential application to leverage

the clinical big data for analytical advantages using the MapReduce programming

framework and the Hadoop platform.
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Epilepsy affects nearly 70 Million people around the world [85], and is categorized by

the incident of extemporaneous seizures. Many medications can be given at high doses

to inhibit seizures [85,86], however patients often suffer side effects. Even after surgical

removal of epilepsy foci, many patients suffer extemporaneous seizures [86]. Seizure

prediction systems have the potential to help patients alleviate epilepsy episodes

[85,86]. Computational algorithms must consistently predict periods of increased

probability of seizure incidence. If the seizure states can be predicted and classified

using data mining algorithms, implementation of these algorithms on wearable devices

can warn patients of impending seizures. Patients could avoid potentially unsuitable

activities in potential seizures episode (e.g. driving and swimming). Seizure patterns

are wide and complex resulting in a massive datasets when digitally acquired.

MapReduce and Hadoop can be consciously used to train detection and forecasting

models. Simulation of different concurrently seizures pattern require the development of

complex distributed algorithms to deal with the massive datasets.

Understanding how the human brain functions is the main goal in neuroscience

research [87,88]. Non-invasive functional neuroimaging techniques, such as magneto

encephalography (MEG) [89], can capture huge time series of brain data activities.

Analysis of concurrent brain activities can reveal the relation between the pattern

of recorded signal and the category of the stimulus and may provide insights about the

brain functional foci (e.g. epilepsy, Alzheimer’s disease [90], and other neuro-pathologies,

etc.). Among the approaches to analyse the relation between brain activity and stimuli,

the one based on predicting the stimulus from the concurrent brain recording is called

brain decoding.

The brain contains nearly 100 billion neurons with an average of 7000 synaptic

connections each [87,88,91]. Tracing the neuron connections of the brain is therefore a

tedious process due to the resulting massive datasets. Traditional neurons visualization

methods cannot scale up to very large scale neuron networks. MapReduce framework and

Hadoop platform can be used to visualize and recover neural network structures from

neural activity patterns.

More than 44.7 million individuals in the United States are admitted to hospitals each

year [92]. Studies have concluded that in 2006 well over $30 billion was spent on

unnecessary hospital admissions [93]. To achieve the goal of developing novel algorithms

that utilize patient data claim to predict and prevent unnecessary hospitalizations. Claims

data analytics require text analytics, prediction and estimation models. The models must

be tuned to alleviate the potential risk of decline the admission of patients who need to be

hospitalized. This type of analysis is one application of fraud analysis in medicine.
Conclusions
An integrated solution eliminates the need to move data into and out of the storage

system while parallelizing the computation, a problem that is becoming more important

due to increasing numbers of sensors and resulting data. And, thus, efficient processing of

clinical data is a vital step towards multivariate analysis of the data in order to develop a

better understanding of a patient clinical status (i.e. descriptive and predictive analysis). This

highly demonstrates the significance of using the MapReduce programming model on top

of the Hadoop distributed processing platform to process the large volume of clinical data.
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Big data solutions [20-24,42] presents an evolution of clinical big data analysis

necessitated by the emergence of ultra-large-scale datasets. Recent developments in

open source software, that is, the Hadoop project and the associated software projects,

provide a backbone foundation for scaling to terabytes and petabytes data warehouses

on Linux clusters, providing fault-tolerant parallelized analysis on such data using

a programming framework named MapReduce.

The Hadoop platform and the MapReduce programming framework already

have a substantial base in the bioinformatics community, especially in the field of

next-generation sequencing analysis, and such use is increasing. This is due to

the cost-effectiveness of the Hadoop-based analysis on commodity Linux clusters,

and in the cloud via data upload to cloud vendors who have implemented

Hadoop/HBase; and due to the effectiveness and ease-of-use of the MapReduce

method in parallelization of many data analysis algorithms.

HDFS supports multiple reads and one write of the data. The write process can

therefore only append data (i.e. it cannot modify existing data within the file). HDFS

does not provide an index mechanism, which means that it is best suited to read-only

applications that need to scan and read the complete contents of a file (i.e. MapReduce

programs). The actual location of the data within an HDFS file is transparent to

applications and external software. And, thus, Software built on top of HDFS has

little control over data placement or knowledge of data location, which can make

it difficult to optimize performance.

Future work on big clinical data analytics should emphasize modelling of whole

interacting processes in a clinical setting (e.g. clinical test utilization pattern, test

procedures, specimen collection/handling, etc.). This indeed can be constructed

using inexpensive clusters of commodity hardware and the appropriate open

source tool (e.g. HBase, Hive, and Pig Latin see Table 2 for Hadoop related

projects/ecosystems description and definition) to construct convenient process-

ing tools for massive clinical data. These tools will form the basis of future

laboratory informatics applications as laboratory data are increasingly integrated

and consolidated.
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