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Abstract

Background: Most machine learning techniques currently applied in the literature
need a fixed dimensionality of input data. However, this requirement is frequently
violated by real input data, such as DNA and protein sequences, that often differ in
length due to insertions and deletions. It is also notable that performance in
classification and regression is often improved by numerical encoding of amino
acids, compared to the commonly used sparse encoding.

Results: The software “Interpol” encodes amino acid sequences as numerical
descriptor vectors using a database of currently 532 descriptors (mainly from
AAindex), and normalizes sequences to uniform length with one of five linear or
non-linear interpolation algorithms. Interpol is distributed with open source as
platform independent R-package. It is typically used for preprocessing of amino acid
sequences for classification or regression.

Conclusions: The functionality of Interpol widens the spectrum of machine learning
methods that can be applied to biological sequences, and it will in many cases
improve their performance in classification and regression.

Findings
Machine learning techniques have been widely applied to biological sequences to gain

insights into biological function, for instance Rost and Sander [1], Dubchak et al. [2],

Karchin et al. [3] and Nielsen et al. [4]. Nanni and Lumini [5] have found improved

performance of classifiers based on numerically encoded amino acid sequences as

compared to classifiers based on the typically used standard orthonormal representa-

tion, i.e. a vector containing twenty indicator variables (one for each amino acid) for

each sequence position, resulting in a matrix containing the amino acid distributions

for each position in the input sequence. For numerical encoding, each amino acid (or

nucleotide) of a sequence is mapped to a numerical descriptor value, such as hydropa-

thy [6], molecular weight, or isoelectric point.

One major limitation of almost all machine learning algorithms is the fixed input

dimension, making these algorithms incapable of handling data which varies in its

dimension. This is unsuitable for many biological applications as there are often

sequence deletions and insertions.

We have developed a preprocessing approach for machine learning that combines

the use of numerical descriptor values with a normalization of sequences to a fixed

length by numerical interpolation. This procedure has already been applied to
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coreceptor usage prediction in HIV-1 [7], functional protein classification [8,9], and

HIV-1 drug resistance prediction [10] were it led to marked improvements of

prediction performance. Although many machine learning algorithms are available as

software, no package for the described preprocessing of amino acid sequences is avail-

able to date. We have therefore developed Interpol, a flexible and easy to use open

source package for the statistical language R http://www.r-project.org/. Currently,

Interpol provides encoding of amino acid sequences with 531 different numerical

descriptors from the AAindex database [11] and one additional empirical descriptor.

Moreover, it allows normalization of encoded sequences to a specific length with five

different linear or non-linear interpolation procedures.

Interpol is included in the Comprehensive R Archive Network (CRAN) and can be

directly downloaded and installed by using the following R command:

install.packages("Interpol”)

In the following example, we introduce Interpol’s two commands AAdescriptor

and Interpol applied to a set consisting of 1351 HIV-1 V3 loop sequences from

Dybowski et al. [7] for the prediction of coreceptor usage (see also Table 1). After load-

ing the set of sequences, the first V3 sequence is encoded using the AAdescriptor

command:

library(Interpol)

data(V3) #load V3 data

data.new <- AAdescriptor(V3[1]) #numerically encode

sequence 1

Optional parameters are the applied descriptor (default descriptor = 151, i.e.

the hydropathy scale of Kyte and Doolittle [6]) and an interval normalization (default

normalize = 0, i.e. no normalization). The list of available descriptors can be found

in data(list).

After encoding the amino acid sequence as numerical vector, it can be normalized to

a specific length for subsequent classification. In our example, the V3 sequence lengths

vary between 33 and 38 amino acids due to deletions or insertions. The following

commands translate the amino acid sequences into numerical sequences using the

hydropathy descriptor, and then normalize the sequences to a fixed length of 35:

library (Interpol)

data (V3) #load V3 data

L.norm <- 35 #desired length

data.new <- matrix(nrow = length(V3),

ncol = L.norm)

for(i in 1:length (V3)){

#AAdescriptor encodes sequences

Table 1 Method overview

command parameters information

AAdescriptor data amino acid sequence

descriptor (optional) 1-532; default = 151 [6]

normalize (optional) 0: no; 1:[-1,1]; 2:[0,1]; default = 0

Interpol data encoded amino acid sequence

dims desired length

method (optional) default = linear, spline, periodic, natural, fmm
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#Interpol normalizes to length L.norm

data.new[i,] <- Interpol (AAdescriptor (V3[i]),

dims = L.norm)

}

Sequence 782 in the V3 dataset has a length of 38 amino acids. In the following

example the code for normalization from 38 to 35 amino acids, and for visualization of

the interpolation is demonstrated (see Figure 1):

library(Interpol)

data(V3) #load V3 data

sequence <- AAdescriptor(data = V3[782], #numerically

encoding

descriptor = 151, #hydropathy descriptor

normalize = 2) #interval normalization [0,1]

sequence.35 <- Interpol(data = sequence, #normalize sequence

dims = 35, #desired length 35

method="spline”) #spline interpolation

plot(sequence, type="l”, ylim = c (0,1), #plot sequence 782

ylab="descriptor value”,

xlab="sequence position”,

lty = 1, lwd = 2)

lines(seq (1,38,(38/35)),sequence.35, #plot normalized

sequence

lty = 2, lwd = 2)

Figure 1 Example: Interpolation. A V3 loop sequence was encoded with AAdescriptor and then
normalized with Interpol from length 38 to 35. Solid line: encoded sequence of length 38; dashed line:
normalized sequence of length 35.
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axis(3, at = seq (1,38, 38/35), #add axis

labels = 1:35)

The optional parameter method can be one of linear, spline, natural,

periodic or fmm (default method = linear). The linear interpolation connects

two data points (x0, y0) and (x1, y1) with a straight line. The cubic spline interpolation

uses piecewise cubic polynomials instead of a straight line. The spline interpolation of

Forsythe [12] builds a cubic spline interpolation with the cubic passing exactly through

the four points at each end of a sample. The periodic spline interpolation fulfills peri-

odic boundary conditions, i.e. the spline curve has the same first and second derivative

at its endpoints. The natural spline interpolation fulfills the natural boundary

conditions.

The command help(package = Interpol) gives an overview of the Interpol

package and the included methods and data. Descriptions for the AAdescriptor and

the Interpol commands can be obtained by help(AAdescriptor) and help

(Interpol), respectively.

In the following examples we demonstrate the use of the Interpol package for the

prediction of the coreceptor usage of HIV-1 according to Dybowski et al. [7] based

on sequences of the V3-region of the HIV-1 protein gp120. V3 is the main determi-

nant of coreceptor usage, i.e. it determines which of the cellular coreceptors CCR5

or CXCR4 is used by HIV-1 for cell entry. Classification of V3-sequences with

respect to coreceptor usage is important for therapy and prognosis. Since V3 is vari-

able in length, many classification algorithms are not applicable. We therefore first

apply AAdescriptor and Interpol to numerically encode V3-sequences and to

normalize them to a fixed length. We then apply for classification random forests

[13] implemented in the randomForest package, and for performance measurement

the area under the receiver operating characteristics curve (AUC) implemented in

the ROCR package [14] of R according to Dybowski et al. [7]. Note that Interpol

is independent of the classification method applied, and could be also used with

artificial neural networks (as in R-package neuralnet), support vector machines (as in

R-package kernlab) [15], etc.

library(Interpol)

library(randomForest)

library(ROCR)

data(V3) #load V3 data

desc <- 151 #hydropathy descriptor

inter <- “linear” #linear interpolation

L.norm <- 35 #desired length

classes <- c (rep (1,200), rep (0,1151)) #class labels

data.new <- matrix (nrow = length (V3),ncol = L.norm)

for(i in 1:length(V3)){

#AAdescriptor encodes sequences

#Interpol normalizes to length L.norm

data.new[i,] <- Interpol (AAdescriptor (V3[i],

descriptor = desc),

dims = L.norm,method = inter)

}
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rf <- randomForest (as.factor (classes)~., #build

forest

data = data.new)

pred <- prediction (rf$votes[,2], classes) #prediction

object

perf <- performance (pred, “auc”) #AUC estimation

Using the Interpol package, it is very easy to retrieve and compare the performance of

different descriptors, e.g. hydrophobicity and net charge, and different interpolation

methods (e.g. linear and spline interpolation), by just changing line desc <- 151

to desc <- 146 and inter <- “linear” to inter <- “spline”, respectively, in

the above code (see also Figure 2). The complete list of descriptors can be found on the

help pages (help (Interpol)) and in data(list). Note that the above code

somewhat overestimates the true performance as it does not include the leave-one-

patient-out scheme used by Dybowski et al. [7].

There are several potential limitations of the Interpol method for protein classifica-

tion. First, normalizing to lengths of less than 50% of the original sequence length will

in general lead to loss of information. Thus, we suggest to stretch short sequences to a

certain length instead of squeezing longer sequences. However, stretching can also

cause problems as the normalized sequence space has a higher dimension and thus

classification is more prone to overfitting. A more general limitation of normalization

is that in some cases the sequence length itself can carry some information. For

instance, classifying sequences of huntingtin protein [16] for induction of Huntington’s

disease critically relies on the length of a Glutamine repeat, an information that can be

partly lost in sequence normalization.

Figure 2 Example: ROC curves. Comparison of prediction performance based on different descriptors
and interpolation methods implemented in Interpol and visualized with ROCR [14]. black: hydropathy
(descriptor = 151); grey: net charge (descriptor = 146); solid line: linear interpolation; dashed
line: spline interpolation.
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Availability and requirements
• Project name: Interpol

• Project home page (CRAN): http://cran.r-project.org/web/packages/Interpol/

• Operating system (s): Platform independent

• Programming language: R (≥ 2.10.0)

• License: GPL (≥ 2)

• Any restrictions to use by non-academics: none
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