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Abstract

Background: Genetic understanding of complex traits has developed immensely
over the past decade but remains hampered by incomplete descriptions of contribution
to phenotypic variance. Gene-environment (GxE) interactions are one of these
contributors and in the guise of diet and physical activity are important modulators of
cardiometabolic phenotypes and ensuing diseases.

Results: We mined the scientific literature to collect GxE interactions from 386
publications for blood lipids, glycemic traits, obesity anthropometrics, vascular measures,
inflammation and metabolic syndrome, and introduce CardioGxE, a gene-environment
interaction resource. We then analyzed the genes and SNPs supporting cardiometabolic
GxEs in order to demonstrate utility of GxE SNPs and to discern characteristics of these
important genetic variants. We were able to draw many observations from our extensive
analysis of GxEs. 1) The CardioGxE SNPs showed little overlap with variants identified by
main effect GWAS, indicating the importance of environmental interactions with genetic
factors on cardiometabolic traits. 2) These GxE SNPs were enriched in adaptation to
climatic and geographical features, with implications on energy homeostasis and
response to physical activity. 3) Comparison to gene networks responding to plasma
cholesterol-lowering or regression of atherosclerotic plaques showed that GxE genes
have a greater role in those responses, particularly through high-energy diets and fat
intake, than do GWAS-identified genes for the same traits. Other aspects of the
CardioGxE dataset were explored.

Conclusions: Overall, we demonstrate that SNPs supporting cardiometabolic GxE
interactions often exhibit transcriptional effects or are under positive selection. Still, not
all such SNPs can be assigned potential functional or regulatory roles often because data
are lacking in specific cell types or from treatments that approximate the environmental
factor of the GxE. With research on metabolic related complex disease risk embarking on
genome-wide GxE interaction tests, CardioGxE will be a useful resource.
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Background
Over the last decade, hundreds of genetic loci have been described as contributors to

complex traits and human diseases. Yet, often a large proportion of the heritability of

many traits remains ill defined. Contributors to phenotypic variance include: inability

of small sample sizes to detect variants with small effects, disease markers not in

complete linkage disequilibrium (LD) with the causal variant thus underestimating

heritability [1], heritability overestimation from family-based populations, rare or

“private” mutations [2,3], inherited patterns of epigenetic marks [4], epistasis (gene-gene

interactions) [5,6] and gene-environment (GxE) interactions [7,8]. Of these, the GxE has

drawn much attention in part because it describes a modifiable relationship between

genetic variation and changes in phenotype, one by which an individual can take action

with potential health benefits.

The cell and the organism as a whole are consistently challenged to maintain homeostasis

in the face of a wide array of stimuli or perturbations, both health-promoting and disease-

causing. To accomplish homeostasis, adjustments to molecular parameters must be enacted

that correspond to the stimulatory challenge, which typically includes altered protein

function or gene expression. This all amounts to continual changes to the phenotypes of

the cell or organism and it is the timeliness and efficiency of these phenotypic adjustments

that determine health and healthy aging. This process can be termed phenotypic flexibility,

a phenomenon which is a central concept of the gene-environment interaction [9]. A gene-

environment interaction refers to modification by an environmental factor of the effect of a

genetic variant on a phenotypic trait [10]. Environmental factors can include diet, dietary

components such as saturated fatty acids, physical activity, sedentary behavior, alcohol, or

sleep, among many others. Such GxE interactions can serve to modulate the adverse effects

of a risk allele, or can exacerbate the genotype-phenotype relationship and increase risk.

Additionally, environmental stimuli, acting over hundreds of generations, can promote

adaptation that is observed in current populations as affecting disease risk [11]. Importantly,

a complete catalog of GxEs for a given phenotype will provide the means whereby an indi-

vidual can adjust exposure to a particular environmental factor involved in GxE interactions

for the benefit of lessening disease risk according to a fixed genotype.

The genetic basis of transcription rates, particularly as responses to stimuli, and tran-

scription differences between individuals is now widely recognized as commonplace,

with important consequences on disease outcomes. Expression quantitative trait loci

(eQTL) are currently seen as one important source linking discovery of disease genes

to functional mechanisms that are the basis of complex traits [12]. Similarly, loci

supporting GxE interactions contribute to variance of complex traits in a manner

involving an environmental factor or stimulus and thus likely also represent response

eQTL. In addition, genetic variation in cardiometabolic traits results in part from

adaption to local environments [13]. Thus, genetic variants that have been subject to

positive selection, can interact with environmental factors, such as climate, diet, and

lifestyle, leading to increased risk in cardiometabolic diseases [13].

Our 2011 report cataloged 554 GxE interactions, 377 of which contained common

traits and environmental factors, that reached statistical significance and were pertinent

to nutrition, cardiovascular diseases, blood lipids and type 2 diabetes mined from 184

scientific reports [14]. We inventoried more GxEs for HDL-cholesterol as phenotype

and physical activity as modifying environmental factor than any other terms in the
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GxE equation. Overall, obesity anthropometrics was also a leading phenotype with body

mass index (BMI) predominating the significant obesity GxEs. As a result of increased

GxE reports, the objectives of the current study were to update our 2011 report and

show the broad utility of GxE interactions to population genetics and human disease

by comparing to other biomedical genomics data.
Methods
The description of literature mining and building this dataset has been described [14].

Briefly, articles available before September, 2013 were queried at PubMed or www.quertle.

info with search terms including genetic variation (e.g., SNP, variant, polymorphism),

“interaction,” or an environmental factor (e.g., diet, physical activity or exercise, alcohol,

sleep, tobacco/cigarette) and, after reading and manual parsing of the data, were incorpo-

rated into the update presented here. Specifically, data fields captured included SNPs tested

for GxE interactions, the assigned gene for the SNP, common aliases of the SNP, risk allele,

phenotype, modifying environmental factor, population ethnicity/origin and PubMed iden-

tifier. We excluded all reports on children and adolescents, and any GxE studies examining

non-alcoholic fatty liver disease and other phenotypes that are peripherally affiliated with

cardiometabolic dysfunction, including atrial fibrillation, cardiomyopathies and response to

lipid-lowering, glucose-homeostasis and other medications.

To demonstrate the utility of GxE SNPs within the CardioGxE dataset and interactions

they represent, and to offer insight into potential mechanisms of function, we performed

a series of comparisons to other biomedical genomics data. These comparisons to test for

enrichment included roles in main-effect associations to disease phenotypes, transcrip-

tional control (either via allele-specific expression, microRNA-mRNA interaction or

epigenetics), adaptation, and in maintaining metabolic homeostasis in a set of pertinent

tissues and cell types. To initiate these analyses, we created two separate SNP datasets

based on LD: one for GxE SNPs and another from genome-wide association studies

(GWAS) SNPs for the same cardiometabolic traits but not including any SNPs for which

there is GxE evidence. Genomic coordinates (dbSNP138) for the region spanning 300 kb

and centered on each SNP were determined. A bash shell script was written to retrieve

iteratively all 1000 Genomes Project SNP data (accessed 04/10/2014) within this region

from the CEU population using tabix and vcftools [15], pipe these data into Haploview

for LD analysis using a r2 ≥ 0.80, and return all variants contained in the LD block of the

input SNP [16]. These SNPs were used for further analysis. Significance of enrichment in

a comparison between two datasets was performed by two sample z-test.

Two measures of positive selection signals for GxE SNPs, integrated haplotype score

(iHS) [17] and global Fst, were acquired from data extracted from the 1000 Genome

Selection Browser 1.0 [18]. SNPs with |iHS| ≥ 2.0 [17], or Fst ≥0.5 [19] were considered

as subject to positive selection [17]. For the control, positive selection signals of a matched

set of SNPs of significant main effects, but without known GxE interaction, were also

obtained from the 1000 Genome Selection Browser 1.0. To determine the enrichment of

positive selection variants in GxE interactions, the Z-score test was conducted.

To determine if a GxE SNP or one in LD had evidence of cis or trans eQTL data, we

collected significant hits from 5 published eQTL experiments [20-24]. A Perl script was

written to search GxE SNPs against each list of significant eQTL hits.

http://www.quertle.info
http://www.quertle.info
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On the basis of our earlier microRNA (miR) target SNP database [25], we further

collected human SNPs that are potentially involved in miR targeting regulation by

using miR target prediction algorithms TargetScan [26], TargetScanS, miRanda [27],

microRNA.org [28], PITA [29], PicTar [30], mirsnpscore [31] and dbSMR [32]. Targets

were downloaded with genome coordinates and mapped to genomic positions according

to GRCh37/hg19 using the LiftOver tool from the UCSC Genome Browser and supple-

mented with any dbSNP137 SNPs located in predicted target sites. SNPs also were

collected from published miR SNP databases: PolymiRTS [33], PolymiRTS 2.0 [34],

PolymiRTS 3.0 [35], Patrocles [36], PupaSuite 3.1 [37], miRdsnp [38], miRNASNP [39],

MirSNP [40] miRcode [41] and other literature resources, including predicted and

experimentally validated sites. For SNPs located in miR genes, we used the UCSC

Genome Browser tract wgRna_sno/miRNA and limited results to miR precursor forms

then by searches for any SNPs positioned within gene regions. For genetic variants

affecting miR processing machinery, SNPs were identified that mapped within genes

encoding these enzymes.

Results and discussion
Cardiometabolic GxE interaction catalog

All GxE interaction tests for cardiometabolic traits from 386 published scientific

reports identified by literature mining are presented in Additional file 1. We include

tests passing the threshold for statistical significance as reported by the study authors,

generally p <0.05, plus those tests that are not significant. The CardioGxE catalog is

composed of 1187 significant GxEs (in 189 genes) and 13770 with no significant inter-

action observed. By far, most reports examined populations of European ancestry. Of

1187 significant GxEs, 1013 (85.2%) involve the typically measured lifestyle choices or

environmental factors of physical activity or inactivity, smoking, alcohol consumption

and diet. Dietary measures include macronutrient intakes, either as daily amounts or as

percent of total energy, of carbohydrates, both simple and complex; protein; and fat,

sub-divided into total fat, saturated fatty acid (SFA), mono-unsaturated fatty acid

(MUFA), and poly-unsaturated fatty acid (PUFA), with the latter further categorized as

N-3 or N-6, omega-3 or omega-6, respectively. Of 1187 significant GxEs, 992 (83.6%)

include the commonly measured phenotypes of blood lipids (HDL-cholesterol, LDL-

cholesterol, VLDL-cholesterol, total cholesterol, triglyceride), glycemic traits (type 2

diabetes status, plasma glucose and insulin, HOMA-IR, beta cell function as HOMA-BC),

obesity anthropometrics (BMI/obesity, adiposity, body weight, waist circumference,

waist-to-hip ratio), vascular measures (diastolic and systolic blood pressure),

inflammation (C-reactive protein or CRP), and metabolic syndrome, or changes in these

values in response to an intervention, typically dietary.

We then trimmed the data to those significant GxEs that contain both common

phenotypes and environmental factors producing a list of 654 different significant

cardiometabolic GxEs. These GxEs are different in terms of any data parameter including

population, or the direction or threshold of the environmental term constituting the GxE

interaction. This dataset, although smaller than the 1187 total GxEs mined from the

literature, allows for much more direct comparisons to other biomedical and genomics

datasets. In our 2011 report, we described 554 different GxE interactions from 184 publi-

cations [14]. In that dataset, we cataloged 377 GxEs containing common phenotypes and
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common environmental factors. Thus, while we have observed growth in GxEs for cardio-

metabolic traits over the past three years, there also have been a few large-scale or

genome-wide studies, which have produced a substantial number of interactions not

reaching significance, as well as greater diversity in both the phenotypes and environmental

terms analyzed.
GxE SNPs involved in genetic-based diseases and GWAS

The National Human Genome Research Institute (NHGRI) maintains a Clinical Genomic

Database [42], a manually curated database of conditions with known genetic causes [43].

These data can be queried to obtain genes implicated in certain medical conditions with

regard to the clinical utility of genetic diagnosis. We conducted a query on 22 May 2013

for the term “cardiovascular”, which returned 486 different genes, of which 24 have

evidence for GxE interactions for cardiometabolic traits. The corollary of this finding is

only 24 of 189 (12.7%) cardiometabolic GxE genes are present in the clinical genomic

dataset, yet these genes are linked to phenotypes pertinent to cardiovascular diseases.

Because this observation is general and without regard to specific phenotypes, we sought

to look more deeply at the occurrence of genes shared between the CardioGxE catalog

and other datasets of gene-phenotype relationships.

GWAS have been powerful interrogators of the genome, identifying genetic sources

of phenotypic variance and disease risk. However, the contribution to phenotype variance

that could be explained solely by main effect associations for many cardiometabolic traits

was quite small [44]. We reasoned that GxE interactions are important contributors to

phenotypic variance. Thus, it would be useful to determine the extent to which sets of

genes affiliated with certain cardiometabolic traits also show GxE interactions, as well as

how often genes supporting GxE interactions for a given trait have no other evidence

linking the gene to that trait. We mined four gene and genetic association databases for

genes assigned to four different cardiometabolic traits: blood pressure, HOMA-IR, total

cholesterol and LDL-cholesterol. These databases were NCBI Gene, the NHGRI GWAS

Catalog [45], the PheGenI phenotype-genotype integrator [46], and a recent comprehensive

review of coronary artery disease risk factors [47]. That review lists 326 different genes

involved in CAD susceptibility or a series of risk factors ranging from blood lipids to gluco-

metabolic traits and C-reactive protein [47]. None of these four databases contained the

same number of genes assigned to a given trait, underscoring the fact that all relationships

between gene and phenotype are not comprehensively cataloged in one place. For each

phenotype, we observed very few genes shared by our GxE catalog with any of the four

gene/genetic association data sources, ranging from a minimum of no genes shared to a

maximum of 20% of genes (15 of 75 genes) assigned in the example of LDL-C in NCBI

Gene (data not shown).

In order to compare GxE SNPs to SNPs supporting main effect associations, we first

compiled a list of SNPs in high LD with the lead GxE SNP. This was done with data

from the 1000 Genomes Project in the CEU population with an r2 threshold set to 0.80

yielding a set of 3381 GxE SNPs. We then compared these GxE SNPs to SNPs supporting

main effect associations to cardiometabolic phenotypes in two important resources. Of

759 SNPs with associations to cardiometabolic phenotypes in the GWAS catalog [45],

only 36 (4.7%) show evidence of GxE interactions. In addition, of the 3381 GxE SNPs,
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only 112 (3.3%), representing 146 unique SNP-phenotype pairs, show an association to a

cardiometabolic trait as mined from PheGenI [46]. Furthermore, of these 146 SNP-

phenotype pairs, only 37, or 25.3% support a GxE interaction for the same or very similar

phenotype. Taken together, these observations underscore the incomplete description of

contribution to phenotypic variance by main effect associations, and strengthen the

importance of GxE interactions as contributors to that variance. This then implies that

genetic contributors alone are insufficient diagnostic tools for assessing disease risk, but

those calculations also must include at least the GxE term.
Genetics – GxE and epistasis connections

Epistasis also has been offered as a contributor to the observed variance in disease

phenotypes [5,6]. Some groups have undertaken a knowledge-driven approach, using

shared relationships from protein-protein interaction data or pathway assignment, to

identify potential gene-gene or epistatic interactions [48,49]. In a similar vein, we

hypothesized that epistatic alleles could operate via shared mechanistic linkages and

that these could then be observed as coordinate pairs of identical GxE interactions. To

test this, we collected epistatic relationships for common cardiometabolic traits from

the literature and examined those SNP-phenotype relationships in our GxE catalog.

Of eleven significant gene-gene interaction models discovered in a cohort in which

epistasis was examined as a source for phenotypic variance for HDL-C [48], only two

epistasis pairs were tested for GxE interactions for the same HDL-C trait. One, our

catalog lists ABCA1 and LPL markers as each having GxE interactions for HDL-C, but

always with environmental factors not shared with the other gene. Two, a knowledge-

driven screen of GWAS data reported an interaction between LIPC and HMGCR for

HDL-C [49], but no GxE interactions for HMGCR are cataloged here. Additional litera-

ture mining revealed several gene-gene interactions acting on cardiometabolic traits.

We identified just five examples for which the genes containing the epistasis relationship

also participate in GxE interactions for the same phenotype and environmental factor.

These include LEPxLEPR on obesity [50] and a change in BMI-low-calorie diet GxE as

well as a BMI-PUFA N-6 linoleic acid GxE; ADRB2xADRB3 on BMI [51] and a BMI-

physical activity GxE; APOExCETP on HDL-C [52] and GxE interactions for alcohol, fat

intake, physical activity or SFA intake; CETPxLIPC on HDL-C [53] and GxE interactions

with physical activity, percent energy from animal fat, and intakes of fat, MUFA and SFA;

and PPARAxPPARG on small dense LDL [54] and a LDL particle size-SFA intake GxE.

Although examination of our GxE catalog shows that the published epistasis gene pairs

often are not tested for the same phenotype-environmental factor combination, a number

have been tested but few exhibit shared GxE interactions. This may indicate that the pools

of genetic factors contributing to phenotypic variance via epistasis and GxE interactions

are rather distinct. Comparing to such a small epistasis dataset, however, is insufficient

and thus it remains an open question as to how often epistasis genes will share an

environmental interaction and reveal any mechanisms of action.
GxE variants under positive selection

Comparisons of risk allele frequencies across diverse populations have established

appreciable directional differentiation for blood lipid and T2DM risk allele frequencies
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[55,56]. The decreasing frequencies of some T2DM risk alleles seen along an eastward

arc from Africa to eastern Asia supplement disparities in predicted genetic risk, such

that a portion of T2DM genetic risk is consistently elevated for individuals in African

populations and lower in Asian populations [56], but this is somewhat controversial [57].

Accordingly, and considering that geography and climate strongly influence available

foodstuffs, seasonally directed energy expenditures and other nutrition-centric human

activity [13], we sought to identify those GxE SNPs that show evidence for positive

selection.

Three resources were used to investigate relationships between cardiometabolic GxEs

and adaptation to climate and geography. First, two genome-wide studies have examined

associations between genetic variants and climatic and geographical characteristics,

including latitude, seasonality, precipitation, solar radiation and temperature [58,59]. Sec-

ond, a collection of genes was identified as under selection in different human populations

with roles in cultural practices, often with rationales pertinent to agriculture, diet and soci-

etal behaviors [60]. Third, a number of other studies have assessed adaptation at candidate

loci for specific phenotypes and we chose to examine those germane to cardiometabolic

traits. From these reports, we found that 25 of 189 different genes supporting cardiometa-

bolic GxE interactions show adaptation to climatic and geographical characteristics (Table 1).

Just 23 of 453 loci participating in main effect associations for these cardiometabolic traits,

as mined from the GWAS catalog [45], show adaptation to climate and geography features,

indicating significant enrichment in the GxE dataset (p <0.001, two sample z-test).

It is a challenge to understand fully the relationships between factors driving adaptation

to a given climate or geographical feature and the phenotype-environment pairings

observed in published GxE interactions. Nonetheless, some examples deserve attention.

GxE genes ANGPTL4 and PPARA, both expressed in adipocytes, were identified as show-

ing adaptation to high altitude in Tibetans [62,69] and as contributing to variation in

HDL-C and other blood lipids (Additional file 1). Interestingly, hypoxia affects preadipo-

cytes and adipocytes in ways that alter lipid droplet size and content, including triglyceride,

and protein secretion [70,71]. The UCP1 and UCP2 genes are described as having under-

gone adaptation to temperature, specifically cold resistance [68], and participate in GxE

interactions with energy intake (fuel) on BMI and body weight. Lastly, we note GxE interac-

tions with hormone-sensitive lipase LIPE and physical activity. This gene resides within a

region identified as having been subject to a selective sweep in Ethiopian highlanders with

respect to hypoxia tolerance adaptation [67]. Overall, we believe that the observed enrich-

ment of GxE genes for adaptation to climate and geographical traits likely originated from

energy homeostasis and temperature adaptation as this dictated what food was available,

how much energy was expended during daily activities, and what an individual wore (to be

warm or cool). Maintaining energy homeostasis and healthy vascular function, which can

be promoted by an active lifestyle, are central to diseases such as CVD, T2DM, hypertension,

stroke and metabolic syndrome, which are often preceded by abnormal values of the clinical

measures constituting this GxE catalog.

Although the work presented here does not explore relationships between genes

under selective pressure from pathogen exposure and genes that support cardiometabolic

GxE interactions [13], such instances might have relevance to the links between metabolic

diseases and inflammation. In this regard, toll-like receptors, including TLR1, have roles

in metabolic syndrome in macrophages and other cell types [72], and TLR1 recently was



Table 1 GxE genes and SNPs under selection for climatic and geographic characteristics

Gene/SNP Climate/Geography factor Cardiometabolic GxE, phenotype-
environmental factor

ACE-
rs7214530

Winter PC1 [58] SBP-physical activity; LC

ADAMTS9 Hypoxia - high-altitude Amharans
(Ethiopia) [61]

LC

ADH1C Digestion of milk and dairy products;
metabolism of carbohydrates, starch, proteins,
lipids and phosphates; alcohol metabolism [60]

BMI-alcohol consumption; waist circumference-
alcohol consumption

ADRA2B-
rs7604842

Summer PC1 [58] T2DM-physical activity; LC

ANGPTL4 Hypoxia - high-altitude Tibetans [62] HDL-C-carbohydrate, percent energy from

APOA4 -
rs5110

Nutritional advantage to those with
high milk consumption [63]

Varirous GxEs: blood lipids-dietary
fatty acid intake

CD36 Dispersal and subsequent exposure to novel
climates; summer PC1; fat consumption
[58,60,64]

LC

CETP Dispersal and subsequent exposure to novel
climates; energy metabolism and hot or cold
tolerance; summer PC2 [58,60]

Cholesterol, total-fat, total intake; Δcholesterol,
total-SFA, percent energy from; HDL-C-diet (3);
HDL-C-physical activity (4); HDL-C-alcohol
consumption (2); HDL-C-fat, total, percent
energy from; HDL-C-MUFA, percent energy from;
HDL-C-SFA, percent energy from; triglyceride-
alcohol consumption; LC

CLOCK-
rs1979605

Summer PC2 [58] BMI-physical activity; glucose, fasting-MUFA,
percent energy from; insulin resistance
(HOMA-IR)-MUFA, percent energy from; waist
circumference-SFA, percent energy from

CYP1A2 Domestication of plants [60] myocardial infarction-coffee intake

CYP3A5 Domestication of plants; aridity (salt retention
adaptation) in some Africans [60,65]

DBP-sodium intake; SBP-sodium intake; LC

EDNRA Hypoxia - high-altitude Tibetans [66] Arterial stiffness-physical activity

FABP2-
rs1799883

Latitude [58] ΔSBP-Mediterranean hypocaloric diet + exercise
(MHD + E); Δglucose, fasting-MHD + E; ΔLDL-C-
MHD + E; glucose tolerance-low-fat diet; glucose,
fasting-low-fat diet; insulin, plasma, fasting-low-
fat diet; LC

FABP2 Dispersal and subsequent exposure
to novel climates; latitude [58,60]

(see above)

GNPDA2 Precipitation; summer [59] Δbody weight-weight-loss intervention + exercise

LEPR-
rs1137100

Winter PC1 [58] SBP-physical activity; Δinsulin,
fasting-physical activity

LEPR Digestion of milk and dairy products;
metabolism of carbohydrates, starch, proteins,
lipids and phosphates; alcohol metabolism;
energy metabolism, hot or cold tolerance;
latitude, summer PC2; winter PC1 [58,60]

Δbody weight-low-calorie diet; insulin resistance
(HOMA-IR)-PUFA, N-3, plasma; insulin resistance
(HOMA-IR)-PUFA, N-6, plasma; insulin, plasma,
fasting-PUFA, N-3, plasma; insulin, plasma,
fasting-PUFA, N-6, plasma; ΔSBP-MHD + E;
ΔBMI-MHD + E; Δbody weight-MHD + E;
Δwaist circumference-MHD + E; LC

LCT Dairy farming and milk usage; dietary
preferences; alcohol consumption [60]

BMI-lactose; body weight-lactose; waist
circumference-lactose

LIPE Hypoxia - high-altitude Ethiopians [67] BMI-physical activity; cholesterol:HDL-C
ratio-physical activity; LC

LPA Dispersal and subsequent exposure to novel
climates; winter PC2 [58,60]

Lp (a), plasma-fish intake

PON1-
rs662

Summer PC1 [58] Cholesterol, total-smoking; HDL-C-physical
activity; HDL-C-PUFA, N-9, oleic acid intake;
LDL-C-smoking; triglyceride-smoking; LC
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Table 1 GxE genes and SNPs under selection for climatic and geographic characteristics
(Continued)

PON1 Dispersal and subsequent exposure to novel
climates; summer PC1 [58,60]

(see above)

PPARA Hypoxia - high-altitude Tibetans [62] CRP, plasma-PUFA, N-3, percent energy from;
triglyceride-PUFA, N-3, percent energy from;
triglyceride-PUFA, N-6, percent energy from;
triglyceride-PUFA, percent energy from; waist
circumference-fat, total intake; waist
circumference-SFA intake; HDL-C-PUFA intake; LC

PPARD Dairy farming and milk usage; dietary
preferences; alcohol consumption [60]

ΔHDL-C-physical activity; LDL particle size-PUFA:
SFA ratio; ΔVO2max-physical activity; Δwork
output, max-physical activity; LC

PPARGC1A-
rs4550905

Winter PC1 [58] BMI-alcohol consumption; BMI-physical activity;
Δinsulin resistance (HOMA-IR)-low-calorie diet; LC

TCF7L2-
rs11196175

Summer PC1 [58] Glucose, fasting-fat, total, percent energy from;
insulin resistance (HOMA-IR)-fat, total, percent
energy from; insulin sensitivity-SFA, percent
energy from; insulin, plasma, fasting-SFA, percent
energy from; metabolic syndrome-SFA, percent
energy from; LC

UCP1-
rs1800592

Temperature - cold resistance [68] ΔBMI-energy intake; Δbody weight-energy
intake; Δwaist circumference-energy intake; LC

UCP2-
rs659366

Temperature - cold resistance [68] Δbody weight-high-calorie diet; ΔBMI-low-
calorie diet; BMI-homestead; LC

UCP3-
rs1800849

Temperature - cold resistance [68] BMI-physical activity

UCP3 Dispersal and subsequent exposure to novel
climates; winter PC1; temperature - cold
resistance [58,60]

Δbody weight-high-calorie diet

When no SNP is listed, only the gene itself was shown to be under selection.
bold = phenotype-environment pair found in (n) studies.
LC = selected GxEs based less common phenotypes or environmental factors can be found in (Additional file 1).
Δ refers to a change in the phenotype, typically after an intervention.
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described as having been under selective pressure in Roma gypsy and European popula-

tions in response to Yersinia pestis, the agent of plague [73]. TLR4 variants support GxE

interactions with obesity traits and smoking in an Argentinean population of European

ancestry [74]. Identification of other immuno-metabolic genes that support cardiometa-

bolic GxEs is intriguing but has not been explored sufficiently.

In other work, we examined our catalog of GxE variants and the GWAS-based main

effect SNPs for signals of recent positive selection in populations of European ancestry

with data from the 1000 Genome Selection Browser [18]. As noted in Table 2, there is

no significant enrichment of positive selection based on Fst or iHS values when com-

paring a set of LD blocks derived from GxE interactions for cardiometabolic traits to a

set of GWAS-detected LD blocks that support main effect, but non-GxE associations

for the same traits. This could be interpreted in any of several ways. First, the environ-

ment indeed has exerted selective pressure on certain variants affecting cardiometabolic
Table 2 Frequency of cardiometabolic GxE and GWAS SNPs under positive selection

Dataset, all cardiometabolic traits # LD blocks # with Fst or
iHS (%)

p # with
Fst (%)

p # with
iHS (%)

P

nonGxE GWAS 549 88 (16.0) 0.61 21 (3.8) 0.66 70 (12.8) 0.44

GxE 178 30 (16.9) 8 (4.5) 22 (12.4)

p-value based on two-sample z-test.
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traits and disease risk, but the main effect GWAS associations also support as yet

undescribed GxE interactions. Two, some effects of the environment are spread across

the Homo sapiens species and are not detected as specific to populations of a single

ancestry and thus may be observed as main effect associations. Three, the environmental

factors driving selection at the GxE or GWAS loci could be quite different, but although

these factors remain unknown, interpretation of this result is hindered. In addition, we

observed no significant enrichment for Fst or iHS signals in LD blocks supporting HDL-C

or physical activity GxEs compared to all cardiometabolic GxEs (data not shown). How-

ever, because a genetic marker that associates with HDL-C levels, or any other trait, may

either support an as yet untested GxE interaction or a GxE for another, even unrelated

phenotype, any enrichment of HDL-C GxE loci under selection compared to main effect

loci cannot be fully known.

Seeking to add further support to the hypothesis that many environment-sensitive

genes and their variants that function in human disease have been or are under selective

adaptation, a theme we have explored with respect to heart disease risk [11], we examined

the pathway whose genes proportionately have the greatest level of Neanderthal admix-

ture with subsequent recent positive selection preferentially in contemporary Europeans

to retain those sequences [75]. This pathway is involved in lipid catabolism and many of

its 38 genes show expression divergence in brain of contemporary humans of European

but not East Asian or African descent [75]. Seven of these lipid catabolism genes have

been tested for GxE interactions in numerous populations: ANGPTL3, APOA4, APOA5,

CPT1A, CPT1B, PPARA and PPARD. In non-European populations 252 different GxE

tests with any of these seven genes have been performed and 33 (13.1%) were significant;

in populations with European ancestry 437 such tests were performed giving 95 (21.7%)

significant GxE interactions. This difference between ancestries is significant (p = 0.002,

two-sample z-test) with certain implications for cardiometabolic disease risk. Further-

more, this may lend support to adaptation by Europeans to geographical specificities of

that continent, but does not dismiss the possibility of complex population structure in

Africa at the time of divergence of the human and Neanderthal lineages [75].
Pathway analysis – GxE genes and cellular function

Regarding physiological and biological pathways, the phenotypes forming the GxE

interactions cataloged here are generally well understood. Also, within many GxE genes

there are interactions involving the same phenotype but with different environmental

factors or involving the same environmental factor acting upon several phenotypes.

Lastly, pathway analysis based on environmental factors, in our opinion, will be more

robust once GxE GWIS results are collected and the involved variants are fully charac-

terized. For these reasons, we opted not to perform a traditional test of pathway or

gene ontology enrichment for sets of GxE genes, for example for all GxEs affecting

triglycerides (TG) or all GxEs pertaining to SFA intake or even all TG-SFA GxEs, but

to examine the GxE gene function in the context of metabolic syndrome (MetS). To

accomplish this, we mined from a series of 12 electronic posters depicting MetS in six

organs or tissues and six cell types [72] whether a gene with variants supporting a

cardiometabolic GxE interaction or its encoded protein was present. We considered

the presence of a gene or protein as indicative of a key function in the development or
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progression of MetS. Across all six cell types of adipocyte, hepatocyte, islet cell, macro-

phage, myocyte and neuron, we noted with interest that many GxE proteins function in

a MetS context at or very near the cell surface (i.e., in the plasma membrane (PM) or

physical interaction with a PM-associated protein). This is a logical site for a protein

whose gene is part of an allele-specific response to an environmental stimulus, which

arrives in some form at the cell surface. Similarly, it has been observed that GxE genes

are enriched in cell communication and cell surface activities [76].

Second, a comparison to pathways relevant to metabolic syndrome and metabolic

homeostasis [72] showed that the tissues or cell types that have the greatest frequency

of genes that support GxE interactions are the adipocyte and the myocyte. From 22%

to 25% of all genes depicted as pathway entities under either metabolic homeostasis or

metabolic syndrome for these two cell types have evidence in the literature as partici-

pating in GxE interactions for cardiometabolic phenotypes. Other organs or cell types,

such as brain (13-16%), neuron (14%), islet cell (12%), macrophage (16%) and hepatocyte

(18%), have lower occurrences, a result which may arise from the high number of GxEs

with physical activity. In support of these findings, a recent report on an environment-

wide association study (EWAS) in the National Health and Nutrition Examination Survey

(NHANES) showed that low physical activity is one of the main environmental factors

contributing to all-cause mortality [77], and physical activity often lowers risk in GxE

interactions. Thus, it might be more fruitful to direct efforts at identifying novel cardio-

metabolic GxE interactions to pathways that are functional in the adipocyte and myocyte.

The other main factors contributing to all-cause mortality in the NHANES EWAS – lyco-

pene intake, smoking status/exposure and cadmium levels – are not routinely analyzed as

components of GxE interactions or high-confidence measures of intakes do not exist.

When such measures are reported, genetic variation has been measured sparsely or the

data are too difficult to acquire, thereby preventing thorough GxE analysis.
GxE allele-specific effects on transcription: eQTL

We reasoned that SNPs forming GxE interactions for phenotypes that are highly relevant

to a particular tissue will more frequently support allele-specific gene expression in that

tissue, with a rationale similar to that showing SNPs associated with type 2 diabetes and

related traits are enriched in islet cell-specific enhancers [78]. Thus, as our primary interest

is in blood lipids, we examined GxEs for these traits and their relationship with expression

quantitative trait loci (eQTL) in liver, as this tissue is highly relevant to these phenotypes. Of

27 triglyceride GxE SNPs, two showed eQTL in liver: rs934197 (LD with rs7575840

mapping to APOB) and rs1800588 (LD with rs1077834 mapping to LIPC). This is about a

4.9-fold (p <0.01, two-sample z-test) enrichment over triglyceride GxE SNPs supporting

eQTL not in liver. Similarly, we found a significant enrichment of HDL-C GxE SNPs

supporting liver eQTL (p <0.01), including rs34367192 (LD with rs10495562 mapping to

ADAM17), rs6720173 (LD with rs3792009 mapping to ABCG5), and rs1800588 and

rs2070895 (both in LD with rs1077834 mapping to LIPC). Lastly, for LDL-C traits, we

observed a significant enrichment of LDL-C GxE SNPs supporting liver eQTL (p <0.01),

including rs34367192 (LD with rs10495562 mapping to ADAM17), rs1800591 (LD with

rs11937107 mapping to MTTP), and rs2070895 (LD with rs1077834 mapping to LIPC). All

liver eQTL SNPs discussed here associate with mRNAs for the gene to which the SNP
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maps, except for rs7575840 associating with a transcript just upstream of APOB. No GxE

SNPs for total cholesterol support eQTL in liver. Although the reported incidences of liver-

based eQTL are small and dictate caution regarding interpretation, the consistency of the

above enrichments is intriguing and suggested a comparison between GxE and GWAS

signals for tissue-specific eQTL.

In order to assess the impact of the eQTL in main effects compared to environmental

interactions, we tested whether CardioGxE-based LD blocks for a given trait are more

likely to share a liver eQTL than GWAS-based markers. We examined LD blocks from

both GxE and GWAS sources for all cardiometabolic traits and each of four main

blood lipids for overlap with liver eQTL. Specifically, a comparison of GxE LD blocks

and those GWAS LD blocks not overlapping with the GxE set showed no significant

enrichment in liver eQTL associations, with one exception (Table 3). Notably, only one

GxE LD block for total cholesterol contains a liver eQTL association and this low number

gives an unreliable p-value of enrichment in the GWAS samples. Nonetheless, these

results overall may be indicative of main effect SNPs exerting function in a tissue or cell

type principal to that phenotype and the GxE SNP could be sensing differentials in

environmental factors in other or peripheral tissues. Alternatively, the observation of no

enrichment could indicate that there are equal effects on transcription across sources of

trait variation, but these may operate in different tissues with respect to GxE and main

effect. For example, brain and gut eQTL are not readily available for such analyses and

GxEs may function in those organs with influences on hunger, satiety, lipid catabolism,

cholesterol synthesis, or nutrient absorption. Lastly and perhaps most importantly, eQTL

data are lacking for the response to a challenge that closely mimics the environmental

factor in the GxE equation.
GxE allele-specific effects on transcription: microRNAs

Human microRNAs (miRs) have emerged as important epigenetic regulators of cardio-

metabolic traits [79,80]. Genetic variants involved in miR-mediated regulation have

been shown to affect gene expression [81-83] and thus are suggested to contribute to

phenotypic variation. As the environment can modulate miR levels, we hypothesized

that GxE SNPs can function through miR-mediated regulation. In order to focus efforts
Table 3 Lack of enrichment for liver eQTL in GxE SNPs compared to GWAS SNPs

Dataset LD blocks: type, n LD blocks with liver eQTL (%) p

All cardiometabolic traits nonGxE GWAS, 549 35 (6.4) 0.26

GxE, 178 9 (5.1)

HDL-C nonGxE GWAS, 69 8 (11.6) 0.21

GxE, 43 3 (7.0)

LDL-C nonGxE GWAS, 54 6 (11.1) 0.32

GxE, 37 3 (8.1)

Triglyceride nonGxE GWAS, 45 7 (15.6) 0.08

GxE, 35 2 (5.7)

Total cholesterol nonGxE GWAS, 55 10 (18.2) 0.02

GxE, 33 1 (3.0)

p-value based on two-sample z-test.
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on human SNPs likely to participate in miR targeting, we created a genome-wide miR

regulatory SNP database (~900,000 SNPs) by integrating miR targeting prediction

algorithms and databases from various resources. This comprehensive database allows

assessment of the genetic effect of miR-mediated regulation on traits of interest. We

searched GxE SNPs and their proxies against our miR SNP database to identify potential

allele-specific miR-mRNA interactions and any miR-phenotype or miR-environmental

factor relationships.

A miR SNP confidence score was created by counting for each SNP the number of

supported algorithms, datasets or tables supporting a genetic effect of miR-mediated

regulation in order to rank the likelihood that a SNP is a miR regulatory SNP. Confi-

dence scores for the GxE miR SNPs and their proxies ranged from 0–13. We collected

all potential (predicted and experimentally validated) regulatory miRs for each SNP

with a miRSNP confidence score >3 (13 lead and 46 proxy SNPs) and identified the

most frequently participating miRs among GxE miR SNPs (Table 4). Such commonly

occurring miRs could serve as agents of a given phenotype or environmental factor

preferentially. However, no easily discernible trends were noted, suggesting that miR-

mediated regulation by GxE SNPs is highly specific or networked with other miRs.

More research is needed to evaluate this. Our finding may be explained by the general

understanding in the field that miR regulation is tissue specific and fine tunes gene

expression in a precise physiological or metabolic response. Furthermore, as few

common miRs have been assigned roles in GxE interactions or even in specific cellular

challenges that imitate the environmental component of these GxEs, mechanistic

interpretation of the participating alleles is difficult.

GxE allele-specific effects on transcription: epigenetics

As DNA methylation is a well known marker for environmental change, we thought it

of interest to examine whether the GxE SNPs are related to potential DNA methylation.

From 180 SNPs that support GxE interactions and have unique coordinates in the

dbSNP135 database, 79 (44%) either create or destroy a CpG dinucleotide, double the per-

cent across all dbSNP135 data (22%). In addition, we find that 16 of these 79 variants map

to within 3 kb of a CpG island, as downloaded from the UCSC genome browser. These

results identify an accumulation of such CpG-altering SNPs (CGS), a type of SNP with par-

ticular relationships to DNA methylation [84,85], in cardiometabolic GxE interactions and

suggest that these SNPs can exert impact on gene regulation in response to environmental

factors and exposure over time. In this context, 5 of 16 CGSs within 3 kb of a CpG island

also exhibit eQTL associations: rs659366, rs5128 (via LD to rs10047462), rs876493,

rs8065443 and rs1568400. Hence, epigenetic differences that alter gene activity could under-

lie some inter-individual differences in obesity and other cardiometabolic phenotypes, and

that relationship could be modified by both genetic and environmental factors [86]. On the

other hand, of 102 human genes showing differential DNA methylation at CpG sites and

differential mRNA expression of the nearest gene in pancreatic islets in a comparison of non-

diabetics and T2DM subjects [87], only ACSL5, IRS1 and SLC44A4 are known to support

cardiometabolic GxE interactions. That only IRS1 participates in GxEs with glycemic pheno-

types suggests a lack of evidence supporting strong connections between genetic variation,

GxE interactions and epigenetics. Clearly, this analysis can be conducted more thoroughly

once epigenetic and eQTL datasets expand to other tissues and cellular challenges.



Table 4 Potential regulatory miRNAs involved in allele-specific miR-mRNA interactions showing GxE interactions

SNP Lead SNP Gene miRSNP confidence score Potential regulatory miRNAs* Cardiometabolic GxE, phenotype-environmental factor

rs1063539 rs1063539 ADIPOQ 5 miR-593-3p
Obesity-PUFA, N-3, DHA + EPA, percent in erythrocyte
membranes

rs12817689 rs2302706 MMAB 7
miR-33b-3p, miR-371a-3p, miR-371b-3p,
miR-515-3p, miR-519e-3p

HDL-C-carbohydrate intake

rs1491235 rs1800591 MTTP-TRMT10A 5 miR-33b-5p

APOB-48 in VLDL-high-fat challenge; cholestanol/mol
cholesterol, serum, fasting-diet; cholesterol in VLDL-high-
fat challenge; ΔLDL-C-SFA, percent energy from;
lathosterol/mol cholesterol, serum, fasting-diet; sitosterol/
mol cholesterol, serum, fasting-diet

rs3734254 rs2076167 PPARD 11 miR-885-3p
ΔHDL-C-physical activity; Δwork output, max-physical
activity

rs4225 rs5070 APOC3 6 miR-885-3p HDL-C-fat, total intake; HDL-C-SFA intake

rs4707436 rs1049353 CNR1 12 miR-593-5p, miR-885-5p

Δcholesterol, total-MUFA, percent energy from; Δcholesterol,
total-PUFA, percent energy from; ΔIL6, plasma-physical
activity during energy restriction; ΔLDL-C-MUFA, percent
energy from; ΔLDL-C-PUFA, percent energy from; Δleptin,
plasma-physical activity during energy restriction; Δresistin,
plasma-physical activity during energy restriction; ΔTNF,
plasma-physical activity during energy restriction

rs4998 rs4994 ADRB3 6 miR-593-5p, miR-885-3p
BMI-energy intake; Δfat mass-physical activity; Δlean
mass-physical activity; obesity-physical activity; triglyceride-
low-calorie diet

rs5446 rs5443 GNB3 10
miR-33b-3p, miR-371a-3p, miR-371b-3p,
miR-515-3p, miR-519e-3p

BMI-physical activity

rs7021 rs709592 PSMD3 9
miR-33b-3p, miR-371a-3p, miR-515-3p,
miR-519e-3p

Glucose, fasting-carbohydrate, percent energy from;
glucose, fasting-MUFA, percent energy from; insulin
resistance (HOMA-IR)-carbohydrate, percent energy from

text should read as follows: Across all miRSNP data, the maximum confidence score was 24, and for this analysis that range was 0-13, with a higher score indicating higher confidence in the miR regulatory function.
*All miRs listed contain the prefix hsa-.
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GxE allele-specific effects on transcription: gene networks and atherosclerosis

Many phenotypes discussed in the context of GxE interactions are valued by health

professionals as indicators or clinical measures of risk and severity of diseases, such as

stroke, myocardial infarction and type 2 diabetes. Ideally, when such a clinical indicator

exceeds some threshold, a first treatment option is an adjustment to lifestyle, mainly a

healthier diet and increased exercise. A recently published study identified genes

expressed in mouse aorta that form the basis of the response to regression of atherosclerotic

plaques independent of a different set of genes simply responding to a lowering of plasma

cholesterol [88]. Although both the plasma cholesterol-lowering and plaque regression gene

networks contain genes identified in GWAS for the cardiometabolic traits presented in our

GxE catalog, there is a significantly higher prevalence of GxE genes over GWAS genes in

these two expression networks. Of 519 GWAS genes for these traits, 80 and 174 are

observed in the plasma cholesterol-lowering and plaque regression gene sets, respectively,

but of 108 GxE genes associating with often measured phenotypes and environmental

factors, 32 and 55 are observed in the same cholesterol-lowering and plaque regression gene

sets, respectively. In both comparisons of GxE to GWAS genes, enrichment in the gene sets

is significant with p <0.001 (Table 5). Thus, the overlap of genes responding either to plaque

regression or reduction in plasma cholesterol, with genes participating in GxE interactions,

of which most contain an environmental term entailing physical activity, energy from fat or

total energy, is significantly more than for GWAS. This is reasonable and offers the

opportunity to focus efforts to identify the genetic basis of differential responses to

cholesterol-lowering dietary interventions.
Conclusions
While it certainly may be stated that a person’s ‘genometype’ could indeed prove the

most useful for individualized medicine (including individualized nutrition) and

personal genetics [89], the impact of environmental interactions on a person’s panel of

alleles cannot be overstated. In this regard, an interaction between an obesity genetic

risk score based on 63 variants and saturated fat intake has been demonstrated in two

distinct populations [90]. We have not in this analysis coalesced the genetic variants

cataloged in CardioGxE around a given phenotype-environmental factor pair and

processed data for a global or genometype GxE interaction, but such research could

proceed with the aid of this GxE resource. Indeed, the lack of overlap between our

CardioGxE dataset and published GWAS for comparable phenotypes makes evident

the utility of incorporating GxEs into assessment of disease risk in two important ways.

One, a GxE catalog provides the means to develop a better strategy of intervention
Table 5 Plasma cholesterol-induced lesion networks are enriched for cardiometabolic
GxE genes

Network, number
of genes*

Genes shared with
GxE catalog†

Genes shared with
GWAS catalog‡

Enrichment in GxE
catalog, p-value

Plasma cholesterol-lowering, 2697 32 80 < 0.001

Regression-reactive, 6096 55 174 < 0.001

*All genes comprising each network, as described [88].
†GxE genes supporting commonly measured phenotypes and involving common environmental modifiers, n =108.
‡GWAS genes supporting associations with cardiometabolic phenotypes, n =519.
p-value based on two-sample z-test.
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because genetic and environmental factors combined can equip the physician for more

accurate prediction of future disease risk and hence disease prevention. Two, genetic

variation alone is not just diagnostic of disease risk, but is a component of and should

be considered in epistatic and GxE interactions to better inform the individual of

potential disease risk. Altogether, the numerous examples presented here add to the

emerging view that GxEs are widespread and significant contributors to phenotypic

variance [91]. Although we have highlighted instances for which more data are needed,

especially taken under conditions mimicking the environmental factor of the GxE equation,

the insight thus far garnered from analysis of a large GxE catalog emphasizes the influential

roles of environmental factors in the genetics of complex traits, particularly those of a

metabolic nature.

Additional file

Additional file 1: The CardioGxE catalog of gene-environment interactions for cardiometabolic
phenotypes.
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